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1 Characterizations of Ωk,q and its dual.

Lemma 1. The (k, q)-SVD is not necessarily unique, and the factors are not necessarily orthogonal.

Proof of Lemma 1. Consider the case of the (2, 2)-SVD for the matrix Z = 11> ∈ R3. It is
impossible to write Z as the sum of two (2, 2)-sparse matrices, because it would then have at most
8 non-zero coefficients. But we have the decomposition.(

1 1 1
1 1 1
1 1 1

)
=

(
2 1 0
1 1

2 0
0 0 0

)
+

(
0 0 1
0 1

2 1
0 1 2

)
−
(

1 0 −1
0 0 0
−1 0 1

)
,

which shows that the (2, 2)-rank of Z is 3. We see that the three rank-1 matrices in this decompo-
sition are not orthogonal. In addition, given that Z is invariant by any of the 6 permutations of the
rows and any of the 6 permutations of the columns, Z admits at least 36 different (2, 2)-SVDs.

Lemma 2. For any Z,K ∈ Rm1×m2 , and denoting Gmk = {I ⊂ [[1,m]] : |I| = k}, we have

Ωk,q(Z) = inf

 ∑
(I,J)∈Gm1

k ×G
m2
q

‖Z(I,J)‖∗ : Z =
∑
(I,J)

Z(I,J) , supp(Z(I,J)) ⊂ I × J

 , (1)

and
Ω∗k,q(K) = max

{
‖KI,J‖op : I ∈ Gm1

k , J ∈ Gm2
q

}
. (2)

Proof of Lemma 2. We first show (2) from the definition of the dual norm Ω∗k,q:

Ω∗k,q(K) = max
Z
{〈K,Z〉 : Ωk,q(Z) ≤ 1}

= max
a,b
{〈K, ab>〉 : ab> ∈ Ak,q}

= max
a,b
{a>Kb : ‖a‖0 ≤ k , ‖b‖0 ≤ q , ‖a‖2 = ‖b‖2 = 1}

= max
I,J

{
‖KI,J‖op : I ∈ Gm1

k , J ∈ Gm2
q

}
,

where the second equality follows from the fact that the maximization of a linear form over a
bounded convex set is attained at one of the extreme points of the set.

Given this closed-form expression of the dual norm, we prove the variational formulation (1) for the
primal norm Ωk,q . Consider the function Ω̌k,q defined by

Ω̌k,q(Z) = inf

{ ∑
(I,J)∈Gm1

k ×G
m2
q

‖Z(I,J)‖∗ : Z =
∑
(I,J)

Z(I,J) , supp(Z(I,J)) ⊂ I × J
}
.

Since Ω̌k,q(Z) is defined as the infimum of a jointly convex function ofZ and (Z(I,J))I∈Gm1
k , J∈Gm2

q

obtained by minimizing w.r.t. to the latter variables, it is a an elementary fact from convex analysis
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that Ω̌k,q is a convex function ofZ. It is also symmetric and positively homogeneous, which together
with convexity prove that Ω̌k,q defines a norm. We can compute its dual norm as

Ω̌∗k,q(K) = max
Z

{
〈K,Z〉 : Ω̌k,q(Z) ≤ 1

}
= max

(Z(IJ))(I,J)

〈K,∑
(I,J)

Z(IJ)〉 :
∑
(I,J)

‖Z(IJ)‖∗ ≤ 1 , supp(Z(IJ)) ⊂ I × J


= max

(Z(IJ))(I,J),(η(IJ))(I,J)

∑
(I,J)

η(I,J)〈KI,J , Z
(IJ)〉 : ‖Z(IJ)‖∗ ≤ η(IJ),

∑
(I,J)

η(IJ) ≤ 1


= max

(η(IJ))(I,J)

∑
(I,J)

η(IJ)‖KI,J‖op :
∑
(I,J)

η(IJ) ≤ 1


= max

(I,J)
‖KI,J‖op

= Ω∗k,q(K)

This proves that Ωk,q(K) = Ω̌k,q(K) since a norm is uniquely characterized by its dual norm.

2 Slow-rate bounds

2.1 Proof of Lemma 2 of the main manuscrit

We prove first a more general result. Let Ω : Rm1×m2 → R be any matrix norm, and
X : Rm1×m2 → Rn be a linear map. We denote by Xi (i = 1, . . . , n) the i-th design matrix
defined by X (Z)i = 〈Z,Xi〉. For a given matrix Z? ∈ Rm1×m2 , assume we observe:

Y = X (Z?) + ε , (3)

where ε ∈ Rn is a centered random noise vector. We consider the following estimator of Z?:

ẐΩ ∈ arg min
Z

1

2n
‖Y −X (Z)‖22 + λΩ(Z) , (4)

for some value of the parameter λ > 0. The following result generalizes standard results known for
the `1 and trace norms (e.g., Theorem 1 in [9] to any norm Ω.

Theorem 1. If λ ≥ 1
nΩ∗(

∑n
i=1 εiXi) then

1

2n
‖X (ẐΩ − Z?)‖22 ≤ inf

Z

{
1

2n
‖X (Z − Z?)‖22 + 2λΩ(Z)

}
. (5)

Proof of Theorem 1. By definition of ẐΩ (4), we have for all Z:

1

2n
‖Y −X (ẐΩ)‖22 ≤

1

2n
‖Y −X (Z)‖22 + λ

(
Ω(Z)− Ω(ẐΩ)

)
,

which after developing the squared norm and replacing Y by (3) gives

1

2n
‖X (ẐΩ)‖22−

1

n
〈X (Z?)+ε,X (ẐΩ)〉 ≤ 1

2n
‖X (Z)‖22−

1

n
〈X (Z?)+ε,X (Z)〉+λ

(
Ω(Z)− Ω(ẐΩ)

)
,

and therefore

1

2n
‖X (ẐΩ − Z?)‖22 ≤

1

2n
‖X (Z − Z?)‖22 +

1

n
〈ε,X (ẐΩ − Z)〉+ λ

(
Ω(Z)− Ω(ẐΩ)

)
. (6)

2



Now, using the fact (true for any norm) that Ω(A)Ω?(B) ≥ 〈A,B〉 for any vectors A,B ∈ Rn, and
taking λ ≥ 1

nΩ∗(
∑n
i=1 εiXi), we can upper bound the second term of the right-hand side of (6) by:

1

n
〈ε,X (ẐΩ − Z)〉 =

1

n

n∑
i=1

εiX (ẐΩ − Z)i

=
1

n

n∑
i=1

εi〈Xi, ẐΩ − Z〉

=
1

n
〈
n∑
i=1

εiXi, ẐΩ − Z〉

≤ 1

n
Ω?

