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3 Optimization

We now consider the optimization in Eq. (1) where X̄, D̄, S̄, H̄ and f̄ are the non-normalized vari-
ables w.r.t. the baseline concentration. The problem is not jointly convex, but becomes convex w.r.t.
one variable while keeping fixed the others since the total variation regularization term is also con-
vex. Hence, this problem is optimized using a block coordinate descent strategy [1, Section 2.7] that
iteratively optimizes a group of variables while fixing the others. In addition. the l0-norm constraints
requires that cell centroids and spike train are estimated by convolutional matching pursuit [11];
while the spatio-temporal filters can be learnt using gradient descent [12], K-SVD approach [11], or
closed-form formulation.
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The spatial vectorization of the full convolution between a matrix D and a vector u ( D~u) satisfies
the following equality: vec(D~u) = vec(D)uT . Assuming X ∈ RMN×T from now on, Eq. (1) is
rewritten as:
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3.1 Update of baseline Calcium Concentration

The spatial and temporal component of the baseline Calcium concentration {vec(Bs),bt} is ap-
proximated by the decomposition of the residual data X̃ into two matrices of rank 1, and it is also
used to normalized it into relative percentage of fluorescence change. This estimation is achieved
by minimizing:

min
Bs>0,bt>0

∥∥∥(X̃− vec(Bs)[bt]T
)
�
(
vec(Bs)[bt]T

)∥∥∥2

F
+ λ‖Bs‖TV , (3)

where X̃ = X̄−
∑K

k=1 vec
(∑J

j=1 D̄k,j ∗ H̄j

) [∑L
l=1 s̄k,l ∗ f̄l

]T
, and ‖ ·‖TV is any total variation

regularization term as isotropic, anisotropic, high-order, and non-local.

Instead of minimizing directly Eq. (3), we infer both components as a standard non-negative matrix
factorization with the constraint of being strictly positive. The estimated spatial and temporal com-
ponent are then used to normalize the residual reconstruction. This approximation still computes
relative fluorescence changes while avoids the preference of matching large intensities on Eq. (3).

Following [3, Lemma3.1], [7, 4] and the alternation between multiplicative update rules, the spatial
component Bs is inferred by taking advantage of well-developed total-variation solvers on
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∥∥∥∥∥ X̃bt
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while the temporal component bt is inferred by minimizing
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3.2 Change of variables before updating sparse space-time deconvolution terms

The optimization of the spatio-temporal filters and its corresponding cell centroid and spike train
is achieved using block-coordinate descent [1, Section 2.7] due to the joint non-convexity. For
simplicity on the update formulas, we apply the next change of variables:
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Hence, the minimization of Eq. (2) is rewritten as:
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3.3 Update Cell Centroids Dk,j

The optimization of Dk,j includes a l0-norm that aims to infer, at most, one location of only one
cell type per basis function. This minimization is written as

min
D

∥∥∥∥∥∥X−
K∑

k=1

vec

 J∑
j=1

Dk,j ∗Hj

 ũT
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where ũk =
∑L

l=1 sk,l ∗ fl is the result of the temporal convolutional sparse coding of the kth basis
function. The inference of Eq. (9) is NP-hard due to l0-norm constraints, but greedy algorithms
as matching pursuit [8] has been proposed to handle this problem and achieved good performance,
e.g. patch-based dictionary learning [10]. Given a signal and a dictionary, this algorithm iteratively
chooses a basis function on the dictionary that most reduces the reconstruction error given the current
residual. In our case, we aim to find the basis function, the filter, and the cell location that most
decreases the following reconstruction error without constraints

min
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T
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where D:,k,j is the vectorization of the kth basis function of the jth filter Dk,j , tr(·) is the trace
operator, and H̃j is the Toeplitz matrix of the jth filter. The convolutional matching pursuit for
inferring cell location and type is summarized in Algorithm 1. Step 5 can be accelerated by applying
the Gramm matrix on the Toeplitz matrix at each time a basis function is updated as done in [11, 9, 8].
In contrast, step 11 projects cell centroids to the convex set defined in the main manuscript.

Algorithm 1 Convolutional Matching Pursuit for inferring Dk,j

1: Input: Data matrix X, number of basis functions K and of spatial filters J , filters Hj and
temporal descriptions Ũ = [ũ1 . . . ũK ].

2: Initialization: D:,k,j = 0 ∀k, j, and active set Λ = {1, . . . ,K}
3: for k = 1, . . . ,K do
4: for i ∈ Λ and j = 1, . . . , J do

5: Update residual gradient:
∂

∂D:,i,j
:= H̃T

j Xũi −
∑
q,r

ũT
q ũiH̃

T
j H̃rD:,q,r,

6: end for
7: Find [c?, i?, j?] = arg max

c,i∈Λ,j

∂

∂Dc,i,j

8: Set Dc?,i?,j? =
∂

∂Dc?,i?,j?

