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1 Introduction

In this document we present further details into the how to compute the quantities necessary for the
SVIHMM algorithm. We also derive key equations necessary for the analysis of the algorithm, and
present and prove the convergence theorem for stochastic gradient ascent using approximate noisy
natural gradients. We then present specifics of the synthetic data that we use to evaluate SVIHMM.
Last, we discuss the timing experiment in depth.

2 Model specification and variational approximation

Recall our model specification for a hidden Markov model with K latent states, Gaussian emissions
yt ∈ Rp, and conjugate Dirichlet and normal-inverse-Wishart (NIW) priors on the rows of the
transition matrix and emission parameters, respectively. Specifically, let α ∈ RK+ , µ0 ∈ Rp, Σ0 ∈
Sp++ a symmetric positive definite matrix, κ0 > 0, and ν0 > p+ 2. Then, the model is specified as:

Ak: ∼ Dir(α), k = 1, . . . ,K

φk = (µk,Σk) ∼ NIW(µ0, κ0,Σ0, ν0), k = 1, . . . ,K

x1|π0 ∼ Mult(π0)

xt|xt−1 ∼ Mult(Axt−1
)

yt|xt, {φk}Kk=1 ∼ N(µxt ,Σxt), t = 1, . . . , T.

(1)

The algorithms presented in the main paper use the natural parameterization of the Dirichlet and
NIW distributions which we provide here. The natural parameters of a Dir(α) distribution are
given by uA = α − 1 ∈ RK . The natural parameters for the NIW(µ0,Σ0, κ0, ν0) are denoted
uφ = (uφ1 , u

φ
2 , u

φ
3 , u

φ
4 ) where the components are given by

uφ1 = κ0µ0

uφ2 = κ0

uφ3 = Σ0 + κ0µ0µ
T
0

uφ4 = ν0 + 2 + p.

(2)

In the HMM model in Eq. (1) each row of A is given a Dir(α) prior so that there is a natural
parameter for each row, uAk ∈ RK . Similarly, there is a natural parameter corresponding to each
emission distribution, uφk , k = 1, . . . ,K.

Recall from the main paper that we approximate the posterior of Eq. (1) as p(A, {φk},x) ≈
q(A)q({φk})q(x) governed by variational parameters wA and wφ, respectively, where q(A) is a
product of Dirichlet distributions (one per row of A) and q({φk}) is a product of NIW distributions
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(one per emission distribution). The variational distribution over the local variables, q(x), is repre-
sented by a T ×K row stochastic matrix where the entry in row t and column k is q(xt = k). We
describe how to compute q(x) in Sec. 4 of the Supplement.

3 Expected sufficient statistics for a HMM with Gaussian emissions

As shown in the main paper, in order to perform batch VB (Eq. (6)) via coordinate-ascent or
SVI (Eq. (14)) via stochastic gradient ascent on the model in Eq. (1), we must be able to com-
pute the sufficient statistics, t(·), of the various distributions. In this section we derive the necessary
sufficient statistics for the HMM with Gaussian emissions and conjugate priors described above [1].

In the batch setting, the sufficient statistics for the jth row ofA are given by the number of transitions
from state j to each other state over the entire observation sequence. In particular, the sufficient
statistics corresponding to the transition from state j to k are given by:

tAjk(x) =
T∑
t=2

1xt−1=j,xt=k, (3)

where the indicator function 1A is 1 when event A occurs, and 0 otherwise. Note that the sufficient
statistics for the rows of the transition matrix only depend on the latent state sequence and not on
the actual observations. We then combine all sufficient statistics for the jth row into the vector of
counts tAj (x) = (tAj1(x), . . . , tAjK(x)). In the main paper we suppress the j notation, however, the
update for each row of A uses the sufficient statistics corresponding to that row.

For the SVI case where we only consider a subchain of observations, S, the sufficient statistics for
the transition from state j to k is given by:

tAjk(x) =

L∑
`=2

1xS`−1=j,x
S
` =k

. (4)

That is, we consider the number of times a transition from state j to k occurs in S ignoring the rest
of the observations.