(
n∑
i=1

εiXi

)
Ω
(
ẐΩ − Z

)
≤ λΩ

(
ẐΩ − Z

)
Plugging this bound back in (6) finally gives

1

2n
‖X (ẐΩ − Z?)‖22 ≤

1

2n
‖X (Z − Z?)‖22 + λΩ(ẐΩ − Z) + λ

(
Ω(Z)− Ω(ẐΩ)

)
≤ 1

2n
‖X (Z − Z?)‖22 + 2λΩ(Z) ,

the last inequality being due to the triangle inequality.

Lemma 3. If λ ≥ σΩ∗(G) then
∥∥ẐλΩ − Z?∥∥2

F
≤ 4λΩ(Z?) .

Proof of Lemma 3. This is a simple consequence of Theorem 1 by taking for X the identity map,
upper bounding the right-hand side of (5) by the value 2λΩ(Z?) it takes for Z = Z?, and replacing
λ by λ/n.

2.2 Proof of Corollary 1 of the main manuscript

Corollary 1 of the main manuscript is a direct application of Equation 10 therein, once we have the
following upper bounds on the dual norms of a random noise matrix G:

Proposition 1. LetG ∈ Rm1×m2 be a random matrix with entries i.i.d. fromN (0, 1). The expected
dual norm of G for the (k, q)-trace norm, the `1 norm and the trace norm is respectively bounded
by:

EΩ∗k,q(G) ≤ 4

(√
k log

m1

k
+ 2k +

√
q log

m2

q
+ 2q

)
,

E ‖G‖∗1 ≤
√

2 log(m1m2) ,

E ‖G‖∗? ≤
√
m1 +

√
m2 .

(7)

To prove Proposition 1, let us start by the following

Lemma 4. Let G be a m1 ×m2 random matrix with i.i.d. normally distributed entries. Then

E max
I∈Gk,J∈Gq

‖GI,J‖2op ≤ 16

[(
k log

m1

k
+ q log

m2

q

)
+ 2(k + q)

]
.

Proof of Lemma 4. For a random matrix H ∈ Rk×q with i.i.d. standard normal entries, we have the
following concentration inequality [5]: for s ≥ 0,

P[‖H‖op >
√
k +
√
q + s] ≤ exp(−s2/2) . (8)
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Denoting R = 2
(√

k +
√
q
)

, and f(x) = etx
2

, we have the sequence of inequalities

E exp(t‖H‖2op) = Ef(‖H‖op)

=

∫ ∞
1

P[f(‖H‖op) > h] dh

≤
∫ 1+f(R)

1

1 dh+

∫ ∞
1+f(R)

P[f(‖H‖op) > h]dh

= f(R) +

∫ ∞
0

P[‖H‖op > f−1(f(R) + 1 + ζ)]dζ

≤ f(R) +

∫ ∞
0

P[‖H‖op >
1

2
R+

1

2
f−1(1 + ζ)]dζ (9)

≤ f(R) +

∫ ∞
0

8ts exp
(
−s2/2 + 4ts2

)
ds (10)

≤ f(R) + 4
t

1
2 − 4t

(11)

≤ exp(8t(k + q)) +
8t

1− 8t
,

where the change of variable used in (10) is 1 + ζ = f(2s) = e4ts2 , (11) is true for any t < 1
8 , and

(9) follows from the property of the inverse f−1(z) =
√

log(z)
t that it is strictly increasing on [1;∞)

and sandwiched via

1

2

{
f−1(z) + f−1(z′)

}
≤ f−1(z + z′) ≤ f−1(z) + f−1(z′) . (12)

Take now t = 1
8 −

1
8(k+q) . Since k + q ≥ 2, we have 1/16 ≤ t < 1/8. Therefore,

Emax
I,J
‖GI,J‖2op =

1

t
log

{
exp tEmax

I,J
‖GI,J‖2op

}
≤ 1

t
log

{
E exp(tmax

I,J
‖GI,J‖2op)

}
≤ 1

t
log

{∑
I,J

E exp(t‖GI,J‖2op)

}

≤ 1

t
log

{(
m1

k

)(
m2

q

)
E exp(t‖H‖2op)

}
≤ 1

t
log

{(e m1

k

)k (e m2

q

)q (
e8t(k+q) +

8t

1− 8t

)}
=

1

t

[(
k log

m1

k
+ q log

m2

q

)
+ k + q + 8t(k + q) + log

(
1 +

8t

1− 8t
e−8t(k+q)

)]
≤ 16

[(
k log

m1

k
+ q log

m2

q

)
+ k + q

]
+ 8(k + q) +

8

1− 8t
e−8t(k+q)

≤ 16

[(
k log

m1

k
+ q log

m2

q

)
+ 2(k + q)

]
,

where in the last inequality we simply used 8/(1− 8t) = 8(k + q) and exp(−8t(k + q)) ≤ 1.
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Proof of Proposition 1. The bounds on the dual norm of the `1 and trace norms are standard, so we
just focus on the bound for Ωk,q . Using Jensen’s inequality, we easily get from Lemma 4:

EΩ∗k,q(G) = E max
I∈Gk,J∈Gq

‖GI,J‖op

≤
(
E max
I∈Gk,J∈Gq

‖GI,J‖2op

) 1
2

≤ 4

[(
k log

m1

k
+ q log

m2

q

)
+ 2(k + q)

] 1
2

≤ 4

(√
k log

m1

k
+ 2k +

√
q log

m2

q
+ 2q

)
.

3 Results on statistical dimensions

Powerful results from asymptotic geometry have recently been used by [4, 12, 1, 6] to quantify the
statistical power of a convex nonsmooth regularizer used as a constraint or penalty. These results
rely essentially on the fact that if the cone of descent directions of the regularizer at a point of
interest Z is thiner, then the regularizer is more efficient at solving problems of denoising, demixing
and estimation of Z. The gain in efficiency can be quantified by appropriate measures of width of
the tangent cone such as the Gaussian width of its intersection with a unit Euclidean ball [4], or
the closely related concept of statistical dimension of the cone, proposed by [1]. The aim of this
appendix is to prove the upper bound on the statistical dimension Ωk,q given in Proposition 1 of the
main text.

3.1 The statistical dimension and its properties

Let us first briefly recall what the statistical dimension of a convex regularizer Ω : Rm1×m2 → R
refers to, and how it is related to efficiency of the regularizer to recover a matrix Z ∈ Rm1×m2 . For
that purpose, we first define the tangent cone TΩ(Z) of Ω at Z as the closure of the cone of descent
directions, i.e.,

TΩ(Z):=
⋃
τ>0

{H ∈ Rm1×m2 : Ω(Z + τH) ≤ Ω(Z)} .

The statistical dimension S(Z,Ω) of Ω at Z can then be formally defined as

S(Z,Ω):=E
[∥∥ΠTΩ(Z)(G)

∥∥2

F

]
,

where G is a random matrix with i.i.d. standard normal entries and ΠTΩ(Z)(G) is the orthogonal
projection of G onto the cone TΩ(Z). The statistical dimension is a powerful tool to quantify the
statistical performance of a regularizer in various contexts, as the following non-exhaustive list of
results shows.

