
Supplementary material
Before, we present the proofs of the results stated in this paper, it will be useful to specify standard
quantities and operations used in this paper.

Notation Description
Ia a× a identity matrix
1a a-dimensional vector of all ones
0a×b a× b zero matrix
P(·) Probability of an event
E[·] Expectation of a random quantity
S⊗a a-times Kronecker product of any matrix S with itself
λ(S) The set of all eigenvalues of a symmetric matrix S
λi(S) ith largest eigenvalue of a symmetric matrix S
Â n× nm−1 flattened matrix of any n× n× . . .× n tensor A

Proof of Lemma 4

We begin with computing the expected quantities. Observe that

(Wn)ij = E[Wn] =

n∑
i2,...,im=1

E[(An)ii2...im(An)ji2...im ].

For i 6= j, the two terms in the expectation are independent, and hence

(Wn)ij =

n∑
i2,...,im=1

(An)ii2...im(An)ji2...im = (ÂnÂn
T

)ij ,

while for i = j, (An)2ii2...im = (An)ii2...im , and (Wn)ii =

n∑
i2,...,im=1

(An)ii2...im . So Wn and

ÂnÂn
T

differ only at the diagonal entries, which implies Pn =Wn − ÂnÂn
T

is diagonal with

(Pn)ii =

n∑
i2,...,im=1

(An)ii2...im − (An)2ii2...im =

n∑
i2,...,im=1

Bψiψi2
...ψim

−B2
ψiψi2 ...ψim

using (1). In above summation, we can group nodes in same partition as the terms in the summation
are same for these. Define Sn = ZTn Zn, whose diagonal entries represent cluster sizes. Then

(Pn)ii =

k∑
j2,...,jm=1

(Sn)j2j2 . . . (Sn)jmjm(Bψij2...jm −B2
ψij2...jm)

=

km−1∑
l=1

(S⊗(m−1)n )ll

(
B̂ψil − B̂2

ψil

)
. (8)

Thus, we see that all diagonal entries of Pn are not distinct, rather, there are only k distinct terms
and (Pn)ii = (Pn)jj , whenever ψi = ψj . Similarly, we compute (Dn)ii as

(Dn)ii =

km−1∑
l=1

(S⊗(m−1)n )llB̂ψil

(
1 + ((Sn)ψiψi

− 1)B̂ψil +
∑
j 6=ψi

(Sn)jjB̂jl

)
, (9)

which reveals that (Dn)ii = (Dn)jj , whenever ψi = ψj . Hence, we can define D̃n, P̃n ∈ Rk×k

such that (Dn)ii = (D̃n)ψiψi
and (Pn)ii = (P̃n)ψiψi

, and it is easy to see that DnZn = ZnD̃n and
PnZn = ZnP̃n. With these terms, we characterize the eigenvalues and eigenvectors of Ln.

Let U ∈ Rk×k be orthonormal eigenvector matrix of the matrix D̃−1/2n (Cn + P̃n)D̃−1/2n , i.e.,

D̃−1/2n (Cn + P̃n)D̃−1/2n U = UΛ1,
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with Λ1 being diagonal with entries being eigenvalues of the stated matrix. Then, for µn = S
−1/2
n U ,

LnZnµn = D−1/2n (ÂnÂn
T

+ Pn)D−1/2n Znµn

= D−1/2n (ZnB̂S
⊗(m−1)
n B̂TZTn + Pn)D−1/2n ZnS

−1/2
n U

= D−1/2n ZnB̂S
⊗(m−1)
n B̂TS1/2

n D̃−1/2n U + ZnS
−1/2
n D̃−1/2n P̃nD̃−1/2n U

= ZnS
−1/2
n D̃−1/2n (Cn + P̃n)D̃−1/2n U

= ZnS
−1/2
n UΛ1 = ZnµnΛ1 .

Thus, columns ofZnµn are k eigenvectors ofLn, with corresponding eigenvalues being the diagonal
entries in Λ1. It is also easy to see that columns of Znµn are orthonormal. We note here that

for computing ÂnÂn
T

, we have used some properties of Kronecker products such as (XT )⊗l =

(X⊗l)T and (X⊗l)(X⊗l1 ) = (XX1)⊗l.

