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1 SON

Recall that we are analysing the following convex optimization problem, which we term as SON

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2, (1)

where A is a given data matrix of dimension n× p such that each row is a data point, α is a tunable
parameter, ‖ · ‖F denotes the Frobenius norm and Xi· denotes the ith row of X.

2 Proof of Lemma 1

Lemma 1. If the data matrix A is column centered, then the optimal solution X̂ of problem (1) is
also column centered. Further more, set B = D(A) and Ŷ = D(X̂), we have

‖A− X̂‖2F =

n(n−1)
2∑
i=1

1

n
‖Bi· − Ŷi·‖22.

Proof. For any X ∈ Rn×p, set Y = D(X), we have

p∑
k=1

(X1,k + · · ·+ Xn,k) (X1,k + · · ·+ Xn,k) =

p∑
k=1

 n∑
i=1

X2
i,k + 2

∑
1≤i<j≤n

Xi,kXj,k

 ,

which implies that

2

p∑
k=1

∑
1≤i<j≤n

Xi,kXj,k =

p∑
k=1

(
(X1,k + · · ·+ Xn,k)2 −

n∑
i=1

X2
i,k

)
.

Similarly, we have

2

p∑
k=1

∑
1≤i<j≤n

Ai,kAj,k =

p∑
k=1

(
(A1,k + · · ·+ An,k)2 −

n∑
i=1

A2
i,k

)
.
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Then, because A is column centered, we get

0 =

p∑
k=1

(A1,k + · · ·+ An,k) (X1,k + · · ·+ Xn,k)

=

p∑
k=1

 ∑
1≤i<j≤n

(Xi,kAj,k + Ai,kXj,k) +

n∑
i=1

Ai,kXi,k

 ,

which implies directly that

2

p∑
k=1

∑
1≤i<j≤n

(−Xi,kAj,k −Ai,kXj,k)

=

p∑
k=1

(
−2(X1,k + · · ·+ Xn,k)(A1,k + · · ·+ An,k) + 2

n∑
i=1

Ai,kXi,k

)
.

Next, we can see that

2

p∑
k=1

∑
1≤i<j≤n

(Xi,kXj,k + Ai,kAj,k −Xi,kAj,k −Ai,kXj,k)

=

p∑
k=1

(
(X1,k + · · ·+ Xn,k)2 −

n∑
i=1

X2
i,k

)

+

p∑
k=1

(
(A1,k + · · ·+ An,k)2 −

n∑
i=1

A2
i,k

)

+

p∑
k=1

(
−2(X1,k + · · ·+ Xn,k)(A1,k + · · ·+ An,k) + 2

n∑
i=1

Ai,kXi,k

)

=

p∑
k=1

(
−

n∑
i=1

X2
i,k −

n∑
i=1

A2
i,k + 2

n∑
i=1

Ai,kXi,k

)
+

p∑
k=1

(X1,k + · · ·+ Xn,k)2

=− ‖A−X‖2F +

p∑
k=1

(X1,k + · · ·+ Xn,k)2.

So, we get the following identity
n(n−1)

2∑
i=1

‖Bi· −Yi·‖22

=

p∑
k=1

∑
1≤i<j≤n

((Xi,k −Xj,k)− (Ai,k −Aj,k))
2

=

p∑
k=1

∑
1≤i<j≤n

(
(Xi,k −Ai,k)2 + (Xj,k −Aj,k)2 − 2(Xi,k −Ai,k)(Xj,k −Aj,k)

)
=

p∑
k=1

n∑
i=1

(n− 1)(Xi,k −Ai,k)2 − 2

p∑
k=1

∑
1≤i<j≤n

(Xi,kXj,k + Ai,kAj,k −Xi,kAj,k −Ai,kXj,k)

=(n− 1)‖A−X‖2F − 2

p∑
k=1

∑
1≤i<j≤n

(Xi,kXj,k + Ai,kAj,k −Xi,kAj,k −Ai,kXj,k)

=n‖A−X‖2F −
p∑
k=1

(X1,k + · · ·+ Xn,k)
2
.
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Then, we have

‖A−X‖2F + α
∑
i<j

‖ Xi· −Xj·‖2

=

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
+

1

n

p∑
j=1

(
n∑
i=1

Xi,j

)2

≥

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
,

where the equality holds if and only if X is column centered.

