
A Tsybakov Noise Conditions

An important sub-case of learning from noisy data is learning under the Tsybakov noise condi-
tions [30].
Definition 1. (Tsybakov Noise Condition) Let κ ≥ 1. A labelled data distribution D over X × Y
satisfies (C0,κ)-Tsybakov Noise Condition with respect to a hypothesis class H for some constant
C0 > 0, if for all h ∈ H, ρD(h, h∗(D)) ≤ C0(errD(h)− errD(h∗(D)))

1
κ .

The following theorem shows the performance guarantees achieved by Algorithm 1 under the Tsy-
bakov noise conditions.
Theorem 5. Suppose (C0,κ)-Tsybakov Noise Condition holds for D with respect to H. Then Al-
gorithm 1 with inputs example oracle U , labelling oracle O, hypothesis class H, confidence-rated
predictor P of Algorithm 3, target excess error � and target confidence δ satisfies the following prop-
erties. There exists a constant c5 > 0 such that with probability 1 − δ, the total number of labels
queried by Algorithm 1 is at most:

c5

�log 1
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Comparison. [20] provides a label complexity bound of Õ(θ(C0�
1
κ )�

2
κ−2 ln 1

� (d ln θ(C0�
1
κ ) +

ln ln 1
� )) for disagreement-based active learning. For κ > 1, by Proposition 2, our label complexity

is at most:
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For κ = 1, our label complexity is at most

Õ

�
ln

1

�
· sup
k≤�log(1/�)�

φ(C0�k, �k/256)

�k
·
�
d ln( sup
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.

In both cases, our bounds are better, as supk≤�log(1/�)� ·
φ(C0�

1/κ
k ,�k/256)

C0�
1/κ
k

≤ θ(C0�
1/κ). In further

work, [21] provides a refined analysis with a bound of Õ(θ(C0�
1
κ )�

2
κ−2 d ln θ(C0�

1
κ )); however,

this work is not directly comparable to ours, as they need prior knowledge of C0 and κ.

B Additional Notation and Concentration Lemmas

We begin with some additional notation that will be used in the subsequent proofs. Recall that we
define:

σ(n, δ) =
16

n
(2d ln

2en

d
+ ln

24

δ
), (3)

where d is the VC dimension of the hypothesis class H.

The following lemma is an immediate corollary of the multiplicative VC bound; we pick the version
of the multiplicative VC bound due to [22].
Lemma 7. Pick any n ≥ 1, δ ∈ (0, 1). Let Sn be a set of n iid copies of (X,Y ) drawn from a
distribution D over labelled examples. Then, the following hold with probability at least 1− δ over
the choice of Sn:
(1) For all h ∈ H,

|errD(h)− errSn
(h)| ≤ min(σ(n, δ) +

�
σ(n, δ)errD(h),σ(n, δ) +

�
σ(n, δ)errSn

(h)) (4)

In particular, all classifiers h in H consistent with Sn satisfies

errD(h) ≤ σ(n, δ) (5)

10



(2) For all h, h� in H,

|(errD(h)−errD(h�))−(errSn
(h)−errSn

(h�))| ≤ σ(n, δ)+min(
�
σ(n, δ)ρD(h, h�),

�
σ(n, δ)ρSn

(h, h�))
(6)

|ρD(h, h�)− ρSn
(h, h�)| ≤ σ(n, δ) + min(

�
σ(n, δ)ρD(h, h�),

�
σ(n, δ)ρSn

(h, h�)) (7)
Where σ(n, δ) is defined in Equation (3).

We occasionally use the following (weaker) version of Lemma 7.
Lemma 8. Pick any n ≥ 1, δ ∈ (0, 1). Let Sn be a set of n iid copies of (X,Y ). The following
holds with probability at least 1− δ: (1) For all h ∈ H,

|errD(h)− errSn(h)| ≤
�
4σ(n, δ) (8)

(2) For all h, h� in H,

|(errD(h)− errD(h�))− (errSn(h)− errSn(h
�))| ≤

�
4σ(n, δ) (9)

|ρD(h, h�)− ρSn(h, h
�)| ≤

�
4σ(n, δ) (10)

Where σ(n, δ) is defined in Equation (3).

For an unlabelled sample Uk, we use Ũk to denote the joint distribution over X × Y induced by
uniform distribution over Uk and DY |X . We have:

Lemma 9. If the size of nk of the unlabelled dataset Uk is at least 192( 512�k
)2(d ln 192( 512�k

)2 +

ln 288
δk

), then with probability 1− δk/4, the following conditions hold for all h, h� ∈ Vk:

|errD(h)− errŨk
(h)| ≤ �k

64
(11)

|(errD(h)− errD(h�))− (errŨk
(h)− errŨk

(h�))| ≤ �k
32

(12)

|ρD(h, h�)− ρŨk
(h, h�)| ≤ �k

64
(13)

Lemma 10. If the size of nk of the unlabelled dataset Uk is at least 192( 512�k
)2(d ln 192( 512�k

)2 +

ln 288
δk

), then with probability 1− δk/4, the following hold:
(1) The outputs {(ξk,i, ζk,i, γk,i)}nk

i=1 of any confidence-rated predictor with inputs hypothesis set
Vk, unlabelled data Uk, and error bound �k/64 satisfy:

1

nk

nk�

i=1

[I(h(xi) �= h�(xi))(1− γk,i)] ≤
�k
32

; (14)

(2) The outputs {(ξk,i, ζk,i, γk,i)}nk
i=1 of the confidence-rated predictor of Algortihm 3 with inputs

hypothesis set Vk, unlabelled data Uk, and error bound �k/64 satisfy:

φk ≤ ΦD(Vk,
�k
128

) +
�k
256

(15)

We use Γ̃k to denote the joint distribution over X × Y induced by Γk and DY |X . Denote γk(x) :

X → [0, 1], where γk(xi) = γk,i, and 0 elsewhere. Clearly, Γk({x}) = γk(x)
nkφk

and Γ̃k({(x, y)}) =
Ũk({(x,y)})γk(x)

φk
. Also, Equations (14) and (15) of Lemma 10 can be restated as

∀h, h� ∈ Vk,EŨk
[(1− γk(x))I(h(x) �= h�(x))] ≤ �k

32

EŨk
[γk(x)] = φk ≤ ΦD(Vk,

�k
128

) +
�k
256

In the realizable case, define event

Er = {For all k = 1, 2, . . . , k0: Equations (11), (12), (13), (14), (15) hold for Ũk

and all classifiers consistent with Sk have error at most
�k
8φk

with respect to Γ̃k }.
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Fact 1. P(Er) ≥ 1− δ.

Proof. By Equation (5) of Lemma 7, with probability 1 − δk/2, if h ∈ Vk is consistent with Sk,
then

errΓ̃k
(h) ≤ σ(mk, δk/2)

Because mk = 1536φk

�k
(d ln 1536φk

�k
+ ln 48

δk
), we have errΓ̃k

(h) ≤ �k/8φk. The fact follows from
combining the fact above with Lemma 9 and Lemma 10, and the union bound.

In the non-realizable case, define event

Ea = {For all k = 1, 2, . . . , k0: Equations (11), (12), (13), (14), (15) hold for Ũk,
and Algorithm 2 succeeds with inputs hypothesis set V = Vk, example distribution Δ = Γk,

labelling oracle O, target excess error �̃ =
�k
8φk

and target confidence δ̃ =
δk
2
}.

Fact 2. P(Ea) ≥ 1− δ.

Proof. This is an immediate consequence of Lemma 9, Lemma 10, Lemma 4 and union bound.

Recall that we assume the hypothesis space is “dense”, in the sense that ∀r > 0,
suph∈BD(h∗(D),r) ρ(h, h

∗(D)) = r. We will call this the “denseness assumption”.

C Proofs related to the properties of Algorithm 2

We first establish some properties of Algorithm 2. The inputs to Algorithm 2 are a set V of hypothe-
ses of VC dimension d, an example distribution Δ, a labeling oracle O, a target excess error �̃ and a
target confidence δ̃.

We define the event

Ẽ = {For all j = 1, 2, . . . : Equations (4)-(7) hold for sample Sj with n = nj and δ = δ̃j }

By union bound, P(Ẽ) ≥ 1−�
j δ̃j ≥ 1− δ̃.