We now focus on the remaining (n − k) eigenvalues of Ln. From its definition, one can see Ln is
symmetric positive semi-definite. Hence, its n eigenvectors form an orthonormal basis. Let Y ∈
Rn×(n−k) be such that columns of Y are remaining orthonormal eigenvectors, i.e., LnY = Y Λ2 for
some diagonal matrix of eigenvalues Λ2 ∈ R(n−k)×(n−k). Now, since µn = S

−1/2
n U has rank-k,

hence k columns of Znµn span the range space of Zn. So columns of Y must span the null space of
ZTn . Thus, ZTn Y = 0 and

Y Λ2 = LnY = D−1/2n (ZnB̂S
⊗(m−1)
n B̂TZTn + Pn)D−1/2n Y = D−1n PnY.

Thus, columns of Y are eigenvectors of D−1n Pn and the eigenvalues in Λ2 are a subset of the

diagonal entries ofD−1n Pn, which are (Pn)ii
(Dn)ii

, i = 1, . . . , n, which also same as (P̃n)ii

(D̃n)ii
, i = 1, . . . , k.

Though we know that columns of Znµn are orthonormal eigenvectors of Ln, we still need to ensure
that they are the leading eigenvectors, i.e., the eigenvalues in Λ1 are strictly greater than the ones in
Λ2. It is sufficient to satisfy

λk
(
D̃−1/2n (Cn + P̃n)D̃−1/2n

)
> max

1≤i≤k

(P̃n)ii

(D̃n)ii
,

where λk(·) denotes kth largest eigenvalue, which is in fact smallest eigenvalue in this case. Now we
can consider the matrix on the left as the matrix D̃−1/2n CnD̃−1/2n perturbed by the matrix D̃−1n Pn.
Then by Weyl’s inequality [21], we can say

max
1≤i≤k

∣∣∣λi(D̃−1/2n (Cn + P̃n)D̃−1/2n

)
− λi

(
D̃−1/2n CnD̃−1/2n

)∣∣∣ ≤ λ1(D̃−1n P̃n)

and hence,

λk
(
D̃−1/2n (Cn + P̃n)D̃−1/2n

)
≥ λk

(
D̃−1/2n CnD̃−1/2n

)
− max

1≤i≤k

(P̃n)ii

(D̃n)ii
.

Thus it is enough to satisfy λk
(
D̃−1/2n CnD̃−1/2n

)
> 2 maxi

(P̃n)ii

(D̃n)ii
to ensure that Znµn contain

leading eigenvectors of Ln. Now,

max
1≤i≤k

(P̃n)ii

(D̃n)ii
≤

max
1≤i≤n

(P̃n)ii

Dn
≤ 1

Dn

k∑
j2,...,jm=1

(Sn)j2j2 . . . (Sn)jmjm =
nm−1

Dn
,

where we use (8) along with the fact that (B̂il − B̂2
il) ∈ [0, 1] for all i, l. On the other hand,

λk
(
D̃−1/2n CnD̃−1/2n

)
= min
y∈Rk

yTCny

yT D̃ny
≥ 1

Dn
min
y∈Rk

yTCny

yT y
=
λk(Cn)

Dn
.

Thus, δn =

(
λk(Cn)

Dn
− 2nm−1

Dn

)
> 0 is a sufficient condition for columns of Znµn to be leading

eigenvectors of Ln. The last part in Lemma 4 follows from the structure of Zn. Since, µn is rank-k,
it has k distinct rows, and one can see that Znµn contains the k distinct rows of µn, each unique row
being a representative of a partition.
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Proof of Lemma 5

For a particular n, define β = logn

n
m−1

2

, Γ1 =

n⋂
i=1

{
(Dn)ii ∈ (Dn)ii[1− β, 1 + β]

}
and

Γ2 =

n⋂
i,j=1

{
|(Wn)ij − (Wn)ij | ≤ n

m−1
2 log n

}
. Now,

P

(
‖Ln − Ln‖F >

4n
m+1

2 log n

Dn

)

≤ P

({
‖Ln − Ln‖2F >

(4n
m+1

2 log n

Dn

)2}⋂
Γ1

⋂
Γ2

)
+ P

(
(Γ1

⋂
Γ2)c

)