Next, we prove that X̂ is column centered by contradiction. Suppose that X̂ is not column centered,
then we can find a columned centered X̄ ∈ Rn×p s.t. Ŷ = D(X̂) = D(X̄). Then, we have

‖A− X̂‖2F + α
∑
i<j

‖X̂i· − X̂j·‖2

=

n(n−1)
2∑
i=1

(
1

n
‖Bi· − Ŷi·‖22 + α‖Ŷi·‖2

)
+

1

n

p∑
j=1

(
n∑
i=1

X̂i,j

)2

>

n(n−1)
2∑
i=1

(
1

n
‖Bi· − Ŷi·‖22 + α‖Ŷi·‖2

)
=‖A− X̄‖2F + α

∑
i<j

‖X̄i· − X̄j·‖2,

which contradicts the optimality of X̂. When X̂ is column centered, the following identity follows
easily

n‖A− X̂‖2F =

n(n−1)
2∑
i=1

‖Bi· − Ŷi·‖22 +

p∑
k=1

(X̂1,k + · · ·+ X̂n,k)2

=

n(n−1)
2∑
i=1

‖Bi· − Ŷi·‖22.

Remark: following directly from the proof of Lemma 1, for any column centered matrices G and
H in space Rn×p. Set G̃ = D(G), H̃ = D(H) we have

‖G−H‖2F =

n(n−1)
2∑
i=1

1

n
‖G̃i· − H̃i·‖22.

3 Proof of Lemma 2

Lemma 2. Given a column centered data matrix A, set B = D(A) and S = {Z ∈
R(n

2)×p | ΩZ·j = 0, 1 ≤ j ≤ p}. Then, we have

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2 (2)

⇐⇒D(X̂) = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
. (3)
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Proof. Set T = {X ∈ Rn×p| X is column centered}. Because A is column centered, we have that
the optimal solution X̂ is also column centered by Lemma 1. So, we get

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2

⇐⇒X̂ = arg min
X∈T
‖A−X‖2F + α

∑
i<j

‖Xi· −Xj·‖2.

Set Ŷ = D(X̂), then again by Lemma 1, we have the following equality

‖A− X̂‖2F + α
∑
i<j

‖X̂i· − X̂j·‖2 =

n(n−1)
2∑
i=1

(
1

n
‖Bi· − Ŷi·‖22 + α‖Ŷi·‖2

)
.

Indeed, it is this identity that gives us a hint to consider the following problem instead,

Ŷ = arg min
Y

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
,

where Y can not take values from the whole space R(n
2)×p, because we need Y = D(X∗) for some

X∗ ∈ T. So, we defined some special matrices in Section 4 to indicate that Y = D(X∗).

By the definition of Ω and direct checking, we know that

Y = D(X∗) for some X∗ ∈ T⇐⇒ Y ∈ S.

Next, set Ŷ = D(X̂), we show that X̂ is the optimal solution of problem (2) if and only if Ŷ is the
optimal solution of problem (3). For all Y

′ ∈ S, ∃X′ ∈ T s.t. D(X
′
) = Y

′
, so we have

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Y

′

i·‖22 + α‖Y
′

i·‖2
)

=‖A−X
′
‖2F + α

∑
i<j

‖X
′

i· −X
′

j·‖2

≥‖A− X̂‖2F + α
∑
i<j

‖X̂i· − X̂j·‖2

=

n(n−1)
2∑
i=1

(
1

n
‖Bi· − Ŷi·‖22 + α‖Ŷi·‖2

)
,

so, we have

Ŷ = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
.

On the contrary, suppose we are given that

Ȳ = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
.
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Then, ∃X̄ ∈ T s.t. D(X̄) = Ȳ. ∀X′ ∈ T, denote Y
′

= D(X
′
), we have

‖A−X
′
‖2F + α

∑
i<j

‖X
′

i· −X
′

j·‖2

=

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Y

′

i·‖22 + α‖Y
′

i·‖2
)

≥

n(n−1)
2∑
i=1

(
1

n
‖Bi· − Ȳi·‖22 + α‖Ȳi·‖2

)
=‖A− X̄‖2F + α

∑
i<j

‖X̄i· − X̄j·‖2,

so, we get
X̄ = arg min

X∈T
‖A−X‖2F + α

∑
i<j

‖Xi· −Xj·‖2.