To compute both the batch VB and SVI updates for the emission distributions we need to compute
the sufficient statistics of the NIW distribution. Recall that the natural parameterization of the NIW
distribution corresponding to emission k is of the form uφk = (uφk,1, u

φ
k,2, u

φ
k,3, u

φ
k,4). There will be

a sufficient statistic corresponding to each entry of uφk , which in the batch setting are given by:

tφk,1(x,y) =

T∑
t=1

yt1xt=k

tφk,2(x,y) =

T∑
t=1

1xt=k

tφk,3(x,y) =

T∑
t=1

yty
′
t1xt=k

tφk,4(x,y) =

T∑
t=1

1xt=k.

(5)

These sufficient statistics are identical to those obtained for a NIW prior for independent Gaussian
observations since conditioned on the state sequence, x, the observations are independent. As above,
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the analogous NIW sufficient statistics for a subchain, S, are given by:

tφk,1(x,y) =

L∑
`=1

yS` 1xS` =k

tφk,2(x,y) =

L∑
`=1

1xS` =k

tφk,3(x,y) =

L∑
`=1

yS` (yS` )′1x`=k

tφk,4(x,y) =

L∑
`=1

1xS` =k
.

(6)

For both the batch VB and SVI algorithms we need to compute the expectations of the sufficient
statistics with respect to the variational distribution q(x) which by Eqs. (3) and (5) are given by:

Eq(x)[t
A
jk(x)] =

T∑
t=2

q(xt−1 = j, xt = k)

Eq(x)[t
φ
k,1(x,y)] =

T∑
t=1

ytq(xt = k)

Eq(x)[t
φ
k,2(x,y)] =

T∑
t=1

q(xt = k)

Eq(x)[t
φ
k,3(x,y)] =

T∑
t=1

yty
′
tq(xt = k)

Eq(x)[t
φ
k,4(x,y)] =

T∑
t=1

q(xt = k).

(7)

The expected sufficient statistics for a subchain S are computed analogously, restricting the compu-
tations in Eq. (7) to the observations in the subchain. In particular, they are computed as:

Eq(x)[t
A
jk(x)] =

L∑
`=2

q(xS`−1 = j, xS` = k)

Eq(x)[t
φ
k,1(x,y)] =

L∑
`=1

ytq(x
S
` = k)

Eq(x)[t
φ
k,2(x,y)] =

L∑
`=1

q(xS` = k)

Eq(x)[t
φ
k,3(x,y)] =

L∑
`=1

yty
′
tq(x

S
` = k)

Eq(x)[t
φ
k,4(x,y)] =

L∑
`=1

q(xS` = k).

(8)

We can then plug the expected sufficient statistics into Eqs. (6) or (14) in the main paper to determine
coordinate-ascent or stochastic gradient updates, respectively. However, in order to compute the
expected sufficient statistics in either the coordinate-ascent (batch VB) or stochastic gradient-ascent
(SVI) algorithms we must first compute q(x) for batch VB or q(xS) for SVI. We describe how to
do this in the next section.
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4 Forward-backward algorithm for local variational update

The optimal distribution over the local variables, q∗(x) = q∗(x1, . . . , xT ) for batch VB and
q∗(xS) = q∗( x

S
1 , . . . , x

S
L) for SVI, is needed in order to compute the expected sufficient statistics

that appear in the coordinate-ascent and gradient equations for the global parameters. In particu-
lar, looking at Eq. (7) we need to be able to compute the marginal-beliefs of each hidden state, i.e.
q∗(xt), and the pairwise-beliefs, q∗(xt−1, xt). Following [1] we use the forward-backward algo-
rithm, a dynamic programming algorithm, to determine the marginal- and pairwise-beliefs in time
O(K2T ).