≤ P


n∑

i,j=1

|(Ln)ij − (Ln)ij |2 >
(4n

m+1
2 log n

Dn

)2⋂Γ1

⋂
Γ2

+ P (Γc1) + P (Γc2)

≤ P

 n⋃
i,j=1

{
|(Ln)ij − (Ln)ij | >

1

n

4n
m+1

2 log n

Dn

}⋂
Γ1

⋂
Γ2

+ P (Γc1) + P (Γc2)

≤
n∑

i,j=1

P

({
|(Ln)ij − (Ln)ij | >

4n
m−1

2 log n

Dn

}⋂
Γ1

⋂
Γ2

)
+ P (Γc1) + P (Γc2)

Defining L̃n = D−1/2n WnD−1/2n , we have |(Ln)ij−(Ln)ij | ≤ |(Ln)ij−(L̃n)ij |+|(L̃n)ij−(Ln)ij |,
and hence,

P

(
‖Ln − Ln‖F >

4n
m+1

2 log n

Dn

)
≤

n∑
i,j=1

P

({
|(Ln)ij − (L̃n)ij | >

2n
m−1

2 log n

Dn

}⋂
Γ1

)

+

n∑
i,j=1

P

({
|(L̃n)ij − (Ln)ij | >

2n
m−1

2 log n

Dn

}⋂
Γ2

)
+ P (Γc1) + P (Γc2) . (10)

Dealing with the second summation in (10) is easy as, on Γ2,

|(L̃n)ij − (Ln)ij | =
1√

(Dn)ii(Dn)jj
|(Wn)ij − (Wn)ij |

≤ n
m−1

2 log n√
(Dn)ii(Dn)jj

≤ n
m−1

2 log n

Dn
.

Thus, the second term in (10) is zero. Now, if Γ3 =
n⋂

i,j=1

{
1√

(Dn)ii(Dn)jj
∈ [1− 2β, 1 + 2β]√

(Dn)ii(Dn)jj

}
,

then we claim that Γ1 ⊂ Γ3 for β ≤ 1
2 . This is obvious because for any case in Γ1, we can write

1√
(Dn)ii(Dn)jj

∈ 1√
(Dn)ii(Dn)jj

[
1

1 + β
,

1

1− β

]
,

where
1

1 + β
= 1− β

1 + β
≥ 1− β ≥ 1− 2β, and

1

1− β
= 1 +

β

1− β
≤ 1 + 2β

for β ≤ 1
2 . Thus, the claim. Note that the condistion β ≤ 1

2 is not restrictive as it always holds for
m > 2, and eventually holds for m = 2. Therefore, on Γ1 ⊂ Γ3

|(Ln)ij − (L̃n)ij | = |(Wn)ij |

∣∣∣∣∣ 1√
(Dn)ii(Dn)jj

− 1√
(Dn)ii(Dn)jj

∣∣∣∣∣
≤ nm−1 2β√

(Dn)ii(Dn)jj
≤ 2n

m−1
2 log n

Dn
,
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using the fact |(Wn)ij | = (ÂnÂ
T
n )ij ≤ nm−1 as the quantity is a summation of nm−1 binary terms.

Thus, we see that the first summation in (10) is also zero.

To compute an upper bound for P(Γc1), we observe

(Dn)ii − (Dn)ii =

n∑
i2,...,im=1

(
(An)ii2...im − (An)ii2...im

)
+
∑
j 6=i

n∑
i2,...,im=1

(
(An)ii2...im(An)ji2...im − (An)ii2...im(An)ji2...im

)
.

In each summation, all the terms are not independent since for any i2 . . . im, all its permutations
give the same random variable. However, we can avoid such repetitions by summing only over
i2 ≤ . . . ≤ im, where for all i2 . . . im, there can be at most (m− 1)! of the same quantity. Hence,

|(Dn)ii − (Dn)ii| ≤ (m− 1)!

∣∣∣∣∣∣
∑

i2≤...≤im

(
(An)ii2...im − (An)ii2...im

)∣∣∣∣∣∣
+ (m− 1)!