In conclusion, we have showed the following result

X̂ = arg min
X∈T
‖A−X‖2F + α

∑
i<j

‖Xi· −Xj·‖2

⇐⇒D(X̂) = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
.

4 Proof of Lemma 3

Lemma 3. Given cn ∈ Rn, i.e. cn = (c1, c2, · · · , cn)T , s.t.
n∑
i=1

ci = 0 and ∃b ∈ R, |ci| ≤ b. Then

∃x ∈ R
n(n−1)

2 , s.t. ‖x‖∞ ≤ 2
nb and RT

nx = cn.

Proof. Set

F =

{
(x1, x2, · · · , xn)

T ∈ Rn|
n∑
i=1

xi = 0, 1 ≤ j ≤ n, |xj | ≤ b

}
,

and

G =

{(
x1, x2, · · · , xn(n−1)

2

)T
∈ R

n(n−1)
2 | 1 ≤ i ≤ n(n− 1)

2
, |xi| ≤

2

n
b

}
.

Notice that F is convex and define f : R
n(n−1)

2 7→ Rn as f(x) = RT
nx for any x ∈ R

n(n−1)
2 . Then,

we want to show that for all cn ∈ F, exists x ∈ G such that f (x) = cn. Equivalently, we want to
show f (G) ⊇ F.

Let y = (y1, y2, · · · , yn)
T ∈ Rn. If n is even, set y1 = y2 = · · · = yn

2
= b and yn

2 +1 = yn
2 +2 =

· · · = yn = −b. If n is odd, set y1 = y2 = · · · = yn−1
2

= b, yn−1
2 +1 = yn−1

2 +2 = · · · = yn−1 =

−b and yn = 0. Then, let Pn denote the set of all permutations p of the sequence of integers
{1, 2, · · · , n}. After that, let E denote the set of all extreme points of the convex set F, then it is easy
to see that

E =
{

(z1, z2, · · · , zn)
T ∈ Rn| ∃p ∈ Pn s.t.

(
zp(1), zp(2), · · · , zp(n)

)T
= y

}
.

In the following, we show that E ⊆ f(G). Given any zn = (z1, z2, · · · , zn)T ∈ E we construct a
u ∈ G s.t. RT

nu = zn.
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Denote
u =

(
un−11 , un−12 , · · · , un−1n−1, u

n−2
1 , · · · , un−2n−2, · · · , u11

)T
.

For 1 ≤ i < j ≤ n, when n is even set

uij =


2
nb : zn−i > zn−i+j
− 2
nb : zn−i < zn−i+j

0 : zn−i = zn−i+j

and when n is odd set

uij =


2

n+1b : zn−i > zn−i+j
− 2
n+1b : zn−i < zn−i+j

0 : zn−i = zn−i+j

By this construction, checking directly that u ∈ G and RT
nu = zn. So, we have E ⊆ f(G). Next,

since f is an affine function and the image of a convex set under an affine function is convex, we
have f(G) is convex. So, we have F = {convex hull of E} ⊆ f(G).

5 Proof of Theorem 1

Theorem 1. Given a column centered data matrix A of dimension n × p, where each row is ar-
bitrarily picked from either cube C1 or cube C2 and there are totally ni rows chosen from Ci for
i = 1, 2, if w1,2 < d1,2, then by choosing the parameter α ∈ R such that w1,2 <

n
2α < d1,2, we

have the following:

1. SON can correctly determine the cluster membership of A;

2. Rearrange the rows of A such that

A =

(
A1

A2

)
and Ai =


Ai

1·
Ai

2·
...

Ai
ni·

 , (4)

where for i = 1, 2 and j = 1, 2, · · · , ni, Ai
j· = (Ai

j,1,A
i
j,2, · · · ,Ai

j,p) ∈ Ci. Then, the
optimal solution X̂ of problem (1) is given by

X̂i· =


n2

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
, if Ai· ∈ C1;

− n1

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
, if Ai· ∈ C2.

Proof. WLOG, we let

A =

(
A1

A2

)
and Ai =


Ai

1·
Ai

2·
...

Ai
ni·

 ,

where for i = 1, 2 and j = 1, 2, · · · , ni, Ai
j· = (Ai

j,1,A
i
j,2, · · · ,Ai

j,p) ∈ Ci.