• Exact recovery with random measurements. Suppose we observe y = X (Z?) where
X : Rm1×m2 → Rn is a random linear map represented by random design matrices Xi

i = 1, . . . , n having iid entries drawn fromN (0, 1/n). Then [4, Corollary 3.3] shows that

Ẑ = arg min
Z

Ω(Z) s.th. X (Z) = y (13)

is equal to Z? with overwhelming probability as soon as n ≥ S(Z?,Ω). In addition [1,
Theorem II] show that a phase transition occurs at n = S(Z?,Ω) between a situation where
recovery fails with large probability (for n ≤ S(Z?,Ω)− γ√m1m2, for some γ > 0) to a
situation where recovery works with large probability (for n ≥ S(Z?,Ω) + γ

√
m1m2).

• Robust recovery with random measurements. Suppose we observe y = X (Z?) + ε
where X is again a random linear map, and in addition the observation is corrupted by a
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random noise ε ∈ Rn. If the noise is bounded as ‖ε‖2 ≤ δ, then [4, Corollary 3.3] show
that

Ẑ = arg min
Z

Ω(Z) s.th. ‖X (Z)− y‖2 ≤ δ (14)

satisfies ‖Ẑ − Z?‖2 ≤ 2δ/η with overwhelming probability as soon as n ≥ (S(Z?,Ω) +
3
2 )/(1− η)2.

• Denoising. Assume a collection of noisy observations Xi = Z? + σεi for i = 1, · · · , n
is available where εi ∈ Rm1×m2 has i.i.d. N (0, 1) entries, and let Y = 1

n

∑n
i=1Xi denote

their average. [3, Proposition 4] prove that

Ẑ = arg min
Z

‖Z − Y ‖F s.th. Ω(Z) ≤ Ω(Z?) (15)

satisfies E‖Ẑ − Z?‖2F ≤ σ2

n S(Z?,Ω).

• Demixing. Given two matrices Z?, V ? ∈ Rm1×m2 , suppose we observe y = U(Z?)+V ?

where U : Rm1×m2 7→ Rm1×m2 is a random orthogonal operator. Given two convex
functions Γ,Ω : Rm1×m2 → R, [1, Theorem III] show that

(Ẑ, V̂ ) = arg min
(Z,V )

Ω(Z) s.th. Γ(V ) ≤ Γ(V ?) and y = U(Z) + V

is equal to (Z?, V ?) with probability at least 1− η provided that

S(Z?,Ω) + S(V ?,Γ) ≤ m1m2 − 4

√
m1m2 log

4

η
.

Conversely if S(Z?,Ω) +S(V ?,Γ) ≥ m1m2 + 4
√
m1m2 log 4

η , the demixing fails with
probability at least 1− η.

3.2 Supporting subspace, projections and subgradients

The main argument of the proof will be presented in section 3.3. It requires to construct an element
of the normal cone, the cone that is polar1 to the tangent cone, and which is also the conic hull of
the subgradient. It is therefore important to characterize this normal cone, the subgradient and in
particular some subspaces related to them.

At a sparse vector, a norm inducing sparsity is non-differentiable, and so the normal cone is not
reduced to a single ray. However, a key property is that in general, the normal cone is not full
dimensional either, but rather contained in a subspace of low codimension, say s. This is due to
the fact that the projection of the subgradient on a subspace of dimension s associated with the
support of the sparse vector that we will call the supporting subspace is a singleton. This supporting
subspace (although not named in general) is well-known and has been exploited for the analysis of
so-called decomposable norms.

In the case of the `1 norm the supporting subspace is simply the one spanned by the non-zero
coordinates. In the case of the trace norm, computed at a matrix A ∈ Rm1×m2 the supporting
subspace, that we will denote span(A), is the range of the linear application (L,R) 7→ LA +
AR ∈ Rm1×m2 . In the case of Ωk,q , computed at an atom A of Ak,q , the supporting subspace will
combine some properties of the supporting subspaces of the `1-norm and of the trace norm, since put
informally, it can be defined the range of a restriction of the linear application (L,R) 7→ LA+AR
where L and R are restricted to have the same column and row supports as A.

More formally, let span(A) denote the subspace of Rm1×m2 defined by

span(A) =
{
LA+AR,L ∈ Rm1×m1 , R ∈ Rm2×m2

}
,

and by PA and P⊥A the orthogonal projectors onto span(A) and span⊥(A) respectively. We have
the closed-form expressions P⊥A (Z) = (Idm1 − UU>)Z(Idm2 − V V >) where A = UΣV > is the
singular value decomposition of A.

1see [13] chapter 14.
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Consider now the subspace
spanI,J(A) =

{
LI,IAI,J +AI,JRJ,J , L ∈ Rm1×m1 , R ∈ Rm2×m2

}
and its orthogonal

span⊥I,J(A) =
{
Z ∈ Rm1×m2 , AI,JZ

>
I,J = A>I,JZI,J = 0

}
.

It is easy to check that the projectors ΠA,I,J onto spanI,J(A) and Π⊥A,I,J onto span⊥I,J(A) satisfy
respectively

ΠA,I,J(Z) = PAI,J (ZI,J) and Π⊥A,I,J(Z) = Z −ΠA,I,J(Z) = Z − PAI,J (ZI,J) .

As we will see, span⊥I0,J0
(A) is needed to define the subgradient of Ωk,q , and is the supporting

subspace for Ωk,q at an element A ∈ Ak,q .
Lemma 5. If A = ab> ∈ Ak,q with I0 = supp(a) and J0 = supp(b), then the dimension of
spanI0,J0

(A) is k + q − 1

Proof. For A = ab>, the range of L 7→ LI0,I0AI0,J0
equals the range of αI0 7→ αI0b

> which has
dimension |I0| = k. By the same token, the range of R 7→ AI0,J0

RJ0,J0
has dimension q. Using

the definition of spanI0,J0
(A)

spanI0,J0
(A) =

{
αI0b

> + aβ>J0
, α ∈ Rm1 , β ∈ Rm2

}
therefore by the inclusion-exclusion principle s = dim

(
spanI0,J0

(A)
)

= k + q − 1.

The following lemma provides an explicit description of the subdifferential of Ωk,q at an atom
A = ab> ∈ Ak,q .
Lemma 6. The subdifferential of Ωk,q at A ∈ Ak,q is
∂Ωk,q(A) =

{
A+ Z : AZ>I0,J0

= 0, A>ZI0,J0
= 0, ∀(I, J) ∈ Gk × Gq ‖AI,J + ZI,J‖op ≤ 1

}
.

Lemma 6. Combining the general characterization of the subgradient of a norm (see the introduction
of [15], or [2] equation (1.4)) and (2), we get:

∂Ωk,q(A) = arg max
B

{〈B,A〉 : Ω∗k,q(B) ≤ 1}

= arg max
B

{〈B,A〉 : ‖BI,J‖op ≤ 1 , ∀I ∈ Gk,∀J ∈ Gq} .