Proof. (of Lemma 4) Assume Ẽ happens. For the proof of (1), define jmax as the smallest integer j
such that σ(nj , δ̃j) ≤ �̃2/144. Since njmax

is a power of 2,

njmax ≤ 2min{n = 1, 2, . . . :
16(2d ln 2en

d + ln 24 log n(log n+1)
δ )

n
≤ �̃2

144
}

Thus, njmax
≤ 384 144

�̃2 (d ln 192144
�̃2 + ln 24

δ̃
). Then in round jmax, the stopping criterion (6) of

Algorithm 2 is satisified; thus, Algorithm 2 halts with j0 ≤ jmax.

To prove (2.1), we observe that as h∗(Δ̃) is the risk minimizer in V , if h satisfies errΔ̃(h) −
errΔ̃(h

∗(Δ̃)) ≤ �̃
2 , then errΔ̃(h)− errΔ̃(ĥj0) ≤ �̃

2 . By Equation (6) of Lemma 7,

(errSj0
(h)− errSj0

(ĥj0)) ≤ (errΔ̃(h)− errΔ̃(ĥj0)) + σ(nj0 , δ̃j0) +
�

σ(nj0 , δ̃j0)ρSj0
(h, ĥj0)

≤ �̃

2
+ σ(nj0 , δ̃j0) +

�
σ(nj0 , δ̃j0)ρSj0

(h, ĥj0)

Hence h ∈ Vj0 .

For the proof of (2.2), note first that by (2.1), in particular, h∗(Δ̃) ∈ Vj0 . Hence by Equation (6) of
Lemma 7, and the stopping criterion Equation (6),

(errΔ̃(ĥj0)−errΔ̃(h
∗(Δ̃)))−(errSj0

(ĥj0)−errSj0
(h∗(Δ̃))) ≤ σ(nj0 , δ̃j0)+

�
σ(nj0 , δ̃j0)ρSj0

(ĥj0 , h
∗(Δ̃)) ≤ �̃

6
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Thus,

errΔ̃(ĥj0)− errΔ̃(h
∗(Δ̃)) ≤ �̃

6
(16)

On the other hand, if h ∈ Vj0 , then

(errΔ̃(h)− errΔ̃(ĥj0))− (errSj0
(h)− errSj0

(ĥj0)) ≤ σ(nj0 , δ̃j0) +
�
σ(nj0 , δ̃j0)ρSj0

(h, ĥj0) ≤
�̃

6

By definition of Vj0 ,

(errSj0
(h)− errSj0

(ĥj0)) ≤ σ(nj0 , δ̃j0) +
�
σ(nj0 , δ̃j0)ρSj0

(h, ĥj0) +
�̃

2
≤ 2�̃

3

Hence,

errΔ̃(h)− errΔ̃(ĥj0) ≤
5�̃

6
(17)

Combining Equations (16) and (17), we have

errΔ̃(h)− errΔ̃(h
∗(Δ̃)) ≤ �̃

Proof. (of Lemma 5) Assume Ẽ happens. For each j, by triangle inequality, we have that
ρSj (ĥj , h) ≤ errSj (ĥj) + errSj (h). If h ∈ Vj , then, by defintion of Vj ,

errSj
(h)− errSj

(ĥj) ≤
�̃

2
+ σ(nj , δ̃j) +

�
σ(nj , δ̃j)errSj

(ĥj) +
�

σ(nj , δ̃j)errSj
(h)

Using the fact that A ≤ B + C
√
A ⇒ A ≤ 2B + C2,

errSj (h) ≤ �̃+ 2errSj (ĥj) + 2

�
σ(nj , δ̃j)errSj (ĥj) + 3σ(nj , δ̃j) ≤ 3errSj (ĥj) + 4σ(nj , δ̃j) + �̃

Since

errSj
(ĥj) ≤ errSj

(h∗(Δ̃)) ≤ ν∗(Δ̃) +

�
σ(nj , δ̃j)ν∗(Δ̃) + σ(nj , δ̃j) ≤ 2ν∗(Δ̃) + 2σ(nj , δ̃j),

by the triangle inequality, we get that for all h ∈ Vj ,

ρSj
(h, ĥj) ≤ errSj

(h) + errSj
(ĥj) ≤ 8ν∗(Δ̃) + 12σ(nj , δ̃j) + �̃ (18)

Now observe that for any j,

sup
h∈Vj

�
σ(nj , δ̃j)ρSj

(h, ĥj) + σ(nj , δ̃j)

≤ sup
h∈Vj

max(2

�
σ(nj , δ̃j)ρSj (h, ĥj), 2σ(nj , δ̃j))

≤ max(2

�
(8ν∗(Δ̃) + 12σ(nj , δ̃j) + �̃)σ(nj , δ̃j), 2σ(nj , δ̃j))

≤ max(12

�
2ν∗(Δ̃)σ(nj , δ̃j), �̃/6, 216σ(nj , δ̃j)),

Where the first inequality follows from A + B ≤ 2max(A,B), the second inequality follows
from Equation (18), the third inequality follows from

√
A+B ≤

√
A +

√
B, A + B + C ≤

3max(A,B,C) and
√
AB ≤ max(A,B).

It can be easily seen that there exists some constant c1 > 0, such that taking j1 =

�log
�

c1
2 (d ln

1
�̃ + ln 1

δ̃
)( ν

∗(Δ̃)+�̃
�̃2 )

�
� ensures that nj1 ≥ c1

2 (d ln
1
�̃ + ln 1

δ̃
)( ν

∗(Δ̃)+�̃
�̃2 ); this, in turn,

suffices to make
max(12

�
2ν∗(Δ̃)σ(nj , δ̃j), 216σ(nj , δ̃j)) ≤ �̃/6

Hence the stopping criterion suph∈Vj

�
σ(nj , δ̃j)ρSj

(h, ĥj) + σ(nj , δ̃j) ≤ �̃/6 is satisfied in
iteration j1, and Algorithm 2 exits at iteration j0 ≤ j1, which ensures that nj0 ≤ nj1 ≤
c1(d ln

1
�̃ + ln 1

δ̃
)( ν

∗(Δ̃)+�̃
�̃2 ).
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The following lemma examines the behavior of Algorithm 2 under the Tsybakov Noise Condition
and is crucial in the proof of Theorem 5. We observe that even if the (C0,κ)-Tsybakov Noise
Conditions hold with respect to D, they do not necessarily hold with respect to Γk. In particular, it
is not necessarily true that:

ρΓ̃k
(h, h∗(D)) ≤ C0(errΓ̃k

(h)− errΓ̃k
(h∗(D)))

1
κ , ∀h ∈ Vk

However, we show that an “approximate” Tsybakov Noise Condition with a significantly larger
“C0”, namely Condition (19) is met by Γ̃k and Vk, with C = max(8C0, 4)φ

1
κ−1

k and h̃ = h∗(D).
In the Lemma below, we carefully track the dependence of the number of our label queries on C,
since C = max(8C0, 4)φ

1
κ−1

k can be ω(1) in our particular application.

Lemma 11. Suppose we run Algorithm 2 with inputs hypothesis set V , example distribution Δ̃,
labelling oracle O, excess generalization error �̃ and confidence δ̃. Then there exists some absolute
constant c2 > 0 (independent of C) such that the following holds. Suppose there exist C > 0 and a
classifier h̃ ∈ V , such that

∀h ∈ V, ρΔ̃(h, h̃) ≤ Cmax(�̃, errΔ̃(h)− errΔ̃(h̃))
1
κ , (19)

where �̃ is the target exccess error parameter in Algorithm 2. Then, on the event that Algorithm 2
succeeds,

nj0 ≤ c2 max((d ln
1

�̃
+ ln

1

δ̃
)�̃−1, (d ln(C �̃

1
κ−2) + ln

1

δ̃
)C �̃

1
κ−2)

Observe that Condition (19), the approximate Tsybakov Noise Condition in the statement of
Lemma 11, is with respect to h̃, which is not necessarily the true risk minimizer in V with respect
to Δ̃. We therefore prove Lemma 11 in three steps; first, in Lemma 12, we analyze the difference
errΔ̃(ĥ) − errΔ̃(h̃), where ĥ is the empirical risk minimizer. Then, in Lemma 13, we bound the
difference errΔ̃(h)− errΔ̃(h̃) for any h ∈ Vj for some j. Finally, we combine these two lemmas to
provide sample complexity bounds for the Vj0 output by Algorithm 2.