Step 1: In this step, we derive an equivalent form of problem (1) and give optimality conditions. For
convenience, set B(1,2) = D2(A1,A2), B1 = D1(A1), B2 = D1(A2), V = {y ∈ R(n

2) | Ωy =

0} and S = {Z ∈ R(n
2)×p | ΩZ·j = 0, 1 ≤ j ≤ p}. Due to lemma (2), we can focus on the

following problem

Ŷ = arg min
Y∈S

n(n−1)
2∑
i=1

(
1

n
‖Bi· −Yi·‖22 + α‖Yi·‖2

)
. (5)
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We use Λ̂ to denote the optimal dual solution of problem (5) which has the same dimension as Ŷ.
Then, by Proposition 6.4.3 in [1] Page 303, we have the following result, Ŷ and Λ̂ are an optimal
primal and dual solution pair of (5) if and only if

Ŷ·j ∈ V, (Λ̂·j)T ∈ V⊥, j = 1, 2, · · · , p, (6)

and

Ŷi· ∈ arg min
y∈Rp

(
1

n
‖Bi· − y‖22 + α‖y‖2 − yΛ̂T

i·

)
, i = 1, 2, · · · ,

(
n

2

)
. (7)

Step 2: In this step, we construct Λ̂. Since A is constructed by concatenating matrices A1 and
A2 vertically, we also expect X̂ to be concatenated by two matrices vertically. Due to the fact that
Ŷ = D(X̂), for 1 ≤ l ≤ p, we write Ŷ and Λ̂ as the following

Λ̂·l =

 Λ̂1
·l

Λ̂2
·l

Λ̂
(1,2)
·l

 and Ŷ·l =

 Ŷ1
·l

Ŷ2
·l

Ŷ
(1,2)
·l


where Λ̂i

·l, Ŷi
·l ∈ R(ni

2 ) for i = 1, 2 and Λ̂
(1,2)
·l , Ŷ

(1,2)
·l ∈ Rn1n2 . Next, we use Row(Ω) to denote

the row space of Ω, then VT is the same as Row(Ω).

For notational convenience, given any vector v, we use v[i, j], i < j to denote a new vector com-
posed of the ith through jth element of v. By the structure of Ω, i.e. there exists a identity submatrix
I of Ω s.t. I and Ω have the same number of rows, we have (Λ̂·l)

T ∈ Row(Ω) is equivalent to the
following equalities ,i.e. equalities (8) and (9),

RT
n1−1

(
Λ̂1
·l
[
n1 :

(
n1

2

)])
+ STn2(n1−1)×(n1−1)

(
Λ̂

(1,2)
·l [n2 + 1 : n1n2]

)
= Λ̂1

·l [1 : n1 − 1] , (8)

RT
n2

Λ̂2
·l + WT

(n1−1)n2×n2
Λ̂

(1,2)
·l [n2 + 1 : n1n2] = Λ̂

(1,2)
·l [1 : n2] . (9)

Then, we set

Λ̂
(1,2)
m· =

2

n

(
1

n1n2

(
n1n2∑
k=1

B
(1,2)
k·

)
−B

(1,2)
m·

)
, 1 ≤ m ≤ n1n2. (10)

By moving the left hand side of (8) to the right, we have (8) is equivalent to

(
−In1−1 RT

n1−1
)(Λ̂1

·l [1 : n1 − 1]

Λ̂1
·l
[
n1 :

(
n1

2

)]) + STn2(n1−1)×(n1−1)

(
Λ̂

(1,2)
·l [n2 + 1 : n1n2]

)
= 0. (11)

Then, since
n1n2∑
m=1

Λ̂
(1,2)
m· = 0, checking directly that we have M

(
STn1n2×n1

Λ̂
(1,2)
·l

)
= 0 and(

STn1n2×n1
Λ̂

(1,2)
·l

)
[2 : n1] = STn2(n1−1)×(n1−1)

(
Λ̂

(1,2)
·l [n2 + 1 : n1n2]

)
.

Since M
(
RT
n1

)
= 0, we get M

(
RT
n1

Λ̂1
·l

)
= 0 and checking directly that

(
RT
n1

Λ̂1
·l

)
[2 : n1] =

(
−In1−1 RT

n1−1
)(Λ̂1

·l [1 : n1 − 1]

Λ̂1
·l
[
n1 :

(
n1

2

)]) =
(
−In1−1 RT

n1−1
)
Λ̂1
·l.