As the dual of the dual of a norm equals the norms itself, max{〈B,A〉 , Ω∗k,q(B) ≤ 1} = Ωk,q(A).
Since A is an atom, by construction Ωk,q(A) = 1. We also have 〈A,A〉 = 1, so Ωk,q(A) = 〈A,A〉.
On the other hand for all pairs of index sets (I, J) ∈ Gk×Gq , ‖AI,J‖op ≤ 1. It follows that thatA
is a subgradient of Ωk,q at A. Letting Z denote a matrix such that A+Z ∈ ∂Ωk,q(A), the condition
∀(I, J) ∈ Gk × Gq , ‖AI,J + ZI,J‖op ≤ 1 follows. To prove AZ>I0,J0

= 0 and A>ZI0,J0
= 0,

we can introduce vectors α, β such that PA(ZI0,J0
) = αb> + aβ>. We decompose β = c1b + β′

with b>β′ = 0 and similarly α = c2a + α′ with a>α′ = 0. The condition 〈A + Z,A〉 = 1 implies
〈PA(ZI0,J0

), A〉 = 0, so c1 = −c2. Therefore PA(ZI0,J0
) = α′b> + aβ′

> and as a consequence

‖A+ ZI0,J0
‖op ≥‖PA(A+ ZI0,J0

)‖op

=‖ab> + α′b> + aβ′
>‖op

≥
(

a+ α′

‖a+ α′‖2

)> (
ab> + α′b> + aβ′

>)
b

=‖a+ α′‖2 =
√
‖a‖22 + ‖α′‖22 .

Therefore ‖A + ZI0,J0‖op > 1 unless α′ = 0 and similarly we get β′ = 0. We conclude that
PA(ZI0,J0) = 0 or equivalently AZ>I0,J0

= 0 and A>ZI0,J0 = 0. Conversely take B = A + Z

where AZ>I0,J0
= 0, A>ZI0,J0

= 0, ∀(I, J) ∈ Gk × Gq ‖AI,J + ZI,J‖op ≤ 1. It is immediate
that B satisfies Ω∗k,q(B) ≤ 1 and maximizes 〈B,A〉 over the unit ball of the dual norm by taking
the value 1.
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3.3 Proof of Proposition 1 of the main text

Proof. To prove the result, we use the fact that the statistical dimension can be expressed as the mean
quadratic Euclidean distance to the normal cone. Indeed, if TΩ(A) denotes the tangent cone of a
regularizer Ω at A ∈ Rp, then the normal cone NΩ(A) is the polar cone of TΩ(A), or equivalently
the conic hull of the subgradient ∂Ω(A) of Ω at A ([13], Theorem 23.7). Then, proposition 3.6 in
[4] shows that

S(A,Ω) := E
[
dist(G,NΩ(A))2

]
,

where dist(G,NΩ(A)) denotes the Euclidean distance of the Gaussian vector G with i.i.d. standard
normal entries to the normal cone NΩ(A).

We therefore have S(A,Ω) ≤ E
[
‖G − Ξ(G)‖2F

]
for any Ξ(G) ∈ NΩ(A). Following [4], who

prove a couple of results using this technique, we construct a matrix Ξ(G) belonging to the normal
cone, for which this squared distance be sharply upper bounded.

Let A = ab> be an element of Ak,q , with I0 = supp(a) and J0 = supp(b). Let uI = aI
‖aI‖ and

vJ = bJ
‖bJ‖ . Note that while aI is a subvector of a, the notation uI does not refer to a subvector

of some vector u and that therefore [uI ]I0 6= [uI0 ]I = aI since ‖aI0‖ = ‖a‖ = 1. We will use
i = |I\I0| and j = |J\J0|.

Define Ξ(G) = ε(G) ab> + G̃, with G̃ = Π⊥A,I0,J0
(G) and let ε(G)2 be equal to

16

γ2
‖GI0,J0

‖2op∨max
I∈Gk
J∈Gq

‖GIJ‖2op∨ max
0≤i<k
0≤j<q

(i,j) 6=(0,0)

8

γ
(
i
k + j

q

) max
|I\I0|=i
|J\J0|=j

‖G>I∩I0,J\J0
uI‖22+‖GI\I0,J∩J0

vJ‖22,

where, for short, we wrote γ = γ(a, b) for the signal strength of (a, b) (see Definition 3 in the main
text).

We prove in Section 3.3.2 (see the main lemma 9) that this Ξ(G) satisfies Ξ(G) ∈ NΩk,q (A).

Using the decomposition G = ΠA,I0,J0
(G) + Π⊥A,I0,J0

(G) and the fact that ΠA,I0,J0
(G) is by

construction orthogonal to the normal cone, we have

S(A,Ωk,q) ≤ E‖G− Ξ(G)‖2F = E‖ε(G)ab> −ΠA,I0,J0
(G)‖2F

= E‖ε(G)ab>‖2F + ‖ΠA,I0,J0
(G)‖2F (16)

= E ε(G)2 + (k + q − 1), (17)

where (16) follows from Pythagoras theorem and (17) is due to ‖ab>‖F = 1 and the fact that
‖ΠA,I0,J0

(G)‖2F follows a chi-square distribution with k + q − 1 degrees of freedom, since by
lemma 5 this is the dimension of spanI0,J0

(A).

The rest of the proof consists in bounding the three terms of E ε(G)2. By lemmata 7 and 4 we
respectively have:

16

γ2
E[‖GI0,J0

‖2op] ≤ 64

γ2

(
k + q + 1

)
,

Emax
I,J
‖GI,J‖2op ≤ 16

[(
k log

m1

k
+ q log

m2

q

)
+ 2(k + q)

]
.

The third term is bounded in Lemma 8 by 48
γ (k ∨ q) log ((m1 − k) ∨ (m2 − q)) + 64

γ (k ∨ q).

Combining these terms with equation (17), we obtain

S(A,Ωk,q) ≤
(

64

γ2
+

64

γ
+ 35

)
(k + q + 1) + 16

(
k log

m1

k
+ q log

m2

q

)
+

48

γ
(k ∨ q) log (m1 ∨m2) .

8



3.3.1 Upper bounds for ε(G)2

This section provides upper bounds on the terms that compose Eε(G)2.
Lemma 7. For every matrix G ∈ Rm1×m2 with entries drawn iid from N (0, 1), and for I0 ∈ Gk,
J0 ∈ Gq we have

E[‖GI0,J0
‖2op] ≤ 4(k + q) + 4 (18)

Lemma 7. From (8), we have for s ≥ 0,

P(‖GI0,J0
‖op >

√
k +
√
q + s) ≤ exp(−s2/2)

and as a consequence, and given that
(√

k +
√
q + s

)2

≤ 2
(

(
√
k +
√
q)2 + s2

)
,

P
[
‖GI0,J0‖2op > 2

(
(
√
k +
√
q)2 + s2

)]
≤ exp(−s2/2).