Proof. (of Lemma 11) Assume the event Ẽ happens. Then,

Consider iteration j, by Lemma 13, if h ∈ Vj , then

ρΔ̃(h, ĥj) ≤ ρΔ̃(h, h̃)+ρΔ̃(ĥj , h̃) ≤ max(2C(36�̃)
1
κ , 2C(52σ(nj , δ̃j))

1
κ , 2C(6400Cσ(nj , δ̃j))

1
2κ−1 ).

(20)

We can write:

sup
h∈Vj

σ(nj , δ̃j) +

�
σ(nj , δ̃j)ρSj (h, ĥj) ≤ sup

h∈Vj

3σ(nj , δ̃j) +

�
2σ(nj , δ̃j)ρΔ̃(h, ĥj)

≤ sup
h∈Vj

max(6σ(nj , δ̃j), 2

�
2σ(nj , δ̃j)ρΔ̃(h, ĥj)),

where the first inequality follows from Equation (23) and the second inequality follows A + B ≤
2max(A,B). We can further use Equation (20) to show that this is at most:

≤ max(6σ(nj , δ̃j), (16Cσ(nj , δ̃j))
1
2 (36�̃)

1
2κ , (16Cσ(nj , δ̃j))

1
2 (52σ(nj , δ̃j))

1
2κ , (6400Cσ(nj , δ̃j))

κ
2κ−1 )

≤ max(6σ(nj , δ̃j), �̃/6, (6400Cσ(nj , δ̃j))
κ

2κ−1 )

Here the last inequality follows from the fact that (16Cσ(nj , δ̃j))
1
2 (36�̃)

1
2κ ≤

max((3456Cσ(nj , δ̃j))
κ

2κ−1 , �̃/6) and (16Cσ(nj , δ̃j))
1
2 (52σ(nj , δ̃j))

1
2κ ≤

max((144Cσ(nj , δ̃j))
κ

2κ−1 , 6σ(nj , δ̃j)), since A
2κ−1
2κ B

1
2κ ≤ max(A,B).

It can be easily seen that there exists c2 > 0, such that taking j1 = �log c2
2 (d ln

max(C,1)
�̃ +

ln 1
δ̃
)(C �̃

1
κ−2 + �̃−1)�, so that nj ≥ c2

2 (d ln
max(C,1)

�̃ + ln 1
δ̃
)(C �̃

1
κ−2 + �̃−1) suffices to make

max(6σ(nj , δ̃j), (6400Cσ(nj , δ̃j))
κ

2κ−1 ) ≤ �̃/6
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Hence the stopping criterion suph∈Vj

�
σ(nj , δ̃j)ρSj

(h, ĥj) + σ(nj , δ̃j) ≤ �̃/6 is satisfied in it-
eration j1. Thus the number of the exit iteration j0 satisfies j0 ≤ j1, and nj0 ≤ nj1 ≤
c2 max((d ln 1

�̃ + ln 1
δ̃
)�̃−1, (d ln(C �̃

1
κ−2) + ln 1

δ̃
)C �̃

1
κ−2).

Lemma 12. Suppose there exist C > 0 and a classifier h̃ ∈ V , such that Equation (19) holds.
Suppose we draw a set S of n examples, denote the empirical risk minimizer over S as ĥ, then with
probability 1− δ:

errΔ̃(ĥ)− errΔ̃(h̃) ≤ max(2σ(n, δ), (4Cσ(n, δ))
κ

2κ−1 , 2�̃)

ρΔ̃(ĥ, h̃) ≤ max(C(2σ(n, δ))
1
κ , C(4Cσ(n, δ))

1
2κ−1 , C(2�̃)

1
κ )

Proof. By Lemma 7, with probability 1− δ, Equation (6) holds. Assume this happens.

errΔ̃(ĥ)− errΔ̃(h̃)

≤ σ(n, δ) +

�
σ(n, δ)ρΔ̃(ĥ, h̃)

≤ 2max(σ(n, δ),

�
σ(n, δ)C(errΔ̃(h)− errΔ̃(h̃)

1
κ ),

�
σ(n, δ)C �̃

1
κ )

≤ max(2σ(n, δ), (4Cσ(n, δ))
κ

2κ−1 , 2�̃)

Where the first inequality is by Equation (6) of Lemma 7; the second inequality follow from

Equation (19) and A + B ≤ 2max(A,B). The third inequality follows from 2
�
σ(n, δ)C �̃

1
κ ≤

max(2(Cσ(n, δ))
κ

2κ−1 , 2�̃), since A
2κ−1
2κ B

1
2κ ≤ max(A,B). As a consequence, by Equation (19),

ρΔ̃(ĥ, h̃) ≤ max(C(2σ(n, δ))
1
κ , C(4Cσ(n, δ))

1
2κ−1 , C(2�̃)

1
κ )

Lemma 13. Suppose there exist a C > 0 and a classifier h̃ ∈ V such that Equation (19) holds.
Suppose we draw a set S of n iid examples, and let ĥ denote the empirical risk minimizer over S.
Moreover, we define:

Ṽ =
�
h ∈ V : errS(h) ≤ errS(ĥ) +

�̃

2
+ σ(n, δ) +

�
σ(n, δ)ρS(h, ĥ)

�

then with probability 1− δ, for all h ∈ Ṽ ,

errΔ̃(h)− errΔ̃(h̃) ≤ max(52σ(n, δ), 36�̃, (6400Cσ(n, δ))
κ

2κ−1 )

ρΔ̃(h, h̃) ≤ max(C(36�̃)
1
κ , C(52σ(n, δ))

1
κ , C(6400Cσ(n, δ))

1
2κ−1 )

Proof. First, by Lemma 12,

errΔ̃(ĥ)− errΔ̃(h̃) ≤ max(2σ(n, δ), (4Cσ(n, δ))
κ

2κ−1 , 2�̃) (21)

ρΔ̃(ĥ, h̃) ≤ max(C(2σ(n, δ))
1
κ , C(4Cσ(n, δ))

1
2κ−1 , C(2�̃)

1
κ ) (22)

Next, if h ∈ Ṽ , then

errS(h)− errS(ĥ) ≤ σ(n, δ) +

�
σ(n, δ)ρS(h, ĥ) +

�̃

2

Combining it with Equation (6) of Lemma 7: errΔ̃(h) − errΔ̃(ĥ) ≤ errS(h) − errS(ĥ) +�
σ(n, δ)ρS(h, ĥ) + σ(n, δ), we get

errΔ̃(h)− errΔ̃(ĥ) ≤ 2σ(n, δ) + 2

�
σ(n, δ)ρS(h, ĥ) +

�̃

2
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By Equation (7) of Lemma 7,

ρS(h, ĥ) ≤ ρΔ̃(h, ĥ) +

�
σ(n, δ)ρΔ̃(h, ĥ) + σ(n, δ) ≤ 2ρΔ̃(h, ĥ) + 2σ(n, δ) (23)

Therefore,

errΔ̃(h)− errΔ̃(ĥ) ≤ 5σ(n, δ) + 3

�
σ(n, δ)ρΔ̃(h, ĥ) +

�̃

2
(24)

Hence

errΔ̃(h)− errΔ̃(h̃)

= (errΔ̃(h)− errΔ̃(ĥ)) + (errΔ̃(ĥ)− errΔ̃(h̃))

≤ (4Cσ(n, δ))
κ

2κ−1 + 7σ(n, δ) + 3�̃+ 3

�
σ(n, δ)ρΔ̃(h, ĥ)

≤ (4Cσ(n, δ))
κ

2κ−1 + 7σ(n, δ) + 3�̃+ 3

�
σ(n, δ)ρΔ̃(h, h̃) + 3

�
σ(n, δ)ρΔ̃(h̃, ĥ)

Here the first inequality follows from Equations (21) and (24) and max(A,B,C) ≤ A + B + C,
and the second inequality follows from triangle inequality and

√
A+B ≤

√
A+

√
B.