9: Remove from active set Λ = Λ− {i?}
10: end for
11: Set D:,q,r = sign (D:,q,r)
12: Output: Updated the location and type of cell per each basis function Dk,j .

3.4 Update Spike Train sk,l

The optimization of the spike train sk,l also includes a l0-norm that avoids the use of multiple
activation patterns at the same time in the same basis function. Then, the spike train is inferred by
minimizing
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min
S≥0
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where d̃k =
∑J

j=1 Dk,j∗Hj is the vectorized description of the kth cell (basis function) and S is the
concatenation of all the spike trains S = [s1,1 . . . s1,L . . . sK,1 . . . sK,L]. Following the similarities
of the previous section, we again use convolutional matching pursuit to infer the locations and the
activation patterns that most decreases the current reconstruction error without constraints

min
S≥0

∥∥∥∥∥∥X−
K∑

k=1

d̃k

[
L∑
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T d̃ks
T
k,l +

∑
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d̃T
k d̃rF̃lsk,ls

T
r,qF̃

T
q

 , (12)

where F̃l is the Toeplitz matrix of the convolutional filter fl. The convolutional matching pursuit
for updating the spike train is summarized in Algorithm 2, and several convergence criteria can be
used such as maximum number of iterations with a subsequent threshold, or the decrease of the
reconstruction error between subsequent steps is less than a threshold [9].

Algorithm 2 Convolutional Matching Pursuit for inferring sk,l

1: Input: Data matrix X, number of basis functions K and of temporal filters L, filters fl and
temporal descriptions D̃ = [d̃1 . . . d̃K ].

2: Initialization: sk,l = 0 ∀k, l, and active set Λt,k = {1, . . . , L} ∀k, t = {1 . . . n}
3: while (not converged) do
4: for k = 1, . . . ,K and l = 1, . . . , L do

5: Update residual gradient:
∂

∂sk,l
:= F̃T

l X
T d̃k −

∑
q,r

d̃T
k d̃qF̃

T
l F̃rsq,r,

6: end for
7: Find [c?, i?, j?] = arg max

c,i,j∈Λc,i

∂

∂sc,i,j

8: Set sc?,i?,j? = sc?,i?,j? +
∂

∂sc?,i?,j?
9: Remove from active set Λc?,i? = Λc?,i? − {j?}

10: end while
11: Output: Updated the firing location and activation pattern per each basis function sk,l.

3.5 Update Spatial filters H

Given the inferred locations and type of cells and its corresponding temporal description ũk, we
would like to learn the cell appearance of each cell type Hj so that minimizes the following recon-
struction error:

min
H≥0

∥∥∥∥∥∥X−
K∑

k=1

vec

 J∑
j=1

Dk,j ∗Hj

 ũT
k

∥∥∥∥∥∥
2

F

s.t. ‖Hj‖2F ≤ 1,∀j, (13)

This filter learning can be accomplished using different strategies such as a projected gradient de-
scent, block-coordinate descent, or a closed-form formulation. The gradient descent is well-known

4



first-order optimization algorithm that iteratively moves towards the direction pointed by the neg-
ative gradient of the objective function. This requires to introduce a logarithm barrier function in
Eq. (13) [2] in order to tackle the positivity constraints. In spite of the slow convergence rates, we
found that gives poor performance on learning meaningful appearances as also mentioned in [10, 9].
Instead, block-coordinate descent has been successfully applied to learn overcomplete dictionar-
ies [10, 6]. This technique aims to infer a spatial filter (or a dictionary element for a general dictio-
nary learning) while the others are kept fixed, and is formulated as follows:

min
Hj∈H

∥∥∥∥∥∥X−
∑
k

vec

∑
i 6=j

Dk,i ∗Hi

 ũT
k −

∑
k

vec (Dk,j ∗Hj) ũ
T
k

∥∥∥∥∥∥
2

F

= min
Hj∈H

∥∥∥∥∥Ej −
∑
k

Dk,j ∗Hjũ
T
k

∥∥∥∥∥
2

F

(14)

where Ej is the residual reconstruction using all the filters except for the current filter and
H =

{
H s.t. H ≥ 0 and ‖H‖2F ≤ 1

}
. Eq. (14) can be minimized on a closed–form least square

problem or based on a patch–based dictionary learning [10] proposed by Szlam et al. [11]. The
latter consists of extracting all the volume patches where that jth cell type is active regardless of
the activation pattern, and then projecting them to the spatial domain according to the correspond-
ing activation pattern. This procedure exploits the sparsity on both space and temporal domain to
collect a set of image patches that are approximated by the jth cell appearance Hj and its temporal
contribution. Then, the learning of jth cell appearance Hj can be formulated as a the minimization
of the reconstruction error by decomposing all the extracted image patches into two components of
rank 1. This procedure is similar to patch-based dictionary learning [10, 6, 5] but we only infer a
two components of rank 1 instead of an overcomplete decomposition. However, the performance of
this procedure depends on the spatio-temporal sparsity of the sequence since some of these volume
patches may be overlap in space and time in the whole sequences and hence they could introduce
some undesired artifacts on the filters.