Setting t = 2s2 yields P(‖GI0,J0‖2op > 4(k + q) + t) ≤ exp(−t/4). It follows that

E[‖GI0,J0
‖2op] =

∫ ∞
0

P(‖GI0,J0
‖2op ≥ t′)dt′

=

∫ 4(k+q)

0

dt′ +

∫ ∞
4(k+q)

P(‖GI0,J0
‖2op ≥ t′)dt′

≤ 4(k + q) +

∫ ∞
0

exp(−t/4)dt = 4(k + q) + 4.

Lemma 8.

Emax
i,j

8

γ
(
i
k + j

q

) max
|J\J0|=j
|I\I0|=i

‖G>I∩I0,J\J0
uI‖22 + ‖GI\I0,J∩J0

vJ‖22

≤ 48

γ
(k ∨ q) log ((m1 − k) ∨ (m2 − q)) +

64

γ
(k ∨ q) .

Lemma 8. As the sets I ∩ I0 × J\J0 and I\I0 × J ∩ J0 are disjoint, and uI , vJ of unit length, the
random variable

MI,J = ‖G>I∩I0,J\J0
uI‖22 + ‖GI\I0,J∩J0

vJ‖22
follows a chi-squared distribution with i + j degrees of freedom: MI,J ∼ χ2

i+j , where i = |I\I0|
and j = |J\J0|. Using Chernoff’s inequality and the form of the chi-square moment generating
function, we have that for any fixed real number α and fixed index sets I and J , for all t ∈ (0, 1/2),

P
[
MI,J > α

]
= P

[
etMI,J > etα

]
≤ e−tα E etMI,J = e−tα(1− 2t)−

i+j
2 .

So, taking the maximum over index sets I and J with the same intersection sizes with I0 and J0

respectively, and using a union bound on the independent choices of I and J ,

P

 max
|I\I0|=i
|J\J0|=j

MI,J > α

 ≤ (m1 − k
i

)(
m2 − q
j

)
exp

{
−tα− i+ j

2
log(1− 2t)

}

≤ exp

{
−tα− i+ j

2
log(1− 2t) + i log(m1 − k) + j log(m2 − q)

}
.

Take α = λ(i+ j), we have for any t < 1/2, assuming w.l.o.g. m1 − k ≥ m2 − q,

P

 max
|I\I0|=i
|J\J0|=j

MI,J > λ(i+ j)

 ≤ exp

{
−tλ(i+ j)− i+ j

2
log(1− 2t) + i log(m1 − k) + j log(m2 − q)

}

≤ exp

{
(i+ j)

(
−tλ− 1

2
log(1− 2t) + log(m1 − k)

)}
.

9



IntroduceMi,j = 1
i+j max |I\I0|=i

|J\J0|=j
MI,J , take t = 1

2

(
1− 1

m1−k

)
< 1

2 . Then

P

 max
0≤i<k
0≤j<q

(i,j)6=(0,0)

Mi,j > λ

 ≤ ∑
0≤i<k
0≤j<q

(i,j)6=(0,0)

exp

{
(i+ j)

(
−1

2

(
1− 1

m1 − k

)
λ+

3

2
log(m1 − k)

)}

=

k−1∑
i=0

βi
q−1∑
j=0

βj − 1 =
1− βk

1− β
1− βq

1− β
− 1 ≤ 2β,

where β = exp
{
− 1

2

(
1− 1

m1−k

)
λ+ 3

2 log(m1 − k)
}

.

As a consequence, we have

E[max
i,j
Mi,j ] =

∫ ∞
0

P[max
i,j
Mi,j > λ]dλ

≤
∫ 3(m1−k)

m1−k−1 log k

0

dλ+ 2

∫ ∞
3(m1−k)
m1−k−1 log(m1−k)

exp

{
3

2
log(m1 − k)− 1

2

(
1− 1

m1 − k

)
λ

}
dλ

≤ 3(m1 − k)

m1 − k − 1
log k + 4

m1 − k
m1 − k − 1

≤ 6 log(m1 − k) + 8 .

It follows that

E max
0≤i<k
0≤j<q

(i,j)6=(0,0)

8

γ
(
i
k + j

q

) max
|J\J0|=j
|I\I0|=i

‖G>I∩I0,J\J0
uI‖22 + ‖GI\I0,J∩J0

vJ‖22

≤ 48

γ
(k ∨ q) log ((m1 − k) ∨ (m2 − q)) +

64

γ
(k ∨ q) . (19)

3.3.2 The scaling factor ε(G) ensures that Ξ(G) ∈ NΩk,q (A)

We will use the notation uI = aI
‖aI‖ and vJ = bJ

‖bJ‖ . We will use several times the fact that a = aI0 ,
aI = aI∩I0 and the corresponding properties for b, u and v.

The objective of this appendix is to prove the following lemma:
Lemma 9. Let ε(G)2 be equal to

16

γ2
‖GI0,J0

‖2op ∨max
I∈Gk
J∈Gq

‖GIJ‖2op ∨ max
0≤i<k
0≤j<q

(i,j)6=(0,0)

8

γ
(
i
k + j

q

) max
|I\I0|=i
|J\J0|=j

‖G>I∩I0,J\J0
uI‖22+‖GI\I0,J∩J0

vJ‖22.

Then, for every G ∈ Rm1×m2 , the matrix Ξ(G) = ε(G)A + Π⊥A,I0,J0
(G) belongs to the normal

cone of Ωk,q at A.

Lemma 9. Recall that the subgradient of the norm Ω at A is defined as

∂Ω(A) = {M ∈ Rm1×m2 | 〈A,M〉F = Ω(A), Ω∗(M) ≤ 1},
and that the normal cone NΩ(A) is the conic hull of the subgradient. Given that 〈ab>,Ξ(G)〉 =
ε(G) = ε(G)Ωk,q(ab

>), we have that Ξ(G) is in NΩk,q (ab
>) if and only if ε(G)−1Ξ(G) belongs to

the subgradient ∂Ω(ab>). But given that the property 〈ab>, ε(G)−1Ξ(G)〉 = Ωk,q(ab
>) is satisfied,

it is sufficient to show that Ω∗k,q
(
ε(G)−1Ξ(G)

)
≤ 1.

We therefore need to prove that, for all (I, J), we have ‖AIJ + ε(G)−1 G̃IJ‖op ≤ 1. This is
equivalent to requiring that

‖A>IJ + ε(G)−1 ΠA,I,J(G̃)‖op ≤ 1 and ε(G)−1 ‖P⊥A (G̃I,J)‖op ≤ 1. (20)

10



First the second inequality of (20) is satisfied since

‖P⊥A (G̃I,J)‖op ≤ ‖G̃I,J‖op =
∥∥[Π⊥A,I0,J0

(G)]IJ ]
∥∥

op
≤
∥∥[G]IJ

∥∥
op
≤ ε(G)2.