From Equation (22), σ(n, δ)ρΔ̃(ĥ, h̃) is at most:

≤ Cσ(n, δ) · ((2�̃)1/κ + (2σ(n, δ))1/κ + (4Cσ(n, δ))1/(2κ−1))

≤ (4Cσ(n, δ))2κ/(2κ−1) + Cσ(n, δ)((2�̃)1/κ + (2σ(n, δ))1/κ)

≤ (4Cσ(n, δ))2κ/(2κ−1) +max(4�̃2, (Cσ(n, δ))2κ/(2κ−1)) + max(4σ(n, δ)2, (Cσ(n, δ))2κ/(2κ−1)),

where the first step follows from Equation (22), the second step from algebra, and the third step
from using the fact that A

2κ−1
κ B

1
κ ≤ max(A2, B2). Plugging this in to the previous equation, and

using max(A,B) ≤ A+B and
√
A+B ≤

√
A+

√
B, we get that:

errΔ̃(h)− errΔ̃(h̃) ≤ 10(4Cσ(n, δ))κ/(2κ−1) + 9�̃+ 13σ(n, δ) + 3

�
σ(n, δ)ρΔ̃(h, h̃)

Combining this with the fact that A+B+C+D ≤ 4max(A,B,C,D), we get that this is at most:

≤ max(40(4Cσ(n, δ))κ/(2κ−1), 36�̃, 52σ(n, δ), 12

�
σ(n, δ)ρΔ̃(h, h̃))

Combining this with Condition (19), we get that this is at most:

max(40(4Cσ(n, δ))κ/(2κ−1), 36�̃, 52σ(n, δ), 12
�
Cσ(n, δ)�̃1/κ, 12

�
Cσ(n, δ)(errΔ̃(h)− errΔ̃(h̃))1/κ)

Using A(2κ−1)/2κB1/2κ ≤ max(A,B), we get that
�
Cσ(n, δ)�̃1/κ ≤

max(�̃, (Cσ(n, δ))κ/(2κ−1)). Also note errΔ̃(h) − errΔ̃(h̃) ≤
12
�
Cσ(n, δ)(errΔ̃(h)− errΔ̃(h̃))1/κ implies errΔ̃(h) − errΔ̃(h̃) ≤ (144Cσ(n, δ))κ/(2κ−1).

Thus we have

errΔ̃(h)− errΔ̃(h̃) ≤ max(36�̃, 52σ(n, δ), (6400Cσ(n, δ))
κ

2κ−1 )

Invoking (19) again, we have that:

ρΔ̃(h, h̃) ≤ max(C(36�̃)
1
κ , C(52σ(n, δ))

1
κ , C(6400Cσ(n, δ))

1
2κ−1 )

D Remaining Proofs from Section 2

Proof. (Of Lemma 1) Assuming Er happens, we prove the lemma by induction.
Base Case: For k = 1, clearly h∗(D) ∈ V1 = H.
Inductive Case: Assume h∗(D) ∈ Vk. As we are in the realizable case, h∗(D) is consistent with
the examples Sk drawn in Step 8 of Algorithm 1; thus h∗(D) ∈ Vk+1. The lemma follows.
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Proof. (Of Lemma 2) We use h̃k = argminh∈Vk
errΓ̃k

(h) to denote the optimal classifier in Vk with
respect to the distribution Γ̃k. Assuming Ea happens, we prove the lemma by induction.
Base Case: For k = 1, clearly h∗(D) ∈ V1 = H.
Inductive Case: Assume h∗ ∈ Vk. In order to show the inductive case, our goal is to show that:

PΓ̃k
(h∗(D)(x) �= y)− PΓ̃k

(h̃k(x) �= y) ≤ �k
16φk

(25)

If (25) holds, then, by (2.1) of Lemma 4, we know that if Algorithm 2 succeeds when called in
iteration k of Algorithm 1, then, it is guaranteed that h∗ ∈ Vk+1.

We therefore focus on showing (25). First, from Equation (12) of Lemma 9, we have:

(errŨk
(h∗(D))− errŨk

(h̃k))− (errD(h∗(D))− errD(h̃k)) ≤
�k
32

As errD(h∗(D)) ≤ errD(h̃k), we get:

errŨk
(h∗(D)) ≤ errŨk

(h̃k) +
�k
32

(26)

On the other hand, by Equation (14) of Lemma 10 and triangle inequality,

EŨk
[I(h̃k(x) �= y)(1− γk(x))]− EŨk

[I(h∗(D)(x) �= y)(1− γk(x))] (27)

≤ EŨk
[I(h∗(D)(x) �= h̃k(x))(1− γk(x))] ≤

�k
32

(28)

Combining Equations (26) and (27), we get:
EŨk

[I(h∗(D)(x) �= y)γk(x)] = errŨk
(h∗(D)(x))− EŨk

[I(h∗(D)(x) �= y)(1− γk(x))]

≤ errŨk
(h̃k(x)) + �k/32− EŨk

[I(h∗(D)(x) �= y)(1− γk(x))]

≤ EŨk
[I(h̃k(x) �= y)γk(x)] + EŨk

[I(h̃(x) �= y)(1− γk(x))] + �k/32

−EŨk
[I(h∗(D)(x) �= y)(1− γk(x))]

≤ EŨk
[I(h̃k(x) �= y)γk(x)] + �k/16

Dividing both sides by φk, we get:

PΓ̃k
(h∗(D)(x) �= y)− PΓ̃k

(h̃k(x) �= y) ≤ �k
16φk

,

from which the lemma follows.

Proof. (of Lemma 3) Assuming Er happens, we prove the lemma by induction.
Base Case: For k = 1, clearly errD(h) ≤ 1 ≤ �1 = �2k0 , ∀h ∈ V1 = H.
Inductive Case: Note that ∀h, h� ∈ Vk+1 ⊆ Vk, by Equation (14) of Lemma 10, we have:

EŨk
[I(h(x) �= h�(x))(1− γk(x))] ≤

�k
8

By the proof of Lemma 1, h∗(D) ∈ Vk+1 on event Er, thus ∀h ∈ Vk+1,

EŨk
[I(h(x) �= h∗(D)(x))(1− γk(x))] ≤

�k
8

(29)

Since any h ∈ Vk+1, h is consistent with Sk of size mk = 1536φk

�k
(d ln 1536φk

�k
+ ln 48

δk
), we have

that for all h ∈ Vk+1,
PΓ̃k

(h(x) �= h∗(D)(x)) ≤ �k
8φk

That is,
EŨk

[I(h(x) �= h∗(D)(x))γk(x)] ≤
�k
8

Combining this with Equation (29) above,

PŨk
(h(x) �= h∗(D)(x)) ≤ �k

4
By Equation (11) of Lemma 9,

PD(h(x) �= h∗(D)(x)) ≤ �k
2

= �k+1

The lemma follows.
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Proof. (of Lemma 6) Assuming Ea happens, we prove the lemma by induction.
Base Case: For k = 1, clearly errD(h)− errD(h∗(D)) ≤ 1 ≤ �1 = �2k0 , ∀h ∈ V1 = H.
Inductive Case: Note that ∀h, h� ∈ Vk+1 ⊆ Vk, by Equation (14) of Lemma 10,

EŨk
[I(h(x) �= y)(1−γk(x))]−EŨk

[I(h�(D)(x) �= y)(1−γk(x))] ≤ EŨk
[I(h(x) �= h�(D)(x))(1−γk(x))] ≤

�k
8

From Lemma 2, h∗(D) ∈ Vk whenever the event Ea happens. Thus ∀h ∈ Vk+1,

EŨk
I(h(x) �= y)(1− γk(x))− EŨk

I(h∗(D)(x) �= y)(1− γk(x)) ≤
�k
8

(30)

On the other hand, if Algorithm 2 succeeds with target excess error �k
8φk

, by item(2.2) of Lemma 4,
for any h ∈ Vk+1,

PΓ̃k
(h(x) �= y)− min

h∈Vk

PΓ̃k
(h(x) �= y) ≤ �k

8φk

Moreover, as h∗(D) ∈ Vk from Lemma 2,

PΓ̃k
(h(x) �= y)− PΓ̃k

(h∗(D)(x) �= y) ≤ �k
8φk

In other words,

EŨk
[I(h(x) �= y)γk(x)]− EŨk

[I(h∗(D)(x) �= y)γk(x)] ≤
�k
8

Combining this with Equation (30), we get that for all h ∈ Vk+1,

PŨk
(h(x) �= y)− PŨk

(h∗(D)(x) �= y) ≤ �k
4

Finally, combining this with Equation (12) of Lemma 9, we have that:

PD(h(x) �= y)− PD(h∗(D)(x) �= y) ≤ �k
2

= �k+1

The lemma follows.