So, we have that (11) is equivalent to

RT
n1

Λ̂1·l + STn1n2×n1
Λ̂

(1,2)
·l = 0. (12)

For (9), move right hand side to the left, we have

RT
n2

Λ̂2
·l + WT

n1n2×n2
Λ̂

(1,2)
·l = 0. (13)
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In conclusion, we have showed that (Λ̂·l)
T ∈ Row(Ω) is equivalent to Λ̂·l satisfies equa-

tions (12) and (13). After that, checking directly that we have M
(
STn1n2×n1

Λ̂
(1,2)
·l

)
= 0 and

M
(
WT

n1n2×n2
Λ̂

(1,2)
·l

)
= 0. Because of (10), for 1 ≤ m ≤ n1, the mth entry of the vector

−
(
STn1n2×n1

Λ̂
(1,2)
·l

)
is

− 2

n

[
1

n1

(
n1n2∑
k=1

B
(1,2)
k,l

)
−

(
n2∑
k=1

B
(1,2)
k+n2(m−1),l

)]
.

Also, for 1 ≤ m ≤ n2, we have the mth entry of the vector −
(
WT

n1n2×n2
Λ̂

(1,2)
·l

)
is

2

n

[
1

n2

(
n1n2∑
k=1

B
(1,2)
k,l

)
−

(
n1−1∑
k=0

B
(1,2)
kn2+m,l

)]
.

For 1 ≤ i ≤ 2 and 1 ≤ j ≤ ni, since Ai
j· =

(
Ai
j,1,A

i
j,2, · · · ,Ai

j,p

)
∈ Ci, we have |Ai

j,k| ≤
µik + σik for 1 ≤ k ≤ p. For 1 ≤ m ≤ n1, according to a direct calculation we get∣∣∣ 2

n

[
1

n1

(
n1n2∑
k=1

B
(1,2)
k,l

)
−

(
n2∑
k=1

B
(1,2)
k+n2(m−1),l

)]∣∣∣
=
∣∣ 2
n

(n2)

(
1

n1

(
n1∑
k=1

A1
k,l

)
−A1

m,l

)∣∣
≤ 2

n
(n2)

(
n1 − 1

n1

)
(2σ1l).

Similarly, for 1 ≤ m ≤ n2, by a direct computation we get

∣∣∣ 2
n

 1

n2

n1n2∑
j=1

B
(1,2)
j,l

−
n1−1∑

j=0

B
(1,2)
jn1+m,l

∣∣∣
=
∣∣ 2
n

(n1)

(
1

n2

(
n2∑
k=1

A2
k,l

)
−A2

m,l

)∣∣
≤ 2

n
(n1)

(
n2 − 1

n2

)
(2σ2l).

In conclusion, we have showed that

‖RT
n1

Λ̂1
·l‖∞ ≤

2

n
(n2)

(n1 − 1)

n1
(2σ1l),

and

‖RT
n2

Λ̂2
·l‖∞ ≤

2

n
(n1)

(n2 − 1)

n2
(2σ2l).

So, by Lemma 3, ∃Λ̂1
·l satisfying (12) and ∃Λ̂2

·l satisfying (13) s.t. the following holds

‖Λ̂1
·l‖∞ ≤

2

n
(n2)

(n1 − 1)

n21
(4σ1l), (14)

and

‖Λ̂2
·l‖∞ ≤

2

n
(n1)

(n2 − 1)

n22
(4σ2l). (15)
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Up to now, we have constructed a Λ̂ of dimension
(
n
2

)
× p satisfying equations (12) and (13) s.t.

Λ̂1
·l satisfies (14), for 1 ≤ l ≤ p,

Λ̂2
·l satisfies (15), for 1 ≤ l ≤ p,

Λ̂
(1,2)
m· =

2

n

(
1

n1n2

(
n1n2∑
k=1

B
(1,2)
k·

)
−B

(1,2)
m·

)
, 1 ≤ m ≤ n1n2.

Step 3: Finally, we construct Ŷ and show that we can determine the cluster membership of A
correctly if the conditions in Theorem (1) holds. Set

Ŷ1
·l = Ŷ2

·l = 0, 1 ≤ l ≤ p,

Ŷ
(1,2)
m· =

(
1− nα

2‖M
(
B(1,2)

)
‖2

)(
M
(
B(1,2)

))
, 1 ≤ m ≤ n1n2.