There thus remains to prove the first inequality of (20). Note that the matrix A>IJ +

ε(G)−1 ΠA,I,J(G̃) has rank 2, so its Frobenius norm by at most a factor of
√

2 larger than its
operator norm. Working with the Frobenius norm is more convenient, so knowing that

‖AIJ + ε(G)−1 ΠA,I,J(G̃)‖op ≤ ‖A>IJ + ε(G)−1 ΠA,I,J(G̃)‖F ,

we will establish an upper bound on the latter quantity.

By definition
ΠA,I,J(G̃) = uIu

>
I G̃+ G̃vJv

>
J + u>I G̃vJ uIv

>
J ,

and by lemma 10, denoting νI,J(G) = ‖AIJ + ε(G)−1 ΠA,I,J(G̃IJ)‖2F we then have

νI,J(G) =
∥∥ ‖aI‖‖bJ‖uIv>J + ε(G)−1(uIu

>
I G̃IJ + G̃IJvJv

>
J − u>G̃IJvJ uIv>J )

∥∥2

F

≤‖aI‖2‖bJ‖2 + 2 ‖aI‖‖bJ‖
1

ε(G)
u>I G̃IJvJ +

1

ε(G)2
(u>I G̃IJG̃

>
IJuI + v>J G̃

>
IJG̃IJvJ) .

Now, recall that G̃ = Π⊥A,I0,J0
(G). Lemma 11 explicits the structure of G̃. It is exploited in 12 to

obtain the inequalities of lemma 13 that yield

νI,J(G) ≤ ‖aI‖2‖bJ‖2+
2

ε(G)
‖aI‖‖bJ‖ ‖aI0\I‖ ‖bJ0\J‖ ‖GI0J0

‖op

+
1

ε(G)2
(‖G>I∩I0,J\J0

uI‖22 + 2 ‖aI0\I‖
2 ‖GI0,J0‖2op)

+
1

ε(G)2
(‖GI\I0,J∩J0

vJ‖22 + 2 ‖bJ0\J‖
2 ‖GI0,J0

‖2op). (21)

Finally, using the fact that ε(G)2 equals

16

γ2
‖GI0,J0‖2op∨max

I∈Gk
J∈Gq

‖GIJ‖2op∨ max
0≤i<k
0≤j<q

(i,j)6=(0,0)

8

γ
(
i
k + j

q

) max
|I\I0|=i
|J\J0|=j

‖G>I∩I0,J\J0
uI‖22+‖GI\I0,J∩J0

vJ‖22,

and given that inequality (21) implies the inequality

νI,J(G) ≤‖aI‖2‖bJ‖2 +
γ

2
‖aI‖‖bJ‖‖aI0\I‖‖bJ0\J‖+

γ

8

(
i

k
+
j

q

)
+
γ2

8

(
‖aI0\I‖

2 + ‖bJ0\J‖
2
)
.

Define α := ‖aI0\I‖2 = 1− ‖aI‖2 and β := ‖bJ0\J‖2 = 1− ‖bJ‖2.

With these notations and rearranging the terms, we can rewrite the above inequality as

νI,J(G) ≤ (1− α)(1− β) +
γ

2

√
αβ(1− α)(1− β) +

γ2

8
(α+ β) +

γ

8

(
i

k
+
j

q

)
.

Since 0 ≤ α, β ≤ 1 and using
√
αβ ≤ 1

2 (α+ β), we have

αβ ≤ 1

2
(α+ β) and

√
αβ(1− α)(1− β) ≤ 1

2
(α+ β).

These inequalities imply that

νI,J(G) ≤ 1 + (α+ β)
(
− 1 +

1

2
+
γ

4
+
γ2

8

)
+
γ

8

(
i

k
+
j

q

)

11



By definition of γ = min ι∈I0
ι′∈J0

(
k a2

ι , q b
2
ι′

)
, we have i

k ≤
α
γ and j

q ≤
β
γ . Moreover, given that

0 ≤ γ ≤ 1, we have 4
γ − 2 − γ = 1

γ (4 − 2γ − γ2) ≥ 1
γ , so that factorizing γ

8 in the previous
expression, we obtain

νI,J(G) ≤ 1 +
γ

8

[(
− 4

γ
+ 2 + γ

)
(α+ β) +

(
i

k
+
j

q

)]
≤ 1 +

γ

8

[
− 1

γ
(α+ β) +

(
i

k
+
j

q

)]
≤ 1

which concludes the proof.

3.3.3 Technical lemmas

This section gathers the lemmata needed to prove lemma 9.
Lemma 10.
‖αuv> + uu>G+Gvv> − u>Gv uv>‖2F = α2 + 2αu>Gv + u>GG>u+ v>G>Gv − (u>Gv)2

≤ α2 + 2αu>Gv + u>GG>u+ v>G>Gv .

This lemma is proved by straightforward algebra.

Lemma 11. The matrix G̃IJ = [Π⊥X,I0,J0
(G)]IJ is of the form G̃IJ = G̃1 + G̃2 with

G̃1 = GIJ −GI∩I0,J∩J0
and G̃2 = (IdI − aIa>)GI0J0

(IdJ − bb>J ).

Lemma 11.

Π⊥X,I0,J0
(G) = G−ΠX,I0,J0

(G)

= G− aI0a>I0GI0J0 −GI0J0bJ0b
>
J0

+ aI0a
>
I0GI0J0bJ0b

>
J0

= G−GI0J0
+ (IdI0 − aI0a>I0)GI0J0

(IdJ0
− bJ0

b>J0
),

so that [Π⊥X,I0,J0
(G)]IJ = GIJ −GI∩I0,J∩J0

+ (IdI − aIa>)GI0J0
(IdJ − bb>J ).

Lemma 12. We have u>I G̃1 = u>I GI∩I0,J\J0
and G̃1vJ = GI\I0,J∩J0

vJ .

Lemma 12. Given that supp(uI) ⊂ I0, we have

u>I G̃1 = u>I (GIJ −GI∩I0,J∩J0
) = u>I (GI∩I0,J −GI∩I0,J∩J0

) = u>I GI∩I0,J\J0
,

which proves the first equality. The second one is proved similarly.

Lemma 13. We have

u>I G̃IJvJ ≤ ‖aI0\I‖ ‖bJ0\J‖ ‖GI0J0‖op,

u>I G̃IJG̃
>
IJuI ≤ ‖G>I∩I0,J\J0

uI‖22 + 2 ‖aI0\I‖
2 ‖GI0,J0

‖2op,

v>J G̃
>
IJG̃IJvJ ≤ ‖GI\I0,J∩J0

vJ‖22 + 2 ‖bJ0\J‖
2 ‖GI0,J0

‖2op.