Proof. (of Theorem 1) In the realizable case, We observe that for example zi, ζi = P(P (zi) = −1),
ξi = P(P (zi) = 1), and γi = P(P (zi) = 0). Suppose h∗ ∈ H is the true hypothesis which has
0 error with respect to the data distribution. By the realizability assumption, h∗ ∈ V . Moreover,
PU (P (x) �= h∗(x), P (x) �= 0) = 1

m (
�

i:h∗(zi)=+1 ζi +
�

i:h∗(zi)=−1 ξi) ≤ η by Algorithm 3.
In the non-realizable case, we still have Px∼U (h

∗(x) �= P (x), P (x) �= 0) ≤ η, hence by triangle
inequality, Px∼U (P (x) �= x, P (x) �= 0)− Px∼U (h

∗(x) �= y, P (x) �= 0) ≤ η. Thus

Px∼U (P (x) �= y, P (x) �= 0) ≤ Px∼U (h
∗(x) �= y) + η

Proof. (of Theorem 2) Suppose P � assigns probabilities {[ξ�i, ζ �i, γ�
i], i = 1, . . . ,m} to the unlabelled

examples zi, and suppose for the sake of contradiction that
�m

i=1 ξ
�
i + ζ �i >

�m
i=1 ξi + ζi. Then,

{ξ�i, ζ �i, γ�
i}’s cannot satisfy the LP in Algorithm 3, and thus there exists some h� ∈ V for which

constraint (2) is violated. The true hypothesis that generates the data could be any h ∈ V ; if this
true hypothesis is h�, then Px∼U (P

�(x) �= h�(x), P �(x) �= 0) > δ.

E Proofs from Section 3

Proof. (of Theorem 4)
(1) In the realizable case, suppose that event Er happens. Then from Equation (15) of Lemma 10,
while running Algorithm 3, we have that:

φk ≤ ΦD(Vk,
�k
128

)+
�k
256

≤ ΦD(BD(h∗, �k),
�k
128

)+
�k
256

≤ ΦD(BD(h∗, �k),
�k
256

) = φ(�k,
�k
256

)

where the second inequality follows from the fact that Vk ⊆ BD(h∗(D), �k), and third inequality
follows from Lemma 18 and denseness assuption.
Thus, there exists c3 > 0 such that, in round k,

mk = (d ln
1536φk

�k
+ ln

48

δk
)
1536φk

�k
≤ c3(d ln

φ(�k, �k/256)

�k
+ ln(

k0 − k + 1

δ
))
φ(�k, �k/256)

�k
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Hence the total number of labels queried by Algorithm 1 is at most

�log 1
� ��

k=1

mk ≤ c3

�log 1
� ��

k=1

(d ln
φ(�k, �k/256)

�k
+ ln(

k0 − k + 1

δ
))
φ(�k, �k/256)

�k

(2) In the agnostic case, suppose the event Ea happens.
First, given Ea, from Equation (15) of Lemma 10 when running Algorithm 3,

φk ≤ ΦD(Vk,
�k
128

) +
�k
256

≤ ΦD(BD(h∗, 2ν∗(D) + �k),
�k
256

) = φ(2ν∗(D) + �k,
�k
256

) (31)

where the second inequality follows from the fact that Vk ⊆ BD(h∗(D), 2ν∗(D)+ �k) and the third
inequality follows from Lemma 18 and denseness assumption.
Second, recall that h̃k = argminh∈Vk

errΓ̃k
(h),

errΓ̃k
(h̃k) = min

h∈Vk

errΓ̃k
(h)

≤ errΓ̃k
(h∗(D))

=
EŨk

[I(h∗(D)(x) �= y)γk(x)]

φk

≤
PŨk

(h∗(D)(x) �= y)

φk

≤ ν∗(D) + �k/64

φk

Here the first inequality follows from the suboptimality of h∗(D) under distribution Γ̃k, the second
inequality follows from γk(x) ≤ 1, and the third inequality follows from Equation (11).
Thus, conditioned on Ea, in iteration k, Algorithm 2 succeeds by Lemma 5, and there exists a
constant c4 > 0 such that the number of labels queried is

mk ≤ c1

�k
8φk

+ errΓ̃k
(h̃k)

( �k
8φk

)2
(d ln

1
�k
8φk

+ ln
2

δk
)

≤ c4(d ln
φ(2ν∗(D) + �k, �k/256)

�k
+ ln(

k0 − k + 1

δ
))
φ(2ν∗(D) + �k, �k/256)

�k
(1 +

ν∗(D)

�k
)

Here the last line follows from Equation (31). Hence the total number of examples queried is at
most:

�log 1
� ��

k=1

mk ≤ c4

�log 1
� ��

k=1

(d ln
φ(2ν∗(D) + �k, �k/256)

�k
+ln(

k0 − k + 1

δ
))
φ(2ν∗(D) + �k, �k/256)

�k
(1+

ν∗(D)

�k
)

Proof. (of Theorem 5) Assume Ea happens.
First, from Equation (15) of Lemma 10 when running Algorithm 3,

φk ≤ ΦD(Vk,
�k
128

)+
�k
256

≤ ΦD(BD(h∗, C0�
1
κ

k ),
�k
128

)+
�k
256

≤ ΦD(BD(h∗, C0�
1
κ

k ),
�k
256

) = φ(C0�
1
κ

k ,
�k
256

)

(32)
where the second inequality follows from the fact that Vk ⊆ BD(h∗(D), C0�

1
κ

k ), and the third
inequality follows from Lemma 18 and denseness assumption.
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Second, for all h ∈ Vk,

φkρΓ̃k
(h, h∗(D))

= EŨk
I(h(x) �= h∗(D)(x))γk(x)

≤ ρŨk
(h, h∗(D))

≤ ρD(h, h∗(D)) + �k/32

≤ C0(errD(h)− errD(h∗(D)))
1
κ + �k/32

≤ C0(errŨk
(h)− errŨk

(h∗(D)) + �k/64)
1
κ + �k/32

= C0(EŨk
[I(h(x) �= y)γk(x)]− EŨk

[I(h∗(D)(x) �= y)γk(x)]

+EŨk
[I(h(x) �= y)(1− γk(x))]− EŨk

[I(h∗(D)(x) �= y)(1− γk(x))] + �k/16)
1
κ + �k/32

Here the first inequality follows from γk(x) ≤ 1, the second inequality follows from Equation (13)
of Lemma 9, the third inequality follows from Definition 1 and the fourth inequality follows from
Equation (12) of Lemma 9. The above can be upper bounded by:

≤ C0(EŨk
[I(h(x) �= y)γk(x)]− EŨk

[I(h∗(D)(x) �= y)γk(x)] + �k/16)
1
κ + �k/32

≤ 2C0(EŨk
[I(h(x) �= y)γk(x)]− EŨk

[I(h∗(D)(x) �= y)γk(x)])
1
κ + 2C0(�k/16)

1
κ + �k/32

≤ max(8C0, 4)max((EŨk
[I(h(x) �= y)γk(x)]− EŨk

[I(h∗(D)(x) �= y)γk(x)]),
�k
16

)
1
κ

= max(8C0, 4)(φk)
1
κ max(PΓ̃k

(h(x) �= y)− PΓ̃k
(h∗(D)(x) �= y),

�k
8φk

)
1
κ

Here the first inequality follows from Equation (14) of Lemma 10 and triangle inequality
EŨk

[I(h(x) �= y)γk(x)] − EŨk
[I(h∗(D)(x) �= y)γk(x)] ≤ EŨk

[I(h(x) �= h∗(D)(x))γk(x)] ≤
�k/32, and the last two inequalities follow from simple algebra.

