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A basic limitation of incremental clustering

An M -configuration can be realized in Euclidean space:

Lemma 3.7 There is an absolute constant co such that for any dimension p, the Euclidean space Rp,
with L2 norm, contains M -configurations for all M < 2cop.

We will use the probabilistic method to construct an M -configuration in Rp.

• Let xo be any vector of length 1 < a < 2 (we will fix a later).

• Pick x1, . . . , xM uniformly at random from the surface of the unit ball in Rp.

• Set each x′i = −xi.

We will show that with probability > 0, the resulting set of points is an M -configuration; therefore,
an M -configuration must exist.

We start by considering distances between xo and any other point.

Lemma 3.8 Fix any xo ∈ Rp of length a and pick X uniformly at random from the unit sphere in
Rp. Then E‖X − xo‖2 = a2 + 1, and for any 0 ≤ t ≤ 1,

Pr(|‖X − xo‖2 − (a2 + 1)| > t) ≤ 2 exp(−t2p/(8a2)).

Proof. First observe that

‖X − xo‖2 = ‖X‖2 + ‖xo‖2 − 2X · xo = a2 + 1− 2X · xo.

When X is chosen uniformly at random from the unit sphere, E(X · xo) = (EX) · xo = 0 and thus
E‖X − xo‖2 = a2 + 1.

Next, define f(x) = x · xo. This function is a-Lipschitz with respect to the `2 norm: for any
x, y ∈ Rp,

|f(x)− f(y)| = |x · xo − y · xo| ≤ ‖x− y‖‖xo‖ = a‖x− y‖.
It follows by measure concentration on the unit sphere (see, for instance, Theorem 14.3.2 of [2]) that
for 0 ≤ t ≤ 1,

Pr(|f(X)−med(f)| > t) ≤ 2 exp(−t2p/(2a2)).
Here med(f) is the median value of f(X), which is 0 by the symmetry of the distribution. Therefore,

Pr(|‖X − xo‖2 − (a2 + 1)| > t) = Pr(|f(X)| > t/2) ≤ 2 exp(−t2p/(8a2)),

as claimed.
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A more restricted class of clusterings

Lemma 4.3 Sequential nearest-neighbour clustering is perfect-detecting.

Proof. Consider a data set that has a perfect k-clustering C. We prove that the following invari-
ant holds at any time in the execution of the algorithm: the clustering induced by the centers is a
refinement of C restricted to the data seen so far.

Clearly, the above holds after the first k elements are given, since each is made into a center. After
the initial k points are shown, every new point given to the algorithm becomes a center, and then the
two closest centers are merged. We will now show that any two merged centers belong to the same
cluster of C; thus the invariant holds always.

Recall that in a perfect clustering, all within-cluster distances are strictly smaller than all between-
cluster distances. Thus, of the k+1 centers, the two that merge (the two closest) must belong to the
same cluster.

As soon as points are seen from all clusters of C, the centers maintained by the algorithm induce
C.

Theorem 4.4 There is a set of four points in R3 with a perfect 2-clustering that is also the global
optimum of the k-means cost function (for k = 2). However, there is no ordering of these points
that will enable this clustering to be detected by sequential k-means.

Proof. Consider these four points in R3: for 0 < ε < 1/2,

x1 = (1, 0, 0), x2 = (−1, 0, 0) x3 = (0, 1,
√
2 + ε) x4 = (0,−1,

√
2 + ε).

These points have a perfect 2-clustering C = {{x1, x2}, {x3, x4}}, with within-cluster distance 2,
and between-cluster distances greater than 2. Moreover, this is also the global optimum of the k-
means cost function, as can be checked by enumerating the various cases. However, we will now see
that there is no ordering of the points that would enable this clustering to be detected by sequential
k-means.

Suppose the first two points to be seen belong to the same cluster in C. Then it can be checked that
the next two points will get assigned to the same center, and will lead to a final clustering in which
three of the points are grouped together. Thus assume, without loss of generality, that the first two
points are x1 and x3, and again without loss of generality, that the next point is x2.

Then, after the seeing the first three points, the cluster representatives are at (0, 0, 0) and (0, 1,
√
2+

ε). But x4 is closer to the first representative, and so the resulting clustering places three points in
the same cluster. As such, C is not found.

Incremental clustering with extra clusters

Lemma 5.1 Suppose S has a nice `-clustering, for ` ≤ k. Then the points returned by
CANDIDATES(S) include at least one representative from each of these clusters.

Proof. Consider any nice `-clustering C of S. Single linkage will not join a point x ∈ Ci with
x′ ∈ Cj , j 6= i until x is already connected to all the other points in Ci. As a result, the single linkage
tree will contain an internal node whose descendant leaves are exactly Ci; and by construction, this
node will be assigned a point in Ci. Since this holds for all i, we see that there must be an `-pruning
of the tree whose corresponding leaf-points induce C. Finally, we note that any `-pruning of the tree
consists of nodes at distance < ` from the root.

Theorem 5.3 Suppose there is a nice k-clustering C of X . Then for each t, the set Tt has at most
2k−1 points, including at least one representative from each Ci for which Ci ∩ {x1, . . . , xt} 6= ∅.

Proof. In what follows, let St denote the first t data points, x1, . . . , xt.
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We’ll use induction on t; clearly it holds at t = 0.

Suppose it holds at time t. Since Tt has a representative from each Ci that touches St, it is also
true that Tt ∪ {xt+1} has a representative from each Ci that touches St+1. Suppose there are `
such clusters Ci. Then the corresponding sub-clusters Ci ∩ (Tt ∪ {xt+1}) are a nice `-clustering of
Tt∪{xt+1}. By Lemma 5.1, applying CANDIDATES to this set will return a subset that still contains
at least one representative of each of these clusters.