For each pair of Bi· and Λi·, notice that problem (7) is equivalent to

Ŷi· ∈ arg min
y∈Rp

(
1

n
‖
(n

2
Λi· + Bi·

)
− y‖22 + α‖y‖2

)
, i = 1, 2, · · · ,

(
n

2

)
. (16)

Then, it is easy to see that the minimizer of (16) is{ (
1− nα

2‖n
2 Λi·+Bi·‖2

) (
n
2 Λi· + Bi·

)
if 2
n‖

n
2 Λi· + Bi·‖2 > α

0 if 2
n‖

n
2 Λi· + Bi·‖2 ≤ α.

Then, according to the Λ we constructed, for 1 ≤ i ≤ 2, 1 ≤ l ≤
(
ni

2

)
and 1 ≤ h ≤ n1n2, we have

the following
‖n

2
Λ̂i
l· + Bi

l·‖2 ≤ w1,2 < d1,2 ≤ ‖
n

2
Λ̂

(1,2)
h· + B

(1,2)
h· ‖2.

By the construction of Λ̂ and Ŷ together with the choice of α, conditions (12), (13), (16) are satis-
fied. Equivalently, conditions (7) and (6) are satisfied, so Λ̂ and Ŷ are an optimal primal and dual
solution pair of (5). By the construction of Ŷ, we have

Ŷi
k· = 0, 1 ≤ i ≤ 2, 1 ≤ k ≤

(
ni
2

)
,

Ŷ
(1,2)
m· =

(
1− nα

2‖M
(
B(1,2)

)
‖2

)(
M
(
B(1,2)

))
, 1 ≤ m ≤ n1n2,

(17)

(18)

which means Ŷ = D(X̂), s.t.

X̂ =

(
X1

X2

)
and Xi =


Xi

1·
Xi

2·
...

Xi
ni·

 ,

where Xi
j· =

(
Xi
j,1,X

i
j,2, · · · ,Xi

j,p

)
∈ Ci, Xi

1· = Xi
2· = · · · = Xi

ni· for i = 1, 2 and X1
k· 6= X2

l·
for 1 ≤ k ≤ n1, 1 ≤ l ≤ n2.
So, we can determine the cluster membership of A correctly when the conditions in Theorem 1
holds. By lemma (1), we know that X̂ is column centered. Since Ŷ = D(X̂), by solving the
following two linear equalities,

X1
i· −X2

j· =

(
1− nα

2‖M
(
B(1,2)

)
‖2

)(
M
(
B(1,2)

))
n1X

1
i· + n2X

2
j· = 0,

(19)

(20)
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we get

X̂i· =


n2

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
if Ai· ∈ C1;

− n1

n1+n2

(
1− nα

2‖M(D2(A1,A2))‖2

)
M
(
D2(A1,A2)

)
if Ai· ∈ C2.

6 Proof of Proposition 1

Proposition 1. (Isometry Invariant) Given a data matrix A of dimension n×p such that each row
of A is chosen from some cluster Ci, i = 1, 2, · · · , c, and f(·) an isometry of Rp, we have

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2

⇐⇒f(X̂) = arg min
X∈Rn×p

‖f(A)−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2.

This further implies that if SON successfully determines the cluster membership of A, then it also
successfully determines the cluster membership of f(A).

Proof. Given A, let X̂ be the optimal solution of problem (1), i.e.

X̂ = arg min
X∈Rn×p

‖A−X‖2F + α
∑
i<j

‖Xi· −Xj·‖2.

Then, X̂ reveals the cluster-membership of A. For any X̄ ∈ Rn×p, we have

‖f(A)− X̄‖2F + α
∑
i<j

‖X̄i· − X̄j·‖2

=‖A− f−1(X̄)‖2F + α
∑
i<j

‖f−1(X̄i·)− f−1(X̄j·)‖2

≥‖A− X̂‖2F + α
∑
i<j

‖X̂i· − X̂j·‖2

=‖f(A)− f(X̂)‖2F + α
∑
i<j

‖f(X̂i·)− f(X̂j·)‖2

So, we have
f(X̂) = arg min

X∈Rn×p
‖f(A)−X‖2F + α

∑
i<j

‖Xi· −Xj·‖2.