Dividing both sides by φk, we get:

ρΓ̃k
(h, h∗(D)) ≤ C1(φk)

1
κ−1 max(errΓ̃k

(h)− errΓ̃k
(h∗(D)),

�k
8φk

)
1
κ

where C1 = max(8C0, 4). Thus in iteration k, Condition (19) in Lemma 11 holds with C :=

C1(φk)
1
κ−1 and h̃ := h∗(D). Thus, from Lemma 11, Algorithm 2 succeeds, and there exists a

constant c5 > 0, such that the number of labels queried is

mk ≤ c2 max((d ln(C1(φk)
1
κ−1(

�k
8φk

)
1
κ−2) + ln

2

δk
)(C1(φk)

1
κ−1(

�k
8φk

)
1
κ−2),

(d ln(
�k
8φk

)−1 + ln
2

δk
)(

�k
8φk

)−1)

≤ c5(d ln(φk�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φk�

1
κ−2

k

≤ c5(d ln(φ(C0�
1
κ

k ,
�k
256

)�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φ(C0�

1
κ

k ,
�k
256

)�
1
κ−2

k

Where the last line follows from Equation (31). Hence the total number of examples queried is at
most

�log 1
� ��

k=1

mk ≤ c5

�log 1
� ��

k=1

(d ln(φ(C0�
1
κ

k ,
�k
256

)�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φ(C0�

1
κ

k ,
�k
256

)�
1
κ−2

k

The following lemma is an immediate corollary of Theorem 21, item (a) of Lemma 2 and Lemma 3
of [4]:
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Lemma 14. Suppose D is isotropic and log-concave on Rd, and H is the set of homogeneous linear
classifiers on Rd, then there exist absolute constants c6, c7 > 0 such that φ(r, η) ≤ c6r ln

c7r
η .

Proof. (of Lemma 14) Denote wh as the unit vector w such that h(x) = sign(w · x), and θ(w,w�)
to be the angle between vectors w and w�. If h ∈ BD(h∗, r), then by Lemma 3 of [4], there exists
some constant c11 > 0 such that θ(wh, wh∗) ≤ r

c11
. Also, by Lemma 21 of [4], there exists some

constants c12, c13 > 0, such that, if θ(w,w�) = α then

PD(sign(w · x) �= sign(w� · x), |w · x| ≥ b) ≤ c12α exp(−c13
b

α
)

We define a special solution (ξ, ζ, γ) as follows:

ξ(x) := I(wh∗ · x ≥ r

c11c13
ln

c12r

c11η
)

ζ(x) := I(wh∗ · x ≤ − r

c11c13
ln

c12r

c11η
)

γ(x) := I(|wh∗ · x| ≤ r

c11c13
ln

c12r

c11η
)

Then it can be checked that for all h ∈ BD(h∗, r),

E[I(h(x) = +1)ζ(x)+I(h(x) = −1)ξ(x)] = PD(sign(wh∗ ·x) �= sign(wh·x), |wh∗ ·x| ≥ r

c11c13
ln

c12r

c11η
) ≤ η

And by item (a) of Lemma 2 of [4], we have

Eγ(x) = PD(|wh∗ · x| ≤ r

c11c13
ln

c12r

c11η
) ≤ r

c11c13
ln

c12r

c11η

Hence,
φ(r, η) ≤ r

c11c13
ln

c12r

c11η

Proof. (of Corollary 1) This is an immediate consequence of Lemma 14 and Theorems 4 and 5 and
algebra.

F A Suboptimal Alternative to Algorithm 2

Algorithm 4 An Nonadaptive Algorithm for Label Query Given Target Excess Error
1: Inputs: Hypothesis set V of VC dimension d, Example distribution Δ, Labeling oracle O,

target excess error �̃, target confidence δ̃.
2: Draw n = 12288

�̃2 (d ln 12288
�̃2 + ln 24

δ̃
) i.i.d examples from Δ; query their labels from O to get a

labelled dataset S.
3: Train an ERM classifier ĥ ∈ V over S.
4: Define the set V as follows:

V1 =
�
h ∈ V : errS(h) ≤ errS(ĥ) +

3�̃

4

�

5: return V1.

It is immediate that we have the following lemma.
Lemma 15. Suppose we run Algorithm 4 with inputs hypothesis set V , example distribution Δ,
labelling oracle O, target excess error �̃ and target confidence δ̃. Then there exists an event Ẽ,
P(Ẽ) ≥ 1 − δ̃, such that on Ẽ, the set V1 has the following property. (1) If for h ∈ H, errΔ̃(h) −
errΔ̃(h

∗(Δ̃)) ≤ �̃/2, then h ∈ V1. (2) On the other hand, if h ∈ V1, then errΔ̃(h)−errΔ̃(h
∗(Δ̃)) ≤

�̃.
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When Ẽ happens, we say that Algorithm 4 succeeds.

Proof. By Equation (9) of Lemma 8 and because n = 12288
�̃2 (d ln 12288

�̃2 + ln 24
δ̃
), we have for all

h, h� ∈ H,

(errΔ̃(h)− errΔ̃(h
�))− (errS(h)− errS(h�)) ≤ �̃

4
For the proof of (1), for any h ∈ V , errΔ̃(h)− errΔ̃(h

∗(Δ̃)) ≤ �̃/2, then

errΔ̃(h)− errΔ̃(ĥ) ≤ �̃/2

Thus
errS(h)− errS(ĥ) ≤

3�̃

4
proving h ∈ V1.
For the proof of (2), for any h ∈ V1,

errS(h)− errS(h�) ≤ 3�̃

4
Thus

errS(h)− errS(h∗(Δ̃)) ≤ 3�̃

4
Combining with the fact that (errΔ̃(h)− errΔ̃(h

∗(Δ̃)))− (errS(h)− errS(h∗(Δ̃))) ≤ �̃
4 we have

errΔ̃(h)− errΔ̃(h
∗(Δ̃)) ≤ �̃

Corollary 2. Suppose we replace the calls to Algorithm 2 with Algorithm 4 in Algorithm 1, then run
it with inputs example oracle U , labelling oracle O, hypothesis class V , confidence-rated predictor
P of Algorithm 3, target excess error � and target confidence δ. Then the modified algorithm has a
label complexity of

Õ(

�log 1/���

k=1

(d(
φ(2ν∗(D) + �k, �k/256)

�k
)2)

in the agnostic case and

Õ(

�log 1/���

k=1

d(
φ(C0�

1
κ

k ,
�k
256 )

�
1
κ

k

)2�
2
κ−2

k )

under (C0,κ)-Tsybakov Noise Condition.

Under denseness assumption, by Lemma 17, we have φ(r, η) ≥ r−2η, the label complexity bounds
given by Corollary 2 is always no better than the ones given by Theorem 4 and 5.

Proof. (Sketch) Define event

Ea = {For all k = 1, 2, . . . , k0: Equations (11), (12), (13), (14), (15) hold for Ũk with
confidence δk/2, and Algorithm 4 succeeds with inputs hypothesis set V = Vk, example

distribution Δ = Γk, labelling oracle O, target excess error �̃ =
�k
8φk

and target confidence δ̃ =
δk
2
}.

Clealy, P(Ea) ≥ 1 − δ. On the event Ea, there exists an absolute constant c13 > 0, such that the
number of examples queried in interation k is

mk ≤ c13(d ln
8φk

�k
+ ln

2

δ
)(
8φk

�k
)2

Combining it with Equation (15) of Lemma 10

φk ≤ ΦD(Vk,
�k
128

) +
�k
256

we have

mk ≤ O((d ln
ΦD(Vk,

�k
128 ) +

�k
256

�k
+ ln

2

δk
)(
ΦD(Vk,

�k
128 ) +

�k
256

�k
)2)

The rest of the proof follows from Lemma 18 and denseness assumption, along with algebra.
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G Proofs of Concentration Lemmas

Proof. (of Lemma 9) We begin by observing that:

errŨk
(h) =

1

nk

nk�

i=1

[PD(Y = +1|X = xi)I(h(xi) = −1) + PD(Y = −1|X = xi)I(h(xi) = +1)]

Moreover, max(S({I(h(x) = 1, h ∈ H)}, n),S({I(h(x) = −1, h ∈ H)}, n)) ≤ ( end )d. Combin-
ing this fact with Lemma 16, the following equations hold simultaneously with probability 1−δk/6:

��� 1
nk

nk�

i=1

PD(Y = +1|X = xi)I(h(xi) = −1)−PD(h(x) = −1, y = +1)
��� ≤

�
16(d ln enk

d + ln 24
δk
)

nk
≤ �k

128

��� 1
nk

nk�

i=1

PD(Y = −1|X = xi)I(h(xi) = +1)−PD(h(x) = +1, y = −1)
��� ≤

�
16(d ln enk

d + ln 24
δk
)

nk
≤ �k

128

Thus Equation (11) holds with probability 1 − δk/6. Moreover, we observe that Equation (11)
implies Equation (12). To show Equation (13), we observe that by Lemma 8, with probability
1− δk/12,

|ρD(h, h�)− ρŨk
(h, h�)| = |ρD(h, h�)− ρSk

(h, h�)| ≤ 2
�
σ(nk, δk/12) ≤

�k
64

Thus, Equation (13) holds with probability ≥ 1−δk/12. By union bound, with probability 1−δk/4,
Equations (11), (12), and (13) hold simultaneously.