∑
j 6=i

∣∣∣∣∣∣
∑

i2≤...≤im

(
(An)ii2...im(An)ji2...im − (An)ii2...im(An)ji2...im

)∣∣∣∣∣∣
where {(An)ii2...im}i2≤...≤im and for each j 6= i {(An)ii2...im(An)ji2...im}i2≤...≤im form indepen-
dent sequences of

(
n+m−2
m−1

)
random variables, where each random variable lies in [0, 1]. Further,

the quantities involving An are exactly expected values of the terms beside them. Thus,

P
(
|(Dn)ii − (Dn)ii| > β(Dn)ii

)
≤ P

 n∑
j=1

∣∣∣∣∣∣
∑

i2≤...≤im

(An)ii2...im(An)ji2...im − E[(An)ii2...im(An)ji2...im ]

∣∣∣∣∣∣ > (Dn)iiβ

(m− 1)!


≤

n∑
j=1

P

∣∣∣∣∣∣
∑

i2≤...≤im

(An)ii2...im(An)ji2...im − E[(An)ii2...im(An)ji2...im ]

∣∣∣∣∣∣ > (Dn)ii log n

(m− 1)!n
m+1

2

 .

We can upper bound each of the above probabilities using Hoeffding’s inequality to get

P
(
|(Dn)ii − (Dn)ii| > β(Dn)ii

)
≤ 2n exp

(
− 2(

n+m−2
m−1

) (Dn)2ii(log n)2

((m− 1)!)2nm+1

)

≤ 2n
1−2(logn)

(
Dn

(m−1)!nm

)2

since Dn ≤ (Dn)ii and
(
n+m−2
m−1

)
≤ nm−1. With this result, we have

P(Γc1) ≤
n∑
i=1

P
(
|(Dn)ii − (Dn)ii| > β(Dn)ii

)
≤ 2n

2−2(logn)
(

Dn
(m−1)!nm

)2

.

We proceed in a similar way to bound P(Γc2) as

P(Γc2) ≤
n∑

i,j=1

P
(
|(Wn)ij − (Wn)ii| > n

m−1
2 log n

)

=

n∑
i,j=1

P

∣∣∣∣∣∣
n∑

i2,...,im=1

(An)ii2...im(An)ji2...im − E[(An)ii2...im(An)ji2...im ]

∣∣∣∣∣∣ > n
m−1

2 log n


≤

n∑
i,j=1

P

∣∣∣∣∣∣
∑

i2≤...≤im

(An)ii2...im(An)ji2...im − E[(An)ii2...im(An)ji2...im ]

∣∣∣∣∣∣ > n
m−1

2 log n

(m− 1)!

 .
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Now, by Hoeffding’s inequality,

P(Γc2) ≤ 2n2 exp

(
− 2(

n+m−2
m−1

) nm−1(log n)2

((m− 1)!)2

)

≤ 2n
2−2 log n

((m−1)!)2 ≤ 2n
2−2(logn)

(
Dn

(m−1)!nm

)2

.

since Dn ≤ nm. Putting these bounds in (10), we have for any n

P

(
‖Ln − Ln‖F >

4n
m+1

2 log n

Dn

)
≤ 4n

2−2(logn)
(

Dn
(m−1)!nm

)2

.

if β ≤ 1
2 . Now, if there exists N such that

(
Dn

(m−1)!nm

)2
≥ 2

logn for all n > N , then

∞∑
n=1

P

(
‖Ln − Ln‖F >

4n
m+1

2 log n

Dn

)
≤ N + 4

∞∑
n=N+1

n2−4 <∞,

and hence, by Borel-Cantelli lemma,

P

({
‖Ln − Ln‖F >

4n
m+1

2 log n

Dn

}
i.o.

)
= 0,

which implies ‖Ln − Ln‖F ≤ 4n
m+1

2 logn
Dn

a.s.

Proof of Lemma 6

We begin by observing that δn defined in Lemma 4 is a lower bound on the eigen-gap λk(Ln) −
λk+1(Ln). By Weyl’s inequality,

max
1≤i≤n

|λi(Ln)− λi(Ln)| ≤ ‖Ln − Ln‖2 ≤ ‖Ln − Ln‖F = O

(
(log n)3/2

n
m−1

2

)
a.s.

under the condition on Dn stated in Lemma 5. Thus if (logn)3/2

n
m−1

2

= o(δn) (condition in Lemma 6),

then

max
1≤i≤n

|λi(Ln)− λi(Ln)| = o(δn) = o(λk(Ln)− λk+1(Ln)) a.s.