Theorem 5.4 Pick any incremental clustering algorithm that maintains a list of ` centers that are
guaranteed to be consistent with a target nice k-clustering. Then ` ≥ 2k−1.

The construction involves points on a (k − 1)-dimensional hypercube, under the `∞ metric. Pick
any a1 > a2 > · · · > ak−1 > 0 and consider the space of 2k−1 points

X = {−a1,+a1} × {−a2,+a2} × · · · × {−ak−1,+ak−1}.
We will see that (X , `∞) has 2k−1 distinct nice k-clusterings, and that each individual point in X
is a singleton cluster in at least one of these clusterings. Therefore, any ` points that are consistent
with all nice k-clusterings must include each individual point, so ` ≥ 2k−1.

It remains to characterize the nice k-clusterings. For any binary vector b ∈ {−1,+1}k−1, consider
the k-clustering C(b) = {C1(b), . . . , Ck(b)} defined as follows:

• C1(b) = {x ∈ X : x1b1 > 0}
• C2(b) = {x ∈ X : x1b1 < 0, x2b2 > 0}
• Ci(b) = {x ∈ X : x1b1 < 0, . . . , xi−1bi−1 < 0, xibi > 0} for 2 < i < k

• Ck(b) = {x ∈ X : x1b1 < 0, . . . , xk−1bk−1 < 0}

Notice that C1(b) consists of all points whose first coordinate is a1b1, while C2(b) consists of all
points whose first coordinate is −a1b1 and whose second coordinate is a2b2, and so on. We finish
by showing that each C(b) is nice.

Lemma 5.2 For any b ∈ {−1,+1}k−1, the k-clustering C(b) is nice.

Proof. For any coordinate 1 ≤ i < k− 1, the cluster Ci(b) consists of points that agree on the first i
coordinates. Therefore the maximum interpoint `∞ distance within this cluster is 2ai+1. Any other
point in X disagrees with this cluster on at least one of these i coordinates, and is thus at distance at
least 2ai from this cluster.

The last two clusters, Ck−1(b) and Ck(b), are singletons.

In this lower bound, the need for 2k−1 representatives stems from the non-uniqueness of the nice
k-clustering. We conjecture that the bound holds even with uniqueness, and can perhaps be shown
by suitably adapting the methodology of Theorem 3.8.

Sequential k-means with extra clusters

Theorem 5.6 Fix a data set (X , d) with a convex-nice clustering C = {C1, . . . , Ck} and let β =
mini |Ci|/|X |. If the points are ordered uniformly at random, then for any ` ≥ k, sequential `-means
will return a refinement of C with probability at least 1− ke−β`.

Proof. Let θ be the probability that the first ` points will include at least one point in each of the k
clusters of C. Let pi be the probability of missing cluster Ci after seeing ` points selected uniformly
at random, so that

pi ≤
(
1− |Ci|
|X |

)`
≤ (1− β)` ≤ e−β`.

Then θ is greater than 1−
∑k
i=1 pi ≥ 1− ke−β`.

Assume this good event occurs, and the set of centers T includes a representative from each cluster.
Since C is convex-nice, every subsequent point will be assigned to a center within the convex hull of
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its cluster, and that center will remain within the convex hull after it is updated. As a result, the final
clustering produced by the algorithm is a refinement of C.

Theorem 5.7 Pick any k ≥ 3. Consider any data set X in R (under the usual metric) that has
a convex-nice k-clustering C = {C1, . . . , Ck}. Then there exists an ordering of X under which
sequential `-means with ` ≤ mini |Ci| centers fails to return a refinement of C.

Proof. Consider a data set (X , d) on the real line with a convex-nice clustering C. Let C1 be the
leftmost cluster.

Now, consider an ordering of X that presents points from left to right. Then the initial ` centers all
lie in C1. Moreover, all the centers will continue to lie in the convex hull of C1 while the points of
C1 are being processed.

Let c be the rightmost center after all the points in C1 are processed. The next point x to appear lies
to the right of C1 and is thus assigned to center c, causing c to move to the right, but not past x.
Since points are processed left to right, this continues to hold for all remaining elements x: they are
each assigned to c and make c move to the right, but not past x.

As such, all remaining elements only influence the position of center c, and leave the other centers
unchanged within C1. As a result, at most one of the final centers is outside the convex hull of C1.
Since there are at least three clusters in C, this implies that the final clustering obtained by sequential
`-means is not a refinement of C.

A broader class of clusterings

Theorem 5.10 Consider any clustering C = {C1, . . . , Ck} of (X , d), with core {Co1 , . . . , Cok}. Let
β = mini |Coi |/|X |. Fix any ` ≥ k. Then, given any ordering of X , Algorithm ?? detects a
refinement of C with probability 1− ke−β`.

Proof. By [1], Algorithm 5.9 selects ` points uniformly at random from the data. Now, let θ be the
probability that the set of ` centers selected by Algorithm 5.9 includes at least one point from every
cluster’s core. By the same reasoning as in Theorem 5.6, we have θ ≥ 1− ke−β`.
Assume that the final set T contains at least one center from each core. We argue that in that case,
the clustering C′ induced by T is a refinement of C . Consider point x ∈ Ci for some Ci ∈ C. Then,
x is closer to all elements in Coi than to any element outside of Ci and will thus be assigned to either
a center in Coi or some center in Ci\Coi , but not to a point outside of Ci.
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