Recall Eq. (7) from the main paper which describes the form of the optimal variational distribution
for the local parameters:

q∗(x) ∝ exp

(
Eq(A) [lnπ(x1)] +

T∑
t=2

Eq(A)

[
lnAxt−1,xt

]
+

T∑
t=1

Eq(φ) [ln p(yt|xt)]

)
. (9)

First, we define auxiliary parameters

Ãj,k := exp
[
Eq(A) ln(Aj,k)

]
p̃(yt|xt = k) := exp

[
Eq(φ) ln p(yt|xt = k)

]
(10)

which we then use in the forward-backward algorithm as follows. Note Ã = (Ãj,k) and p̃(yt|xt =
k) can be loosely interpreted as the expected sufficient statistics of the global parameters. For the
HMM defined in Eq. (1) we have that

Ãj,k = exp

[
ψ
(
wAjk
)
− ψ

(
K∑
l=1

wAjl

)]
, j, k ∈ 1, . . . ,K (11)

where ψ(·) is the digamma function and log p̃(yt|xt = k, φ) is given by the expectation under the
NIW variational distribution of the log-probability density of a Gaussian distribution, the details of
which can be found in [2](Ch. 10.2.1).

In the batch VB case we use the auxiliary parameters to propagate a set of forward messages, α =
(αt,k), t ∈ 1, . . . , T, k ∈ 1, . . . ,K, starting at t = 1 according to:

α1,k = π0,k, αt,k =

K∑
j=1

αt−1,jÃj,kp̃(yt|xt = k), (12)

where π0,k = p(x1 = k) is the initial distribution. We then propagate a set of backward messages,
β = (βt,k), t ∈ 1, . . . , T, k ∈ 1, . . . ,K, starting at t = T and going backwards as:

βT,k = 1, βt,k =

K∑
j=1

Ãk,j p̃(yt+1|xt+1)βt+1,k. (13)

The forward messages perform a filtering pass by propagating information forwards in time, while
the backwards messages perform a smoothing pass by taking into account the information that future
observations provide. The use of the auxiliary parameters is necessary since in Eq. (9) the expecta-
tion and logarithm are not interchangeable. For an in depth derivation of the forward and backward
recursions see [1].

Given the forward and backward messages we can compute the quantities of q∗(x) necessary for the
global step. In particular, the marginal beliefs are given by

q∗(xt = k) ∝ αt,kβt,k (14)

and the pairwise beliefs by

q∗(xt−1 = j, xt = k) ∝ αt−1,jAj,kp(yt|xt = k)βt,k. (15)

For SVI, the forward-backward algorithm remains largely the same. The major difference is that
only observations and local variables in the subchain are considered. The corresponding modifica-
tions to the above equations are straight forward. Additionally, since in the SVI setting we cannot
learn the initial state distribution, π0, we initialize the forward messages as α1,k = π̂k, where as
described in the main paper, π̂ is the leading eigenvector of Eq(A)[A].
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5 Batch variational Bayes global udpate

The batch VB global update for the model in Eq. (1) is given by:

wA
jk = uAk +

T∑
t=2

q(xt−1 = j, xt = k), j, k ∈ 1, . . . ,K

wφk,r = uφk,r +Eq(x)[t
φ
k,r(x,y)], k ∈ 1, . . . ,K, r ∈ 1, . . . , 4

(16)

where the expectations with respect to q(x) are given in Eq. (7) and where quantities of q(x) are
computed via the forward-backward algorithm described previously. The index r indexes the suffi-
cient statistics of the emission distributions, of which there are four in the case of the NIW.

6 Stochastic natural gradients for SVIHMM

The natural gradients (Eq. (14) in the main paper) for the model in Eq. (1) are given by:

[
∇̃wALS

]
jk

= uAjk + cA
L∑
τ=2

q(xSτ−1 = j, xSτ = k)− wAjk

[
∇̃wφkLS

]
r

= uφr + cφr

L∑
τ=1

Eq(xS)[t
φ
k,r(x

S , yS)]− wφk,r, k ∈ 1, . . . ,K, r ∈ 1, . . . , 4, .

(17)

Quantities involving q(xS) are computed using the forward-backward algorithm in Sec. 4 and the
expected sufficient statistics are derived in Sec. 3. The gradients in Eq. (17) are then used in a
Robbins-Monro averaging procedure to update the global variational parameters.