Lemma 13. Given that G̃IJ = G̃1 + G̃2 and u>I G̃1 = uIG̃I∩I0,J\J0
, we have u>I G̃1vJ =

u>I G̃1vJ∩J0
= 0, so that

u>I G̃IJvJ = u>I G̃2vJ

= u>I (IdI − aIa>)GI0J0 (IdJ − bb>J )vJ

≤
∥∥uI − ‖aI‖ a∥∥∥∥GI0J0

∥∥
op

∥∥vJ − ‖bJ‖ b∥∥
≤ ‖aI0\I‖ ‖bJ0\J‖ ‖GI0J0

‖op,

12



because ‖u>I (IdI − aIa>)‖2 =
∥∥uI − ‖aI‖ a∥∥2

= 1− 2‖aI‖2 + ‖aI‖2 = ‖aI0\I‖2, and symmet-
rically

∥∥vJ − ‖bJ‖ b∥∥ = ‖bJ0\J‖. This shows the first inequality.

For the two next inequalities, note that

u>I G̃IJG̃
>
IJuI = ‖G̃>IJuI‖2 = ‖G̃>1 uI‖2 + ‖G̃>2 uI‖2

because 〈G̃>1 uI , G̃>2 uI〉 = 0 as a result of the fact that by lemma 12, G̃>1 uI and G̃>2 uI have disjoint
supports.

Now ‖G̃>1 uI‖2 = ‖G>I∩I0,J\J0
uI‖22 and ‖G̃>2 uI‖ ≤ 2 ‖aI0\I‖2 ‖GI0,J0‖2op, because ‖Id −

bJb
>‖2op ≤ 2 (see Lemma 14 for a proof). This shows the second inequality and the third follows

by symmetry.

Lemma 14. ‖Id− bJb>‖2op ≤
4

3

Lemma 14. The largest singular value is attained on the span of bJ and bJc both on the left and on
the right. Given that ‖b‖ = 1, it is therefore also the largest eigenvalue of the matrix of the linear
operator restricted to this span which is equal to[

(1− x) −
√

(1− x)x
0 1

]
,

for x = ‖bJ‖2. Tedious but simple calculations show that the squared operator norm of this matrix
is equal to 1− x/2 + 1/2

√
x(4− 3x), which takes its maximum value 4/3 for x = 1/3.

4 Lower bounds

[11] has shown that the combination Γµ of the `1 norm and of the trace norm does not improve rates
up to constants over the best of the two norms. More precisely, we can derive from [11, Theorem
3.2] the following result

Proposition 2. There exists M > 0 and C > 0 such that for any m1,m2, k, q ≥ M with m1/k ≥
M and m2/q ≥M , for any A ∈ Ak,q and for any µ ∈ [0, 1], the following holds:

S (A,Γµ) ≥ C ζ(a, b)
(

(kq) ∧ (m1 +m2 − 1)
)
− 2 ,

with

ζ(a, b) = 1−
(

1− ‖a‖
2
1

k

)(
1− ‖b‖

2
1

q

)
.

Note that ζ(a, b) ≤ 1 with equality if either a ∈ Ãm1

k or b ∈ Ãm2
q , so in particular ζ(a, b) = 1 for

ab> ∈ Ãk,q . In that case, we see that, as stated by [11], Γµ does not bring any improvement over
the `1 and trace norms taken imdividually, and in particular has a worse statistical dimension than
Ωk,q and Ω̃k,q .

Proof of Proposition 2. Proposition 2 is a consequence of the following result:

Lemma 15. Let ab> ∈ Ak,q , X : Rm1×m2 → Rn a linear map from the standard Gaussian
ensemble and y = X (ab>). If n ≤ 1

9m1m2 and further

n ≤ n0 := ζ(a, b)
1

64

(
(kq)∧ (m1 +m2−1)

)
−2, with ζ(a, b) = 1−

(
1− ‖a‖

2
1

k

)(
1− ‖b‖

2
1

q

)
,

then, with probability 1−c1 exp(−c2n0), solving formulation (13) with the norm Γµ fails to recover
ab> simultaneously for any values of µ ∈ [0, 1], where c1 and c2 are universal constants.

13



Indeed, take M such that when m1,m2, k, q,m1/k,m2/q ≥ M then n0 is large enough to ensure
1 − c1 exp(−c2n0) > 4 exp (−32/17). Then, according to Lemma 15, solving (13) with the norm
Γµ fails to recover A = ab> with probability at least 4 exp (−32/17). On the other hand, [1,
Theorem 7.1] shows that, when n ≥ S (A,Γµ) + λ, for any λ ≥ 0, then solving (13) with the norm
Γµ correctly recovers A with probability at least

4 exp

(
−λ2/8

ω2(A,Γµ) + λ

)
, (22)

where ω2(A,Γµ) = S (A,Γµ) ∧ (m1m2 −S (A,Γµ)). Take λ = 16ω(A,Γµ), then using the fact
that ω(A,Γµ) ≥ 1 we get that the probability (22) is smaller than 4 exp (−32/17). This implies that

n0 ≤ S (A,Γµ) + λ ≤ S (A,Γµ) + 16
√

S (A,Γµ) ≤ 17S (A,Γµ) .

Proof of Lemma 15. The proof consists in applying theorem 3.2 in [11] for the combination of the
`1-norm with the trace norm. We adapt slightly the notations of that paper to reflect the fact that
we are working with matrices. Since we consider conic combinations of the `1 and trace norms, the
number of norms is therefore τ = 2. To apply the theorem we need to specify κ, θ, dmin, γ and C◦
in the notations of that paper.

For each decomposable norm νj for j ∈ {1, 2}, with ν1 the `1-norm and and ν2 the trace norm,
given a point ab> (which corresponds to the point x0 in [11]), the authors define

• Tj the supporting subspaces and Ej (ej in the paper), the orthogonal projection of any
subgradient of the norm in ab> (Definition 2.1),

• Lj the Lipschitz constant of νj with respect to the Euclidean norm (Definition 2.2),

• κj =
‖Ej‖2F
L2
j

m1m2

dim(Tj)
(Definition 2.2).

Let ab> ∈ Ak,q with support I0 × J0 and sa = sign(a), sb = sign(b). Denoting eij the element of
the canonical basis of Rm1×m2 , we have

• T1 = span({eij}(i,j)∈I0×J0
) so that dim(T1) = kq,

• T2 = {av> + ub> | u ∈ Rm1 , v ∈ Rm2} so that dim(T2) = m1 +m2 − 1.

By definition dmin = dim(T1) ∧ dim(T2). We have

E1 = sas
>
b , ‖E1‖2F = kq, E2 = ab>, ‖E2‖2F = 1, L1 =

√
kq, L2 =

√
m1 ∧m2,

and thus κ1 =
m1m2

kq
, κ2 =

m1m2

(m1 ∧m2)(m1 +m2 − 1)
, so that κ = κ1 ∧ κ2 ≥

1

2
.