Since f preserves the distance between vectors, A and f(A) have the same cluster-membership in
the sense that if Ai· and Aj· are from the same cluster Ck, then f(Ai·) and f(Aj·) are from the
same cluster f(Ck). Because X̂ is the cluster-membership matrix of A, f(X̂) is also the cluster-
membership matrix of A, we conclude that f(X̂) is the cluster-membership matrix of f(A), which
means we can determine the cluster-membership of f(A) correctly.

7 Proof of Theorem 2

Recall that SON in the feature space can be formulated as

X̂ = arg min
X∈Rn×q

n∑
i=1

(〈φ(Ai·), φ(Ai·)〉 − 2 〈φ(Ai·),Xi·〉+ 〈Xi·,Xi·〉)

+α
∑
i<j

√
〈Xi·,Xi·〉 − 2 〈Xi·,Xj·〉+ 〈Xj·,Xj·〉.

(21)
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Theorem 2. (Representation Theorem) Each row of the optimal solution of Problem (21) can be
written as a linear combination of rows of A, i.e.,

X̂i· =

n∑
j=1

aijφ(Aj·).

Proof. We define the inner product on Rp as 〈u,v〉 = uTv for all u,v ∈ Rp. Then, Rp is a Hilbert
space. Since Row(A) is a closed linear subspace of Rp, according to the Orthogonal Decomposition
theorem, we have

Rp = Row(A)⊕ Row(A)T .

So, for each row Xi· of X ∈ Rn×p, we can decompose Xi· into direct sum of two vectors such that
one is in Row(A) , the other one is in Row(A)T i.e. Xi· = u + v such that u ∈ Row(A) and
v ∈ Row(A)T . Then, we can decompose any X ∈ Rn×p into sum of two parts U and V such that
X = U + V and Ui· ∈ Row(A), Vi· ∈ Row(A)T for i = 1, 2, · · · , n.

We now show that the optimal solution X̂ ∈ Row(A) by contraction. Suppose X̂ /∈ Row(A),
then we decomose X̂ into sum of two parts Û and V̂ such that X̂ = Û + V̂, Ûi· ∈ Row(A),
V̂i· ∈ Row(A)T for i = 1, 2, · · · , n and exists j such that 1 ≤ j ≤ n, V̂j· 6= 0.

Then, we have
n∑
i=1

(
〈φ(Ai·), φ(Ai·)〉 − 2

〈
φ(Ai·), X̂i·

〉
+
〈
X̂i·, X̂i·

〉)
+ α

∑
i<j

√〈
X̂i·, X̂i·

〉
− 2

〈
X̂i·, X̂j·

〉
+
〈
X̂j·, X̂j·

〉
=

n∑
i=1

(
〈φ(Ai·), φ(Ai·)〉 − 2

〈
φ(Ai·), Ûi· + V̂i·

〉
+
〈
Ûi· + V̂i·, Ûi· + V̂i·

〉)
+ α

∑
i<j

√〈
Ûi· + V̂i·, Ûi· + V̂i·

〉
− 2

〈
Ûi· + V̂i·, Ûj· + V̂j·

〉
+
〈
Ûj· + V̂j·, Ûj· + V̂j·

〉
=

n∑
i=1

(
〈φ(Ai·), φ(Ai·)〉 − 2

〈
φ(Ai·), Ûi·

〉
+
〈
Ûi·, Ûi·

〉
+
〈
V̂i·, V̂i·

〉)
+ α

∑
i<j

√〈
Ûi·, Ûi·

〉
+
〈
V̂i·, V̂i·

〉
− 2

〈
Ûi·, Ûj·

〉
− 2

〈
V̂i·, V̂j·

〉
+
〈
Ûj·, Ûj·

〉
+
〈
V̂j·, V̂j·

〉
>

n∑
i=1

(
〈φ(Ai·), φ(Ai·)〉 − 2

〈
φ(Ai·), Ûi·

〉
+
〈
Ûi·, Ûi·

〉)
+ α

∑
i<j

√〈
Ûi·, Ûi·

〉
− 2

〈
Ûi·, Ûj·

〉
+
〈
Ûj·, Ûj·

〉
which contradicts the optimality of X̂. Then, the lemma follows.

References

[1] Dimitri P Bertsekas. Convex Optimization Theory. Universities Press. 7

11


