
A Fitting Non-Linear Feedback by Ordinary Least Squares Regression

Carrying out the fitting procedure outlined in Section A is straight-forward using standard R func-
tions if we are willing to construct µ(·) and f(·) using pre-specified basis expansions

µ̂(y) =

ˆ

�

µ

· b
µ

(y) and ˆ

f(y) =

ˆ

�

f

· b
f

(y). (17)

Recall that b
f

cannot have an intercept, as it would not be identifiable. We first need to construct the
design matrices

X

µ

=

0

BBB@

...
b

|
µ

⇣
ŷ

(t)
i

⌘

...

1

CCCA
and X

f

=

0

BBB@

...
b

|
f

⇣
ŷ

(t)
i

+ ⌫

(t)
i

⌘
� ('

N

⇤ b
f

)

|
⇣
ŷ

(t)
i

⌘

...

1

CCCA
(18)

from (14). Constructing X

µ

just involves choosing a basis function; however, evaluating

�

i

= ('

N

⇤ b
f

)

|
⇣
ŷ

(t)
i

⌘
(19)

for each row of X
f

can be computationally intensive if we are not careful. In particular, evaluating
�

i

by numerical integration separately for each i can be painfully slow. A more efficient way to
compute �

i

is to evaluate ('
N

⇤ b
f

) (y) over a grid of y-values in a single pass using the fast Fourier
transform (e.g., by using convolve in R), and then to linearly interpolate the result onto the real
line (e.g., using approxfun).

Once we have computed these design matrices, we can estimate ˆ

�

µ

and ˆ

�

f

by solving the linear
regression problems

Y ⇠ X

µ

ˆ

�

µ

(20)
and ⇣

Y �X

µ

ˆ

�

µ

⌘
⇠ X

f

ˆ

�

f

, (21)

where Y is just a vector with entries ŷ(t+1)
i

[ŷ(t)
i +⌫

(t)
i ]. Notice that this whole procedure only requires

knowledge of X

µ

, X
f

, and the noised new predictions ŷ

(t+1)
i

[ŷ(t)
i +⌫

(t)
i ]; we never reference the

counterfactual predictions ŷ(t+1)
i

[ŷ(t)
i ] or unobservable predictions ŷ(t+1)

i

[?].

In practice, most of the errors in our procedure come from the difference equation (21) and not from
the conditional mean regression (20). Thus, when our model is well-specified and the additivity
assumption holds, we can get good estimates for the accuracy of f by looking at the parametric
standard error estimates provided by lm from fitting (21); this is what we did for the simulations
presented in Figure 2. In case of model misspecification, however, parametric confidence intervals
can break down and it is better to use non-parametric methods such as the bootstrap. We used a
non-parametric bootstrap for the logs simulation presented in Section 5.

B Simulation Experiments

Here, we present a collection of simulation experiments, the results of which are given in Figure 2.
These examples are all logistic regression examples with additive feedback in log-odds space. In the
plots, the y-axis shows feedback in log-odds space, whereas the x-axis shows deployed predictions
in probability space.

The simulations all had n = 100, 000 (old prediction, new prediction) pairs. The predictions had
natural noise with standard error � = 0.5, i.e., the i

th pair was centered at µ
i

and distributed
as ŷ

(t)
i

, ŷ

(t+1)
i

[?]
iid⇠ N

�
µ

i

, 0.5

2
�
. We added Gaussian noise with �

⌫

= 0.25 to the deployed

10



0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

True Feedback
Estimated Feedback

(a) Continuous, monotone feedback

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 True Feedback

Estimated Feedback

(b) Monotone feedback with jump

0.2 0.4 0.6 0.8

−2
0

2
4

True Feedback
Estimated Feedback

(c) Continuous, non-monotone feedback

0.2 0.4 0.6 0.8−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

True Feedback
Estimated Feedback

(d) Non-monotone feedback with jump

0.2 0.4 0.6 0.8

−0
.2

0.
0

0.
2

0.
4

True Feedback
Estimated Feedback

(e) No feedback

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

True Feedback
Estimated Feedback

(f) Jump only
Figure 2: Testing the proposed feedback detection method on some simulation examples. We plot
actual predictions in probability space on the x-axis against feedback in log-odds space on the y-
axis. The dashed black line is the true feedback; the solid red line is our feedback estimate along
with point-wise error bars stretching 1 SE in each direction. Note that in panel (e) the y-axis has a
much finer scale than in the other panels.

11



predictions. In order to mimic real datasets, we made our simulation highly imbalanced: There were
many strong predictions for the negative class with µ

i

⌧ 0, but less so for the positive class. This is
why our model performed better near x = 0 than near x = 1.

We fit both the trend µ(·) and the feedback function f(·) as the sum of a natural spline with df = 3

degrees of freedom and knots spread evenly over [�3, 3], and a jump at zero log-odds (i.e., x = 0.5).
The dashed lines show the different feedback functions f used in each example.

As emphasized earlier, the intercept of the feedback function f is not identifiable from our experi-
ments. We fixed the intercept by setting the average fitted feedback over all training examples to 0.
Since all our training sets were heavily imbalanced, this effectively amounted to setting feedback to
0 at x = 0. The plots that do not hit the (0, 0) point are missing a sharp spike at the left-most end;
the plot ends at x = logit(�3) ⇡ 0.05.