We then have θ defined as θ = θ1 ∧ θ2 with θj = ‖E∩,j‖2/‖Ej‖2 where E∩,j is the projection
of Ej on T1 ∩ T2. But E2 ∈ T1 so that θ2 = 1. The situation is less simple for E1. Indeed,
E∩,1 = ‖a‖1as>b + ‖b‖1sab> − ab>‖a‖1‖b‖1. Some calculations lead to

θ2
1 =
‖a‖21
k

+
‖b‖21
q
− ‖a‖

2
1

k

‖b‖21
q
,

hence the definition of ζ(a, b) = θ2 = θ2
1 ∧ θ2

2 . Theorem 3.2 in [11] offers the possibility of
constraining the estimator to lie in a cone C. In our case, C = Rm1×m2 , given the definition of γ we
therefore have γ ≤ 2. The result follows from applying the theorem with θ2 = ζ(a, b) and using
κ

81γ2τ ≥
1/2

34.22.2 = 1
64 .

14



5 Algorithm

Here we briefly discuss how to solve problems of the form:

min
Z∈Rm1×m2

L(Z) + λΩk,q(Z). (23)

Although convex, this problem can be computationally challenging. We present a working set algo-
rithm to approximately solve such problems in practice.

5.1 A working set algorithm

Given a set S ⊂ Gk × Gq of pairs of row and column subsets, let us consider the optimization
problem:

min
Z(IJ)∈Rm1×m2

L
( ∑
(I,J)∈S

Z(IJ)

)
+ λ

∑
(I,J)∈S

‖Z(IJ)‖∗ s.t. Supp(Z(IJ)) ⊂ I × J, (I, J) ∈ S (PS )

Let (Ẑ(IJ))(I,J)∈S be a solution of this optimization problem. Then, by the characterization of
Ωk,q(Z) in (1), Z =

∑
(I,J)∈S Ẑ

(IJ) is the solution of (23) when S = Gk × Gq . Clearly, it is still

the solution of (23) if S is reduced to the set of non-zero matrices Ẑ(IJ) at optimality often called
active components.

We propose to solve problem (23) using a so-called working set algorithm which solves a sequence
of problems of the form (PS ) for a growing sequence of working sets S, so as to keep a small number
of non-zero matrices Z(IJ) throughout. Working set algorithms [2, Chap. 6] are typically useful to
speed up algorithm for sparsity inducing regularizer; they have been used notably in the case of the
overlapping group Lasso of [7] which is also naturally formulated via latent components.

These algorithms rely on the structure of the Karush-Kuhn-Tucker (KKT) conditions for optimality.
For problem (PS ), writing Z(IJ) = U (IJ)Σ(IJ)V (IJ) the thin SVD of Z(IJ), the KKT conditions are
that, for all (I, J) in S,

either Z(IJ) 6=0 and ΠX,I,J [∇L(Z)]IJ + λU (IJ)V (IJ)> = 0 (24)

or Z(IJ) =0 and ‖[∇L(Z)]IJ‖op ≤ λ. (25)

The principle of the working set algorithm is to solve problem (PS ) for the current set S so that
(24) and (25) are (approximately) satisfied for (I, J) in S, and to check subsequently if there are
any components not in S which violate (25). If not, this guarantees that we have found a solution to
problem (23), otherwise the new pair (I, J) corresponding to the most violated constraint is added
to S and problem (PS ) is initialized with the previous solution and solved again. The resulting
algorithm is Algorithm 1 (where the routine SSVDTPI is described in the next section). Problem
(PS ) is solved easily using the approximate block coordinate descent of [14] (see also [2, Chap. 4]),
which consists in iterating proximal operators. The modifications to the algorithm to solve problems
regularized by the norm Ωk,� are relatively minor (they amount to replace the trace norms by penal-
ization of the trace of the matrices Z(IJ) and by positive definite cone constraints) and we therefore
do not describe them here.

Determining efficiently which pair (I, J) possibly violates condition (25) is by contrast a more
difficult problem that we discuss next.

5.2 Finding new active components

Checking whether (25) holds amounts to check whether arg max(I,J)∈Gk×Gq\S ‖[∇L(Z)]IJ‖op is
smaller than λ, and if not to find (I, J) that violates this condition. Since the condition is satisfied
for (I, J) ∈ S, this corresponds to solving the following sparse singular value problem

max
a,b

a>∇L(Z)b s.t. ab> ∈ Ak,q . (k, q)-linRank-1

This problem is unfortunately NP-hard since rank 1 sparse PCA problem is a particular instance of it
(when ∇L(Z) is replaced by a covariance matrix), and we therefore cannot hope to solve it exactly
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Algorithm 1 Active set algorithm
Require: L, tolerance ε > 0, parameters λ, k, q

Set S = ∅, Z = 0
while c = true do

Recompute optimal values of Z, (Z(IJ))(I,J)∈S for (PS ) using warm start
(I, J)← SSVDTPI(∇L(Z), k, q, ε)
if ‖[∇L(Z)]I,J‖op > λ then
S ← S ∪ {(I, J)}

else
c← false

end if
end while
return Z, S, (Z(IJ))(I,J)∈S

with efficient algorithms. Still, sparse PCA has been the object of a significant amount of research,
and several relaxations and other heuristics have been proposed to solve it approximately. In our
numerical experiments we use a basic truncated power iteration (TPI), also called TPower, GPower
or CongradU in the PSD case [8, 16, 10], which has been proved recently by [16] to provide accurate
solution in reasonable computational time under RIP type of conditions. Algorithm 2 provides a
natural generalization of this algorithm to the non-PSD case. The algorithm follows the steps of a
power method, the standard method for computing leading singular vectors of a matrix, with the
difference that at each iteration a truncation step is use. We denote the truncation operator by Tk. It
consists of keeping the k largest components (in absolute value) and setting the others to 0.

Algorithm 2 SSVDTPI: Bi-truncated power iteration for (k, q)-linRank-1
Require: A ∈ Rm1×m2 , k, q and tolerance ε > 0

Pick a random initial point b(0) ∼ N (0, Im2
) and let

while |a(t)>Ab(t) − a(t−1)>Ab(t−1)|/|a(t−1) >Ab(t−1)| > ε do
a← Ab(t) \\ Power
a← Tk(a) \\ Truncate
b← A>a \\ Power
b← Tq(b) \\ Truncate
a(t+1) ← a/‖a‖2 and b(t+1) ← b/‖b‖2 \\ Normalize
t← t+ 1

end while
I ← Supp(a(t)) and J ← Supp(b(t))
return (I, J)

Despite poor computational properties predicted for the worst cases by the theory, in practice Algo-
rithm 2 turns out to perform well, and we observe the linear convergence rate predicted by the theory
of [16] very often. We stress that Algorithm 1 is by design robust to certain errors of Algorithm 2.
For instance, if an incorrect component is added to S at some iteration, but the correct components
are identified later, the algorithm will eventually shrink the incorrect components to 0. One of the
causes of failure of TPI type of methods is the presence of a large local maximum in the sparse PCA
problem corresponding to a suboptimal component; incorporating this component in S will reduce
the size of that local maximum, thereby increasing the odds of selecting a correct component the
next time around. If however the heuristic fails at some point to find components that violate (25),
we can not guarantee that we have reached global optimality.
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