Proof. (of Lemma 10) (1) Given a confidence-rated predictor with inputs hypothesis set Vk, unla-
belled data Uk, and error bound �k/64, the outputs {(ξk,i, ζk,i, γk,i)}nk

i=1 must satisfy that for all
h, h� ∈ Vk,

1

nk

nk�

i=1

[I(h(xk,i) = −1)ξk,i + I(h(xk,i) = +1)ζk,i] ≤
�k
64

1

nk

nk�

i=1

[I(h�(xk,i) = −1)ξk,i + I(h�(xk,i) = +1)ζk,i] ≤
�k
64

Since I(h(x) �= h�(x)) ≤ min(I(h(x) = −1)+ I(h�(x) = −1), I(h(x) = +1)+ I(h�(x) = +1)),
adding up the two inequalities above, we get

1

nk

nk�

i=1

[I(h(xk,i) �= h�(xk,i))(ξk,i + ζk,i)] ≤
�k
32

That is,
1

nk

nk�

i=1

[I(h(xk,i) �= h�(xk,i))(1− γk,i)] ≤
�k
32

(2) By definition of ΦD(V, η), there exist nonnegative functions ξ, ζ, γ such that ξ(x) + ζ(x) +
γ(x) ≡ 1, ED[γ(x)] = ΦD(Vk, �k/128) and for all h ∈ Vk,

ED[ξ(x)I(h(x) = −1) + ζ(x)I(h(x) = +1)] ≤ �k
128

Consider the linear progam in Algorithm 3 with inputs hypothesis set Vk, unlabelled data Uk, and
error bound �k/64. We consider the following special (but possibly non-optimal) solution for this
LP: ξk,i = ξ(zk,i), ζk,i = ζ(zk,i), γk,i = γ(zk,i). We will now show that this solution is feasible
and has coverage ΦD(Vk, �k/128) plus O(�k) with high probability.
Observe that max(S({I(h(x) = 1, h ∈ H)}, n),S({I(h(x) = −1, h ∈ H)}, n)) ≤ ( end )d. There-
fore, from Lemma 16 and the union bound, with probability 1 − δk/4, the following hold simulta-
neously for all h ∈ H:

��� 1
nk

nk�

i=1

γ(zk,i)− EDγ(x)
��� ≤

�
ln 2

δk

2nk
≤ �k

256
(33)
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��� 1
nk

nk�

i=1

ξ(zk,i)I(h(zk,i) = −1)−ED[ξ(x)I(h(x) = −1)]
��� ≤

�
8(d ln enk

d + ln 24
δk
)

nk
≤ �k

256
(34)

��� 1
nk

nk�

i=1

ζ(zk,i)I(h(zk,i) = +1)− ED[ζ(x)I(h(x) = +1)]
��� ≤

�
8(d ln enk

d + ln 24
δk
)

nk
≤ �k

256

(35)
Adding up Equations (34) and (35),
��� 1
nk

nk�

i=1

[ζ(xi)I(h(xi) = +1)+ξ(xi)I(h(xi) = −1)]−ED[ξ(x)I(h(x) = −1)+ζ(x)I(h(x) = +1))]
��� ≤ �k

128

Thus {(ξ(zk,i), ζ(zk,i)}nk
i=1 is a feasible solution of the linear program of Algorithm 3. Also, by

Equation (33), 1
nk

�nk

i=1 γ(zk,i) ≤ ΦD(Vk,
�k
128 ) +

�k
64 . Thus, the outputs {(ξk,i, ζk,i, γk,i)}nk

i=1 of
the linear program in Algorithm 3 satisfy

φk =
1

nk

nk�

i=1

γk,i ≤
1

nk

nk�

i=1

γ(zk,i) ≤ ΦD(Vk,
�k
128

) +
�k
256

due to their optimality.

Lemma 16. Pick any n ≥ 1, δ ∈ (0, 1), a family F of functions f : Z → {0, 1}, a fixed weighting
function w : Z → [0, 1]. Let Sn be a set of n iid copies of Z. The following holds with probability
at least 1− δ:

��� 1
n

n�

i=1

w(zi)f(zi)− E[w(z)f(z)]
��� ≤

�
16(lnS(F , n) + ln 2

δ )

n

where S(F , n) = maxz1,...,zn∈Z |{(f(z1), . . . , f(zn)) : f ∈ F}| is the growth function of F .

Proof. The proof is fairly standard, and follows immediately from the proof of additive VC bounds.
With probability 1− δ,

sup
f∈F

��� 1
n

n�

i=1

w(zi)f(zi)− Ew(z)f(z)
���

≤ ES∼Dn sup
f∈F

��� 1
n

n�

i=1

w(zi)f(zi)− Ew(z)f(z)
���+

�
2 ln 1

δ

n

≤ ES∼Dn,S�∼Dn sup
f∈F

��� 1
n

n�

i=1

(w(zi)f(zi)− w(z�i)f(z
�
i))

���+

�
2 ln 1

δ

n

≤ ES∼Dn,S�∼Dn,σ∼U({−1,+1}n) sup
f∈F

��� 1
n

n�

i=1

σi(w(zi)f(zi)− w(z�i)f(z
�
i))

���+

�
2 ln 1

δ

n

≤ 2ES∼Dn,σ∼U({−1,+1}n) sup
f∈F

��� 1
n

n�

i=1

σiw(zi)f(zi)
���+

�
2 ln 1

δ

n

≤ 2

�
2 ln(2S(F , n))

n
+

�
2 ln 1

δ

n
≤

�
16(lnS(F , n) + ln 2

δ )

n

Where the first inequality is by McDiarmid’s Lemma; the second inequality follows from Jensen’s
Inequality; the third inequality follows from symmetry; the fourth inequality follows from |A+B| ≤
|A|+ |B|; the fifth inequality follows from Massart’s Finite Lemma.

Lemma 17. Let 0 < 2η ≤ r ≤ 1. Given a hypothesis set V and data distribution D over X ×Y , if
there exist h1, h2 ∈ V such that ρD(h1, h2) ≥ r, then ΦD(V, η) ≥ r − 2η.
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Proof. Let (ξ, ζ, γ) be a triple of functions from X to R3 satisfying the following conditions:
ξ, ζ, γ ≥ 0, ξ + ζ + γ ≡ 1, and for all h ∈ V ,

ED[ξ(x)I(h(x) = +1) + ζ(x)I(h(x) = −1)] ≤ η

Then, in particular, we have:

ED[ξ(x)I(h1(x) = +1) + ζ(x)I(h1(x) = −1)] ≤ η

ED[ξ(x)I(h1(x) = +1) + ζ(x)I(h2(x) = −1)] ≤ η

Thus, by I(h1(x) �= h2(x)) ≤ min(I(h1(x) = −1)+I(h1(x) = −1), I(h2(x) = +1)+I(h2(x) =
+1)), adding the two inequalities up,

ED[(ξ(x) + ζ(x))I(h1(x) �= h2(x))] ≤ 2η

Since
ρD(h1, h2) = EDI(h1(x) �= h2(x)) ≥ r

We have

ED[γ(x)I(h1(x) �= h2(x))] = ED[(1− ξ(x)− ζ(x))I(h1(x) �= h2(x))] ≥ r − 2η

Thus,
ED[γ(x)] ≥ ED[γ(x)I(h1(x) �= h2(x))] ≥ r − 2η

Hence ΦD(V, η) ≥ r − 2η.

Lemma 18. Given hypothesis set V and data distribution D over X × Y , 0 < λ < η < 1, if there
exist h1, h2 ∈ V such that ρD(h1, h2) ≥ 2η − λ, then ΦD(V, η) + λ ≤ ΦD(V, η − λ).