7 Batch factor

As described in Sec. 3.2 of the main paper, in order to obtain an unbiased estimate of the natural
gradient of the L (Eq. (12) in the main paper) we must scale the terms of LS to match the size of
the original data set. Here we derive Eq. (15) from the main paper which allows us to read off the
necessary factors to scale the natural gradient. As in the paper, we assume that a subchain, S, of
length L is sampled according to p(S) = 1

T−L+1 which results in:

ES

[
Eq ln p(yS ,xS |θ)

]
=

1

T − L+ 1
Eq

[
lnπ(x1) +

L∑
t=2

lnAxt−1,xt +

L∑
t=1

ln p(yt|xt)

+ lnπ(x2) +

L+1∑
t=3

lnAxt−1,xt +

L+1∑
t=2

ln p(yt|xt) + . . .

+ lnπ(xT−L+1) +

T∑
t=T−L+2

lnAxt−1,xt +

T∑
t=T−L+1

ln p(yt|xt)
]

≈ 1

T − L+ 1
Eq

[ T−L+1∑
t=1

lnπ(xt) + (L− 1)

T∑
t=2

lnAxt−1,xt + L

T∑
t=1

p(yt|xt)
]
.

(18)

The approximation arises because the observations near the endpoints of the observation sequence
appear in fewer subchains than those in the middle of the sequence, e.g. x1 and xT only appear
in one subchain. However, the error introduced from this approximation becomes negligible as the
length of the sequence increases which is the case we are interested in. From Eq. (18) we can read
off the batch factors as c = (cA, cφ), where cA = (T − L+ 1)/(L− 1), and cφ = (T − L+ 1)/L.
More general choices for p(S) may be used resulting in different batch factors.
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8 Preservation of ascent direction with approximate local messages

Theorem 1. If the noisy gradient with respect to the “true” messages

∇̂wLS = u + Eq∗
[
cT t(xS ,yS)

]
−w

lies in the same half plane as the noisy gradient with respect to approximate messages

∇̄wLS = u + Eqε
[
cT t(xS ,yS)

]
−w,

then ∇̄wLS is an ascent direction for L so that SVIHMM will converge to a local maximum of the
ELBO [3, 4]. To ensure the gradients are in the same half-plane, it suffices to choose

ε ≤ MS(w)

||cT t(x,y)||2
,

where
MS(w) := max

(∣∣∣∣∣∣∇̂wLS
∣∣∣∣∣∣
2
,
∣∣∣∣∇̄wLS

∣∣∣∣
2

)
Proof. Let yS = (yS1 , . . . , y

S
L) be a subchain of observations where L << T and x = (x1, . . . , xL)

denote any configuration of latent states corresponding to yS . Also assume we have an approxima-
tion qε(x) such that

max
x
|qε(x)− q∗(x)| < ε

where q∗(x) again denotes the “true” distribution as if a full message pass were performed on the
entire dataset of length T . In our setting, q∗ is a discrete distribution (of dimension K × L) over
the latent state sequence, and t is some d-dimensional sufficient statistic function that we assume is
bounded. The proof follows analogously in the continuous case as long as q∗ and qε are absolutely
continuous with respect to the same measure– one simply substitutes the summations over x below
with integration.

To show that ∇̄wLS lies in the same half-plane as ∇̂wLS , it is sufficient that∣∣∣∣∣∣∇̂wLS − ∇̄wLS
∣∣∣∣∣∣
2
< max

(∣∣∣∣∣∣∇̂wLS
∣∣∣∣∣∣
2
,
∣∣∣∣∇̄wLS

∣∣∣∣
2

)
≡MS(w).

Since w and u are independent of q∗(x), we may translate the gradient vectors by u − w and
equivalently seek to show that∣∣∣∣Eqε [cT t(x,y)]− Eq∗ [cT t(x,y)]

∣∣∣∣
2
< MS(w).

Considering the difference component-wise, we have

∣∣∣∣Eqε [cT t(x,y)]− Eq∗ [cT t(x,y)]
∣∣∣∣2
2

=

d∑
j=1

(
cj
∑
x

tj(x,y)qε(x)− cj
∑
x

tj(x,y)q∗(x))

)2

=

d∑
j=1

(
cj
∑
x

tj(x,y)(qε(x)− q∗(x))

)2

≤
d∑
j=1

(
cj
∑
x

|tj(x,y)||qε(x)− q∗(x)|

)2

≤ ε2
d∑
j=1

(
cj
∑
x

|tj(x,y)|

)2

= ε2
∣∣∣∣cT t(x,y)

∣∣∣∣2
2
.

