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1 Proof of theorem 1

As discussed in the paper, the proof of theorem 1 directly follows from equation (7) and (8) in the
main text whose detailed derivations follow.

Eqk [log p(y|f)] =
∫
qk(f |λk) log p(y|f)df (1)

=

N∑
n=1

∫
qk(f |λk) log p(yn|fn•)df (2)

=

N∑
n=1

∫
qk(n)(fn•|λk(n)) log p(yn|fn•)dfn•, (3)

=

N∑
n=1

Eqk(n)
log p(yn|fn•) (4)

where the last equality is an application of the following identity,∫
p(x, z)h(x)dxdz =

∫
h(x)p(x)

∫
p(z|x)dzdx =

∫
p(x)h(x)dx (5)

for any joint distribution p(x, z) and arbitrary function h(x).

The gradients corresponding to fn• are thus given by

∇λk(n)
Eqk log p(y|f) = ∇λk(n)

∫
qk(n)(fn•|λk(n)) log p(yn|fn•)dfn• (6)

=

∫
∇λk(n)

qk(n)(fn•|λk(n)) log p(yn|fn•)dfn• (7)

=

∫
qk(n)(fn•|λk(n))∇λk(n)

log qk(n)(fn•|λk(n)) log p(yn|fn•)dfn• (8)

=Eqk(n)
∇λk(n)

log qk(n)(fn•|λk(n)) log p(yn|fn•) (9)

≈ 1

S

S∑
s=1

∇λk(n)
log qk(n)(f

s
n•|λk(n)) log p(yn|fsn•), (10)

where fsn• ∼ qk(n)(fn•|λk(n)). Here we have used the fact that ∇xf = f∇x log f for any nonneg-
ative function f(x).
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2 Proof of theorem 2

Since this proof is for the case of mixture with K = 1, we simply denote the posterior mean and
variance as m and S, respectively. From the expression of the ELBO,

L(m,S) = Eq[− log q(f |λ)] + Eq[log p(f)] + Eq[log p(y|f)], (11)

the gradients in (34), (35), and equation (4) we obtain the gradients of the ELBO w.r.t S:

∇SL(m,S) =

N∑
n=1

∇SEq(n)
log p(yn|fn•) +

1

2
S−1 − 1

2
K−1. (12)

Using the fact that S is a block diagonal covariance matrices and q(n) is a Gaussian with diagonal
covariance we can take the gradients w.r.t Sj , the covariances corresponding to the latent functions,
which leads to

∇SjL(m,S) =

N∑
n=1

∇SjEqj(n)
log p(yn|fn•) +

1

2
S−1j −

1

2
K−1j , (13)

where qj(n) is the marginal posterior corresponding to the latent function j and data point n. It
is easy to see that the gradients of the likelihood terms w.r.t Sj is zero everywhere except on the
diagonal. Denoting this diagonal as λj with elements λjn = ∇(Sj)n,n

Eqj(n)
log p(yn|fn•) we can

rewrite the gradient as

∇SjL(m,S) = Λj +
1

2
S−1j −

1

2
K−1j , (14)

where Λj is the diagonal matrix with diagonal λj . Setting the above to zero to derive the optimum
condition we get,

Sj =
(
K−1j − 2Λj)

)−1
. (15)

This proves that the full covariance of the posterior can be parametrized with {λj}, thus requiring
only O(N) parameters for each latent function and hence O(QN) in total.

3 Proof of theorem 3

First we review Rao-Blackwellization [1], which is also known as partial averaging or conditional
Monte Carlo. Suppose we want to estimate V = E[h(X,Y)] where (X,Y) is a random variable
with probability density p(x,y) and h(X,Y) is a random variable that is a function of X and Y. It
is easy to see that

E[h(X,Y)] =

∫
p(x,y)h(x,y)dxdy (16)

=

∫
p(y)p(x|y)h(x,y)dxdy (17)

=Ey[Ex|y[h(X,Y)|Y]︸ ︷︷ ︸
ĥ(Y)

] (18)

and, from the conditional variance formula,

var[ĥ(Y)] < var[h(X,Y)]. (19)

Therefore when ĥ(Y) is easy to compute, it can be used to estimate V with a lower variance than
the original estimator. When p(x,y) = p(x)p(y), the ĥ(Y) is simplified to

ĥ(Y = y) =

∫
p(x)h(x,y)dx = Ex[h(X,Y)|Y]. (20)