Define an interval In =
[
1
2 (λk(Ln) + λk+1(Ln)), 1

]
, then

min{|λ(Ln) ∩ In − Icn|} = min{|λ(Ln) ∩ Icn − In|} ≥
δn
2
,

where the above minimum is the minimum absolute difference between any two elements taken from
either sets. From above, we see that this quantity decays much slowly than the difference between
the eigenvalues of Ln and Ln. Thus, eventually we can argue

|{λ(Ln) ∩ In}| = |{λ(Ln) ∩ In}| = k a.s.

Hence, by the modified version of Davis-Kahan theorem [6, Theorem 2.1], we have that there exists
orthonormal matrix On ∈ Rk×k such that

‖Xn − ZnµnOn‖F ≤
2‖Ln − Ln‖F

1
2 (λk(Ln)− λk+1(Ln))

≤ 4‖Ln − Ln‖F
δn

≤ 16n
m+1

2 log n

δnDn
a.s.

Here, On can be computed as follows. Let µTnZ
T
nXn ∈ Rk×k has the singular value decomposition

as µTnZ
T
nXn = UΣV T , then one can show [6] that On = UV T .
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Proof of Lemma 8

This proof is stated for completeness, but it can be found as part of [6, Theorem 3.1]. Let C ∈ Rn×k
contain the k centroids in its rows, i.e., CT = [cT1 . . . c

T
n ]. Observe that one can write C from the

objective of k-means algorithm as

C = argmin
C′
‖Xn − C ′‖2F ,

where the minimum is taken over all n × k matrices with no more than k distinct rows. Since,
ZnµnOn also has k distinct rows, hence ‖Xn − C‖F ≤ ‖Xn − ZnµnOn‖F . Thus,

‖C − ZnµnOn‖F ≤ ‖Xn − ZnµnOn‖F + ‖Xn − C‖F ≤ 2‖Xn − ZnµnOn‖F
One the other hand, we can write the number of misclustered nodes as

|Mn| =
∑
i∈Mn

1 ≤ 2Sn
∑
i∈Mn

‖ci − ziµnOn‖22

from the definition of Mn. An upper bound can be found by summing over all i = 1, . . . , n. So,

|Mn| ≤ 2Sn‖C − ZnµnOn‖2F ≤ 8Sn‖Xn − ZnµnOn‖2F .

Proof of Corollary 2

We begin by computing the eigenvalues of Cn. Observe that Sn = n
k Ik, and hence

Cn = S1/2
n B̂S⊗(m−1)n B̂TS1/2

n =
nm

km
B̂B̂T ,

where B̂ can be written, after rearranging the columns, as

B̂ = q1k1km−1 + (p− q)[Ik 0k×km−1 ].

Thus, we can write

Cn =
nm

km
(
km−1q21k1

T
k + 2q(p− q)1k1Tk + (p− q)2Ik

)
.

From above one can easily see that the leading eigenvector of Cn is 1k with eigenvalue

λ1(Cn) = nmq2 +
2nmq(p− q)

km−1
+
nm(p− q)2

km
,

while all the other eigenvalues, whose eigenvectors are orthogonal to 1k, are

λ2(Cn) = . . . = λk(Cn) =
nm(p− q)2

km
.

Moreover Dn = Dn ∈ [q2nm, nm], which shows that second condition in Theorem 1 is satisfied
beyond some N . Also,

δn =
λk(Cn)− 2nm−1

Dn
≥

nm

km (p− q)2 − 2nm−1

nm
=

1

km

(
(p− q)2 − 2km

n

)
.