Finally, since we want this quantity to be bounded above by MS(w)2, we choose

ε ≤ MS(w)

||cT t(x,y)||2
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As one would expect, ascent direction is preserved in the limit as ε → 0 as long as t(·, ·) is a
bounded sufficient statistic. Also, we note that while the upper bound is not easy to evaluate to guide
our choice of ε since true messages are unavailable, we show empirically that setting small values
ε = 1 × 10−6 in GrowBuf leads to noticeable performance gains empirically in the experiments
section.

Figure 1: Observations generated from the diagonally dominant (left) and reversed cycles (right)
examples. Ellipses indicate true covariance matrices of underlying components.

9 Synthetic data sets

In this section we present the diagonally dominant and reversed cycles synthetic data sets in detail.

The diagonally dominant data set uses the following transition matrix:

A =



.999 .001 0 0 0 0 0 0
0 .999 .001 0 0 0 0 0
0 0 .999 .001 0 0 0 0
0 0 0 .999 .001 0 0 0
0 0 0 0 .999 .001 0 0
0 0 0 0 0 .999 .001 0
0 0 0 0 0 0 .999 .001
.001 0 0 0 0 0 0 .999


.

We see that there is a large probability that the observation sequence remains in the same state. The
component means are given by

µ = {(0, 20); (20, 0); (−90,−30); (30,−30); (−20, 0); (0,−20); (30, 30); (−30, 30)} ,

where all component covariances are given by the 2 × 2 identity matrix, I2. The emission distri-
butions and simulated data are depicted in Fig. 1 (left) and are meant to be highly identifiable so
that learning is largely likelihood-dominated. This illustrates the importance of sampling disparate
sections of the observation sequence in order for the global updates to contain sufficient information
to obtain accurate estimates.

The reversed cycles data set consists of two 3-state cycles with essentially deterministic dynamics.
The two cycles are connected by two bridge states that the process visits rarely to switch between
the cycles. The state dynamics correspond to the following transition matrix:

A =



.01 .99 0 0 0 0 0 0
9 .01 .99 0 0 0 0 0
.85 0 0 .15 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 .01 .99 0 0
0 0 0 0 0 .01 .99 0
0 0 0 0 .85 0 0 .15
1 0 0 0 0 0 0 0


.
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The emission means are set to

µ = {(−50, 0); (30,−30); (30, 30); (−100,−10); (40,−40); (−65, 0); (40, 40); (100, 10)} ,

with covariance matrices given by 20∗I2. Observations generated from this model and the emission
distributions are shown in Fig. 1 (right). The means of emissions 1 and 5, states 2 and 6, and states
3 and 7 have indistinguishable means, but the cycles 1→ 2→ 3 and 5→ 6→ 7 visit the means in
reverse orders. The emission means of the bridge states are far from the two cycles so that they are
identifiable. Learning the transition dynamics in this case is key in order to learn the overlapping
emissions.

10 Discussion of timing experiment

Here we explain our choice of settings for the timing comparison between SVIHMM and batch VB
in Sec. 4 of the main paper. We implemented both the SVIHMM and batch VB algorithms in Python
except that the forward-backward algorithm was written in C++. Additionally, since SVIHMM
operates on shorter sequences than batch VB it does not benefit as much from the optimized forward-
backward algorithm. The gradient computations for SVIHMM were not optimized and are subject
to Python overhead, however, the coordinate-ascent update for bath VB are vectorized using Numpy.
Therefore, in order to compare the batch VB and SVIHMM algorithms fairly we set T = 3 million
and M = 1 as increasing M results in higher overhead due to the interpreted nature of Python
which could be mitigated in C++. Since M is small, L must be chosen relatively large in order to
obtain informative gradients. For large L the growBuf routine negligibly affects the predictive log-
likelihood and the running time of the algorithm since the length of the subchain causes the message
error to be small and thus few observations are added as a buffer.
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