We apply Rao-Blackwellization to our problem with fn• playing the role of the conditioning variable
Y and f(−n) playing the role of X, where f(−n) is f excluding fn•.
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First, we express the gradient of λk(n) as an expectation by interchanging the integral and gradient
operators giving

∇λk(n)
Eqk log p(y|f) =Eqk∇λk(n)

log qk(f |λ) log p(y|f). (21)

The Rao-Blackwellized estimator is thus

ĥ(fn•) =

∫
q(f(−n))∇λk(n)

log qk(f |λ) log p(y|f)df(−n) (22)

=

∫
q(f(−n))∇λk(n)

log qk(n)(fn•|λk(n)) log p(y|f)df(−n) (23)

=

(
∇λk(n)

log qk(n)(fn•|λk(n))

)∫
q(f(−n)) log p(yn|fn•)df(−n) (24)

+

(
∇λk(n)

log qk(n)(fn•|λk(n))

)∫
q(f(−n)) log p(y−n|f(−n))df(−n) (25)

=

(
∇λk(n)

log qk(n)(fn•|λk(n))

)(
log p(yn|fn•) + C

)
, (26)

where C is a constant w.r.t fn•. This gives the Rao-Blackwellized gradient,

∇λk(n)
Eqk log p(y|f) =Eqk(n)

ĥ(fn•) (27)

=Eqk(n)
∇λk(n)

log qk(n)(fn•|λk(n)) log p(yn|fn•), (28)

which is exactly the gradient we obtained in (9). To arrive at the last equality, we used the fact that
Eq∇ log q = 0 for any q.

Remark This Rao-Blackwellization is only applicable to the case with diagonal covariance as it
satisfies the independent condition (i.e. p(x,y) = p(x)p(y).

4 Derivation of Eq[log p(f)]

The negative cross-entropy can be computed as:

Eq[log p(f)] =

K∑
k=1

1

K

∫
qk(f |mk,Sk) log p(f)df (29)

=

K∑
k=1

Q∑
j=1

1

K

∫
N (f•j ;mkj ,Skj) logN (f•j ;0,Kj)df•j (30)

=

K∑
k=1

Q∑
j=1

1

K

[
logN (mkj ;0,Kj)−

1

2
tr (K−1j Skj)

]
(31)

=− 1

2K

K∑
k=1

Q∑
j=1

[
N log 2π + log |Kj |+ mT

kjK
−1
j mkj + tr (K−1j Skj)

]
(32)
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5 Gradients of −KL[q(f |λ)||p(f)] w.r.t the variational parameters

Let Lent = Eq[− log q(f |λ)] and Lcross = Eq[log p(f)] then the gradients are given as following.

∇mk
Lcross =−

1

K
K−1mk (33)

∇mk
Lent =

1

K

K∑
l=1

1

K
(
Nkl

zk
+
Nkl

zl
)(Sk + Sl)

−1(mk −ml)

∇Sk
Lcross =−

1

2K
K−1 (34)

∇Sk
Lent =

1

2K

K∑
l=1

1

K
(
Nkl

zk
+
Nkl

zl
)

[
(Sk + Sl)

−1 − (Sk + Sl)
−1(mk −ml)(mk −ml)

T (Sk + Sl)
−1)

]
(35)

where Nkl = N (mk;ml,Sk + Sl) and zk =
∑K

l=1
1
KNkl. Since the covariance matrices Sk

have block structure, care should be taken in implementation such that its inversion can be done by
inverting its blocks, i.e. the covariance corresponding to individual latent functions.

6 Predictive mean and variance by a mixture posterior

Using the mixture of Gaussians posterior, the predictive distribution for the new test points x∗ can
be approximated by

p(Y∗|x∗) =
1

K

K∑
k=1

∫
p(Y∗|f∗)

∫
p(f∗|f)qk(f)dfdf∗︸ ︷︷ ︸

pk(Y∗|x∗)

, (36)

where pk(Y∗|x∗) is the predictive distribution by component k. If this distribution has predictive
mean µk∗ and variance σ2

k∗, the mean and variance of p(Y∗|x∗) are given by:

E[Y∗] =
1

K

K∑
k=1

µk∗, (37)

Var[Y∗] =
1

K

K∑
k=1

σ2
k∗ +

1

K

K∑
k=1

µ2
k∗ − E[Y∗]2, (38)

In other words, the predictive mean is the average of the prediction by each posterior component
and the variance is the average of the variances by the components plus the variance of the mean
prediction.
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