
1 Derivation of the BCFW-like algorithm for the quadratic loss.

1.1 Relaxing of the discrete optimization set for loss augmented inference.

Let us start from the global structured objective equation of the paper. Recall that we are given
training examples ((X1, Y 1), . . . , (Xn, Y n)). In order to make the derivation easier, and following
Lacoste-Julien et al. [3], we denote the difference between the feature map associated to any Y ∈
Y(Xi) and the one associated to the true training example label Yi by:

Tr(Wφ(Xi, Y i)) = Tr(W
∑
j,k

(Y ij,k − Yj,k)(aij − bik)(aij − bik)>) = 〈W,ψi(Y )〉, (1)

where ψ(Y ) =
∑
j,k(Y

i
j,k − Yj,k)(aij − bik)(aij − bik)>. The objective of structured prediction is

thus:

min
W∈W

λ

2
‖W‖22 +

1

n

n∑
i=1

max
Y ∈Y(Xi)

{
`i(Y, Y

i)− 〈W,ψi(Y )〉
}
. (2)

The term maxY ∈Y(Xi)

{
`i(Y, Y

i)− 〈W,ψi(Y )〉
}

corresponds to the structural hinge loss for our
problem. Let us introduce Y(Xi) the convex hulls of the sets Y(Xi). We will also make use of
Y = Y(X1) × . . . × Y(Xn). From now on, we perform the loss augmented decoding on this
relaxed set. This problem has potentially non integral solutions. We call the maximization of the
hinge loss over Y the loss augmented inference, in opposition to loss-augmented decoding which .
Now we can write a new optimization objective:

min
W∈W

λ

2
‖W‖22 + max

(Z1,...,Zn)∈Y

{
1

n

n∑
i=1

[
`i(Zi, Y

i)− 〈W,ψi(Zi)〉
]}

. (3)

Note that since our joint feature map φ(Xi, Y ) is linear in Y , if ` is linear as well (for instance if `
is the Hamming loss), this problem is strictly equivalent to (2) since in that case, the loss-augmented
inference is a LP over Y(Xi), which has necessary a solution in Y(Xi) (see, e.g, [Prop. B.21] of
[1]).

In general, in order to be convex and thus tractable, the aforrementioned problem of Eq.(3) requires
a loss which is concave in the variable Zi which belong to the convex sets Y(Xi).

1.2 Dual of the structured SVM

Since Prob. (2) is a convex optimization problem in saddle point form, we get the dual by switching
the max and the min:

max
(Z1,...,Zn)∈Y

min
W∈W

λ

2
‖W‖22 +

{ 1
n

n∑
i=1

[
`i(Y, Y

i)− 〈W,ψi(Zi)〉
]}
. (4)

From the above equation, we deduce the following general relation linking primal variable W and
dual variables (Z∗1 , . . . , Z

∗
n) ∈ Y(X1)× . . .× Y(Xn):

W ∗ ∈ argmin
W∈W

λ

2
‖W‖22 +

{ 1
n

n∑
i=1

[
`i(Y, Y

i)− 〈W,ψi(Z∗i )〉
]}
. (5)

Due to the isotropic form of the function in Eq.(5), this simply reduces to the Euclidean projection
of the unconstrained minimum of λ2 ‖W‖

2
2 +

{
1
n

∑n
i=1

[
`i(Y, Y

i)− 〈W,ψi(Z∗i )〉
]}

onW .
In the specific case whenW is unconstrained and simply equals to Rp×p, this reduces to:

W =
1

λ

n∑
i=1

ψi(Z
∗
i ). (6)

IfW is the set of symmetric semidefinite positive matrices we get:

W =
1

λ

n∑
i=1

(ψi(Z
∗
i ))+, (7)

1



with (ψi(Zi))+ the projection of (ψi(Zi)) overW .

Eventually, if we consider the set of diagonal matrices D, and denote by Diag the operator associat-
ing to a matrix the matrix composed of its diagonal:

W =
1

λ

n∑
i=1

Diag(ψi(Z
∗
i )). (8)

These relations are also known as the “representer theorems”.

For what follows we consider the case ofW = Rp×p but dealing with the other cases is similar.

In that case the dual can be written simply as:

max
(Z1,...,Zn)∈Y(X1)×...×Y(Xn)

− 1

2λn2
‖

n∑
i=1

ψi(Zi)‖2F +
1

n

n∑
i=1

`(Yi, Zi). (9)

We recover a result similar to the ones of Lacoste-Julien et al. [3].

1.3 A Frank-Wolfe algorithm for solving Prob. (9)

Now, we can derive a Frank-Wolfe algorithm for solving the dual problem of 9. As noted in the
paper, we are able to maximize or minimize any linear form over the sets Y(Xi), thus we are able
to solve LPs over the convex hulls Y(Xi) of such sets.