Proof. Suppose (ξ1, ζ1, γ1) are nonnegative functions satisfying ξ1+ζ1+γ1 ≡ 1, and for all h ∈ V ,
ED[ζ1(x)I(h(x) = +1) + ξ1(x)I(h(x) = −1)] ≤ η − λ, and EDγ1(x) = ΦD(V, η − λ). Notice
by Lemma 17,ΦD(V, η − λ) ≥ 2η − λ− 2(η − λ) = λ.

Then we pick nonnegative functions (ξ2, ζ2, γ2) as follows. Let ξ2 = ξ1, γ2 = (1− λ
ΦD(V,η−λ) )γ1,

and ζ2 = 1 − ξ2 − γ2. It is immediate that (ξ2, ζ2, γ2) is a valid confidence rated predictor and
ζ2 ≥ ζ1, γ2 ≤ γ1, EDγ2(x) = ΦD(V, η − λ) − λ. It can be readily checked that the confidence
rated predictor (ξ2, ζ2, γ2) has error guarantee η, specifically:

ED[ζ2(x)I(h(x) = +1) + ξ2(x)I(h(x) = −1)]

≤ ED[(ζ2(x)− ζ1(x))I(h(x) = +1) + (ξ2(x)− ξ1(x))I(h(x) = −1)] + η − λ

≤ ED[(ζ2(x)− ζ1(x)) + (ξ2(x)− ξ1(x))] + η − λ

≤ λ+ η − λ = η

Thus, ΦD(V, η), which is the minimum abstention probability of a confidence-rated predictor with
error guarantee η with respect to hypothesis set V and data distribution D, is at most ΦD(V, η −
λ)− λ.

H Detailed Derivation of Label Complexity Bounds

H.1 Agnostic

Proposition 1. In agnostic case, the label complexity of Algorithm 1 is at most

Õ( sup
k≤�log(1/�)�

φ(2ν∗(D) + �k, �k/256)

2ν∗(D) + �k
(d

ν∗(D)2

�2
ln

1

�
+ d ln2

1

�
)),

where the Õ notation hides factors logarithmic in 1/δ.

Proof. Applying Theorem 5, the total number of labels queried is at most:

c4

�log 1
� ��

k=1

(d ln
φ(2ν∗(D) + �k, �k/256)

�k
+ln(

�log(1/�)� − k + 1

δ
))
φ(2ν∗(D) + �k, �k/256)

�k
(1+

ν∗(D)

�k
)

25



Using the fact that φ(2ν∗(D) + �k, �k/256) ≤ 1, this is

c4

�log 1
� ��

k=1

(d ln
φ(2ν∗(D) + �k, �k/256)

�k
+ ln(

�log(1/�)� − k + 1

δ
))
φ(2ν∗(D) + �k, �k/256)

�k
(1 +

ν∗(D)

�k
)

= Õ




�log 1
� ��

k=1

(d ln
φ(2ν∗(D) + �k, �k/256)

�k
+ ln log(1/�))

φ(2ν∗(D) + �k, �k/256)

2ν + �k
(1 +

ν∗(D)2

�2k
)




≤ Õ


 sup

k≤�log(1/�)�

φ(2ν∗(D) + �k, �k/256)

2ν∗(D) + �k

�log 1
� ��

k=1

(1 +
ν∗(D)2

�2k
)(d ln

1

�
+ ln ln

1

�
)




≤ Õ

�
sup

k≤�log(1/�)�

φ(2ν∗(D) + �k, �k/256)

2ν∗(D) + �k
(d

ν∗(D)2

�2
ln

1

�
+ d ln2

1

�
)

�
,

where the last line follows as �k is geometrically decreasing.

H.2 Tsybakov Noise Condition with κ > 1

Proposition 2. Suppose the hypothesis class H and the data distribution D satisfies (C0,κ)-
Tsybakov Noise Condition with κ > 1. Then the label complexity of Algorithm 1 is at most

Õ( sup
k≤�log(1/�)�

φ(C0�
1
κ

k ,
�k
256 )

�
1
κ

k

�
2
κ−2d ln

1

�
),

where the Õ notation hides factors logarithmic in 1/δ.

Proof. Applying Theorem 5, the total number of labels queried is at most:

c5

�log 1
� ��

k=1

(d ln(φ(C0�
1
κ

k ,
�k
256

)�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φ(C0�

1
κ

k ,
�k
256

)�
1
κ−2

k

Using the fact that φ(C0�
1
κ

k ,
�k
256 ) ≤ 1, we get

c5

�log 1
� ��

k=1

(d ln(φ(C0�
1
κ

k ,
�k
256

)�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φ(C0�

1
κ

k ,
�k
256

)�
1
κ−2

k

≤ Õ


 sup

k≤�log(1/�)�

φ(C0�
1
κ

k ,
�k
256 )

�
1
κ

k

�log 1
� ��

k=1

�
2
κ−2

k d ln
1

�




≤ Õ

�
sup

k≤�log(1/�)�

φ(C0�
1
κ

k ,
�k
256 )

�
1
κ

k

�
2
κ−2d ln

1

�

�

H.3 Fully Agnostic, Linear Classification of Log-Concave Distribution

We show in this subsection that in agnostic case, if H is the class of homogeneous linear classifiers
in Rd, DX is isotropic log-concave in Rd, then, our label complexity bound is at most

O(ln
�+ ν∗(D)

�
(ln

1

�
+

ν∗(D)2

�2
)(d ln

�+ ν∗(D)

�
+ ln

1

δ
) + ln

1

�
ln

�+ ν∗(D)

�
ln ln

1

�
)

Recall by Lemma 14, we have φ(2ν∗(D) + �k, �k/256) ≤ C(ν∗(D) + �k) ln
ν∗(D)+�k

�k
for some

constant C > 0. Applying Theorem 4, the label complexity is

O(

�log 1
� ��

k=1

(d ln(
2ν∗(D) + �k

�k
ln

2ν∗(D) + �k
�k

)+ln(
log(1/�)− k + 1

δ
)) ln

2ν∗(D) + �k
�k

(1+
ν∗(D)2

�2k
))
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This can be simplified to (treating 1 and ν∗(D)2

�2k
separately)

O(

�log 1
� ��

k=1

ln
ν∗(D) + �k

�k
(d ln

ν∗(D) + �k
�k

+ ln
k0 − k + 1

δ
)

+

�log 1
� ��

k=1

ν∗(D)2

�2k
ln

ν∗(D) + �k
�k

(d ln
ν∗(D) + �k

�k
+ ln

k0 − k + 1

δ
))

≤ O(ln
1

�
ln

�+ ν∗(D)

�
(d ln

�+ ν∗(D)

�
+ ln ln

1

�
+ ln

1

δ
) +

ν∗(D)2

�2
ln

�+ ν∗(D)

�
(d ln

�+ ν∗(D)

�
+ ln

1

δ
))

≤ O(ln
�+ ν∗(D)

�
(ln

1

�
+

ν∗(D)2

�2
)(d ln

�+ ν∗(D)

�
+ ln

1

δ
) + ln

1

�
ln

�+ ν∗(D)

�
ln ln

1

�
)

H.4 Tsybakov Noise Conditon with κ > 1, Log-Concave Distribution

We show in this subsection that under (C0,κ)-Tsybakov Noise Condition, if H is the class of homo-
geneous linear classifiers in Rd, and DX is isotropic log-concave in Rd, our label complexity bound
is at most

O(�
2
κ−2 ln

1

�
(d ln

1

�
+ ln

1

δ
))

Recall by Lemma 14, we haveφ(C0�
1
κ

k ,
�k
256 ) ≤ C�

1
κ

k ln 1
�k

for some constant C > 0. Applying
Theorem 5, the label complexity is:

O(

�log 1
� ��

k=1

(d ln(φ(C0�
1
κ

k ,
�k
256

)�
1
κ−2

k ) + ln(
k0 − k + 1

δ
))φ(C0�

1
κ

k ,
�k
256

)�
1
κ−2

k )

This can be simplified to :

O(

�log 1
� ��

k=1

(d ln(�
2
κ−2

k ln
1

�k
) + ln(

k0 − k + 1

δ
))�

2
κ−2

k ln
1

�k
)

≤ O((

�log 1
� ��

k=1

�
2
κ−2

k ) ln
1

�
(d ln

1

�
+ ln

1

δ
))

≤ O(�
2
κ−2 ln

1

�
(d ln

1

�
+ ln

1

δ
))
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