Whenever, k ≤
(
n(p−q)2

4

) 1
m

, we have δn ≥ (p−q)2
2km > 0. Thus, if k = O(n

1
2m (log n)−1) = o(n

1
m ),

then δn > 0 eventually holds. Finally, for all m ≥ 2,

(log n)3/2 = o

(
(log n)m

n1/2
n

m−1
2

)
= o

(
n

m−1
2

km

)
= o(δnn

m−1
2 )

satisfying the last condition in Theorem 1. Hence, we can use the bound on |Mn| to get

|Mn| = O

(
n
k (log n)2nm+1

(p−q)4
4k2m q4n2m

)
= O

(
k2m−1(log n)2

nm−2

)
= O

(
(log n)3−2m

nm−3+
1

2m

)
a.s.

For m = 2,
|Mn|
n

= O

(
n−1/4

log n

)
, which eventually vanishes a.s., whereas for m ≥ 3, |Mn| =

o

(
1

nm−3(log n)m

)
a.s. proving consistency of the method in this case.
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Proof of Corollary 3

Note here that Cn, Sn ∈ R2×2 with (Sn)11 = s and (Sn)22 = n−s. In matching problem, s =
√
n,

but we will keep the proof general. Now,

λ2(Cn) = min
y∈Rk

yTCny

yT y
= min
y∈Rk

yT B̂S
⊗(m−1)
n B̂T y

yTS−1n y
≥ s min

y∈Rk

yT B̂S
⊗(m−1)
n B̂T y

yT y

since we have s < (n− s). Observing than B̂ij ≥ q for all i, j, we can write the numerator as

yT B̂S⊗(m−1)n B̂T y =

2m−1∑
j=1

(S⊗(m−1)n )jj

(
2∑
i=1

B̂ijyi

)2

≥ q2(yT y)

2m−1∑
j=1

(S⊗(m−1)n )jj ,

where the summation equals nm−1. Thus, λ2(Cn) ≥ q2snm−1. So to ensure δn > 0, we need to

satisfy s >
2

q2
Dn
Dn

.

Now, using (9), we can write

Dn = (D̃n)11 = smp(1 + (s− 1)p+ (n− s)q) + γ = smp(1− p+ η) + γ,

and Dn = (D̃n)22 = smq(1 + (n− s− 1)q + sq) + γ = smq(1− q + η) + γ,

where η = nq + s(p− q) and γ =

2m−1∑
j=2

(S⊗(m−1)n )jjq(1− q + nq).

Observe that both γ, η > 0. Using the relation a+b
c+d ≤ max{ac + b

d}, which holds when all quantities
are positive, we can write

Dn
Dn
≤ max

{
smp(1− p+ η)

smq(1− q + η)
,
γ

γ

}
≤ max

{
p

q
max

{
1− p
1− q

, 1

}
, 1

}
.

Since, p > q, i.e., (1− p) < (1− q), we have
Dn
Dn
≤ p

q
. Hence, for s ≥ 3p

q3
,

δn =
nm−1

Dn

(
q2s− 2

Dn
Dn

)
≥ nm−1

Dn

(
q2

3p

q3
− 2

p

q

)
≥ p

nq
> 0

since Dn ≤ nm, thereby satisfying first condition of Theorem 1. Also, it is easy to see that Dn ≥
q2nm which implies second condition holds eventually. Further, since (log n)3/2 = o(n

m−3
2 ) =

o(δnn
m−1

2 ) for all m > 4, we can use bound in Theorem 1 to claim

|Mn| = O

(
(log n)2nm+2

p2

q2n2n2m

)
= O

(
(log n)2

nm−4

)
a.s.

showing that the approach is consistent for all m > 4 when the size of the strongly connected
component is at least 3p

q3 .

Above is true in the matching problem as s =
√
n. Here, we can say eventually

δn ≥
nm−1

Dn
q2s

2
≥ q2

2n1/2

Hence, for all m ≥ 3,

(log n)3/2 = o(n
m−2

2 ) = o(δnn
m−1

2 ).

We cannot satisfy the above condition for m = 2, and hence, we cannot conclude anything for
m = 2. However, for m ≥ 3, all conditions of Theorem 1 are satisfied and we can claim

|Mn| = O

(
(log n)2nm+2

q4

4nn
2m

)
= O

(
(log n)2

nm−3

)
a.s.,

which directly implies that for m = 3,
|Mn|
n
→ 0 a.s., and for m > 3, algorithm is consistent as

|Mn| → 0 a.s.
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