Plugging back the specific form of our joint feature map directly into Eq. (9) we get that

ψi(Z
i) = −

∑
j,k

(Yi − Zi)j,k(aj − bk)(aj − bk)T , (10)

and thus we can write the dual problem as:

min
(Z1,...,Zn)∈

Y(X1)×...×Y(Xn)

1

2λn2
‖

n∑
i=1

−
∑
j,k

(Yi − Zi)j,k(aj − bk)(aj − bk)T ‖2F −
1

n

n∑
i=1

`(Y i, Zi) (11)

Now, as in the paper, let us introduce LTA
∈ RTA×TA and LTB

∈ RTB×TB (note that we omit the
dependence in i of TA and TB). If Ui is the matrix of ones of the same size as Zi, we consider the
following loss:

`(Y i, Zi) =
1

2

[
Tr(Zi>(L>TA

LTA
−DTA

)Zi) + Tr(DTA
ZiU i)

+ Tr(Y i>L>TA
LTA

)− 2Tr(Zi>L>TA
LTA

Y i)

+ Tr(Zi(L>TB
LTB

−DTB
)Zi) + Tr(DTB

ZiU i)

+ Tr(Y iL>TB
LTB

)− 2Tr(ZL>TB
LTB

Y i)
]
. (12)

This loss is sound for alignments problems since, when Yi and Zi are in Y , this is simply the `S loss
‖LTA

Yi − LTA
Zi‖2F + ‖YiLTB

− ZiLTB
‖2F .

Thus we get the following overall dual objective:

min
(Z1,...,Zn)∈Y

1

2λn2
‖

n∑
i=1

−
∑
j,k

(Yi − Zi)j,k(aj − bk)(aj − bk)T ‖2F

− 1

n

( n∑
i=1

[Tr(Zi>(L>TA
LTA
−DTA

)Zi) + Tr(Zi>DTA
U i)

+ Tr(Y TL>TA
LiTA

)− 2Tr(Zi>L>TA
LTA

Y i) + Tr(Zi(L>TB
LTB

−DTB
)Zi>)

+ Tr(UiDTB
Zi) + Tr(Y L>TB

LiTB
)− 2Tr(ZL>TB

LTB
Y i>)

]
). (13)

We recall that DT is a diagonal matrix such that L>TLT −DT � 0 and thus our objective is convex.
Our dynamic programming algorithm (DTW) is able to maximize any linear function over the sets
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Y(Xi). Thus we can use a Frank-Wolfe [2] algorithm. At iteration t, this algorithm iteratively
computes a linearization of the function at the current point (Z1, . . . Zn)k, computes a linearization
of the function, optimize it, get a new point (Z1, . . . Zn)?k and then make a convex combination
using a stepsize γ.

Note that we have directly a stochastic version of such an algorithm. As noted in Lacoste-Julien
et al. [3], instead of computing a gradient for each block of variable Zi, we simply need to choose
randomly one block at each timestep and make an update on these variables.

The linearization simply consists in computing the matrix gradient for each of the matrix variables
Zi which turns out to be:

∇Zi(g) =
1

n

[
C − 1

2

(
2(L>TA

LTA
−DTA

)Zi +DTA
Ui − 2L>TA

LTA
Y i

+ 2Zi(L>TB
LTB

−DTB
) + UiDTA

− 2Y iL>TA
LTA

)]
(14)

where C is simply the affinity matrix of dynamic time warping.

2 The dynamic time warping algorithm

Let us give the pseudocode of the dynamic time warping that maximize the LP (2) of the article. In
opposition to Müller [4], we give a version of the algorithm for the affinity matrix C. Intuitively, the
cost matrix is the opposite of a cost matrix, thus we aim to maximize the cumulated affinity instead
of minimizing the cumulated cost. This corresponds exactly to the case of the article where we aim
at maximizing a linear form over the set Y(X). This algorithm has complexity O(TATB), making
it very costly to compute for large time series.
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Computing the cumulated affinity matrix D:
TA, TB ← size(C)
D ← zeros(TA + 1, TB + 1)
for i = 1 to TA do
D(i, 0)← −∞

end for
for j = 1 to TB do
D(0, j)← −∞

end for
for i = 1 to TA do

for j = 1 to TB do
D(i, j)← C(i, j) + max(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1))

end for
end for
Backtracking:
Y ← zeros(TA, TB)
i← TA
j ← TB
while i > 1 or j > 1 do
Y (i, j)← 1
if i = 1 then
j ← j − 1

else if j = 1 then
i← i− 1

else
m← max(D(i− 1, j), D(i, j − 1), D(i− 1, j − 1))
if D(i− 1, j) = m then
i← i− 1

else if D(i, j − 1) = m then
j ← j − 1

else
i← i− 1
j ← j − 1

end if
end if

end while
return Y

Figure 1: The dynamic time-warping algorithm that solves the LP (2), for a given similarity ma-
trix C.
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