As we see from Figure 2, our method accurately fits the feedback function in all six examples,
including the null case with no feedback. The error bars depict standard asymptotic error bars
produced by the R function lm when fitting (16).

C Extensions and Further Work

In this section, we discuss some possible extensions to the work presented in this paper.

C.1 Feedback Removal

If we detect feedback in a real-world system, we can try to identify the root causes of the feedback
and fix the problem by removing the feedback loop. That being said, a natural follow-up question to
our research is whether we can automatically remove feedback. In the context of the linear feedback
model (2), we incur an expected squared-error loss of

˜

` = �

2 E
⇣

ŷ

(t)
i

⌘2
�

from completely ignoring the feedback problem. Meanwhile, if we use the maximum likelihood
estimate ˆ

� to correct feedback, we suffer a loss

`

�⌫ = Var

h
ˆ

�

i
E
⇣

ŷ

(t)
i

⌘2
�
+ �

2
⌫

,

where the first term comes from our errors in estimating ˆ

� and the second comes from the extra
noise we needed to inject into the system in order to detect the feedback.

An interesting topic for further research would be to find how to optimally set the scale �

⌫

of the
artificial noise under various utility assumptions, and to understand the potential failure modes of
feedback removal under model misspecification. In order to remove feedback, we would also need
to have some way of dealing with the intercept term.

C.2 Covariate-Dependent Feedback

Our analysis was presented in the context of the additive feedback model

ŷ

(t+1)
i

[y̌(t)
i ] = ŷ

(t+1)
i

[?] + f

⇣
y̌

(t)
i

⌘
.

In practice, however, we may want to let feedback depend on some other covariates z

ŷ

(t+1)
i

[y̌(t)
i ] = ŷ

(t+1)
i

[?] + f

⇣
y̌

(t)
i

, z

(t)
i

⌘
;

12



for example, we may want to slice feedback by geographic region. One particularly interesting but
challenging extension would be to make feedback depend on the unperturbed prediction ŷ

(t)
i

[?]:

ŷ

(t+1)
i

[y̌(t)
i ] = ŷ

(t+1)
i

[?] + f

⇣
y̌

(t)
i

, ŷ

(t)
i

[?]

⌘
.

For example, if ŷ is a prediction for how good a search result is, we might assume that search results
that are actually good (ŷ[?] � 0) have a different feedback response from those that are terrible
(ŷ[?] ⌧ 0). The challenge here is that ŷ[?] is unobserved, and so we need to have it act on f

via proxies. Developing a formalism that lets f depend on ŷ[?] in a useful way while allowing for
consistent estimation seems like a promising pathway for further work.

C.3 Penalized Regression

The key technical challenge in implementing our method for feedback detection is solving the spline
equation (12). In Section 4 we proposed a pragmatic approach that enabled us to get good feedback
estimates in many examples. However, it should be possible to devise more general methods for
fitting f . The equation (12) is linear in f , and so any strictly convex penalty function L : A ! R
over some convex subset A ✓ {R ! R} of real valued functions on R leads to a well-defined
estimator ˆ

f through the convex optimization problem

ˆ

f

L

= argmin

f2A

(
X✓

ŷ

(t+1)
i

[ŷ(t)
i +⌫

(t)
i ] � µ

⇣
ŷ

(t)
i

⌘
� f

⇣
ŷ

(t)
i

+ ⌫

(t)
i

⌘
(22)

+ '

N

⇤ f
⇣
ŷ

(t)
i

⌘◆2

+ L(f)

)
.

In the context of smoothing splines, a popular choice is to use

L(f) = �

Z

R
kf 00

(x)k2 dx

and make A be the set on which this integral is well-defined. There is an extensive literature on
non-parametric regression problems constrained by smoothness penalties [16, 17, 18, 19, 20]; pre-
sumably, similar approaches should also give us smoothing spline solutions to (12).

C.4 Deterministic Designs

Finally, in this paper, we have focused on detecting feedback by adding random noise to raw model
predictions. It would be interesting to see whether we can improve the efficiency of our procedure by
optimizing the noise choice more closely and using a deterministic design. The problem of finding
optimal designs for spline-type problems has been studied by several authors [21, 22, 23].

D Proofs

Proof of Theorem 1. Because ⌫

(t)
i

is fully artificial noise, we know a-priori that ⌫(t)
i

and ŷ

(t+1)
i

[ŷ(t)
i ]

are independent. Thus, we can treat ŷ(t+1)
i

[ŷ(t)
i ] as a homoscedastic noise term for our regression,

and (3) follows immediately from standard results for ordinary least squares regression.

Proof of Theorem 2. The ⌘

(t)
i

are independent of the ⌫

(t)
i

, and so (7) follows from an argument
analogous to the one that led to (3). If the ⌘

(t)
i

are still homoscedastic after conditioning on ŷ

(t)
i

then, because the ⌘

(t)
i

are mean-zero by construction, the fact that ˆ

�

⇤ is the best linear unbiased
estimator of � follows directly from an application of the Gauss-Markov theorem where we treat
⌫

(t)
i

as fixed and ⌘

(t)
i

as random, see[24], p. 184.

13



Proof of Theorem 3. Given the regression problem described above, (13) follows directly from stan-
dard results on heteroscedastic linear regression [9, 10]. Note that our theoretical result assumes that
ˆ

�

µ

and ˆ

�

f

are trained on independent data sets.

14