In contrast, the closed-form formulation handles overlapping volume patches because it considers
the whole sparse representation and exploits the convolutional properties. Hence, the close-form
solution of learning the jth cell appearance is written with some algebra as

min
Hj∈H

∥∥∥∥∥Ej −
∑
k

vec (Dk,j ∗Hj) ũ
T
k

∥∥∥∥∥
2

F

= min
Hj∈H

∥∥∥∥∥Ej −
∑
k

D̃k,jH:,jũ
T
k

∥∥∥∥∥
2

F

= min
Hj∈H

∥∥∥Ej −
[
D̃1,j . . . D̃K,j

]
[IK ⊗H:,j ] Ũ

T
∥∥∥2

F

= min
Hj∈H

∥∥∥vec (Ej)−
(
Ũ⊗ D̃

)
vec (IK ⊗H:,j)

∥∥∥2

F

= min
Hj∈H

∥∥∥vec (Ej)−
(
Ũ⊗ D̃

)
MH:,j

∥∥∥2

F
, (15)

where Ũ = [ũ1 . . . ũK ], D̃k,j is the Toeplitz matrix of the convolution image Dk,j , ⊗ is the Kro-
necker product, H:,j is the vectorization of the filter Hj , IK denotes the identity matrix of size K,
and M is an operator matrix that maps H:,j to vec (IK ⊗H:,j).

Finally, Eq. (15) can be extended to all the spatial filters, and hence we can avoid this iterative update
of the filters and tackle spatially and temporally overlapping among spatial filters. Therefore, the
minimization w.r.t all the spatial filters is written as follows:
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min
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 ũT
k

∥∥∥∥∥∥
2

F

= min
H∈H

∥∥∥∥∥∥X−
∑
k,j

D̃k,jH:,jũ
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F
, (16)

where H is the column-concatenation of all the vectorized spatial filters [H:,1; . . . ;H:,J ] and M is
an operator matrix that maps H to produce vec (IK ⊗H).

3.6 Update Temporal filters f

Given the inferred firing locations and the activation pattern for each cell d̃k, we would like to learn
the different activation patterns fl so that minimizes the following reconstruction error:

min
F≥0

∥∥∥∥∥∥X−
K∑

k=1

d̃k

[
L∑

l=1

sk,l ∗ fl

]T∥∥∥∥∥∥
2

F

s.t.‖fl‖22 ≤ 1,∀l. (17)

The learning of the temporal filters can be accomplished using the same procedure than the previous
section (Sect. 3.5). Hence, we only update the formulas w.r.t. the activation patterns. The block-
coordinate descent is written as:

min
F∈F

∥∥∥∥∥∥∥X−
∑
k

d̃k

∑
i 6=l

sk,l ∗ fl

T

−
∑
k

d̃k [sk,l ∗ fl]T

∥∥∥∥∥∥∥
2

F

= min
F∈F

∥∥∥∥∥El −
∑
k

d̃kf
T
l S̃T

k,l

∥∥∥∥∥
2

F

(18)

where El is the residual reconstruction using all the filters except for the current filter, F ={
F s.t. f ≥ 0 and ‖f‖22 ≤ 1

}
and S̃k,l is the Toeplitz matrix of the convolution of the kth spike

train of the lth filter, sk,l.

The close-form formulation of a single temporal filter is
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min
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F
. (19)

Finally, the generalization for jointly learning all the filters is the following:

min
f∈F

∥∥∥∥∥∥X−
∑
k,l

d̃kf
T
l S̃T

k,l

∥∥∥∥∥∥
2

F

= min
f∈F

∥∥∥∥∥X−∑
k

d̃k

(∑
l

fTl S̃T
k,l

)∥∥∥∥∥
2

F

= min
f∈F

∥∥∥∥∥X−∑
k

d̃k

[
fT1 . . . fTL

] [
S̃k,1 . . . S̃k,L

]T∥∥∥∥∥
2

F

= min
f∈F
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∥∥∥∥∥
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F
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[
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)
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)
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∥∥∥2

F
. (20)

4 Results

4.1 Artificial Sequences

Fig. 1 shows the ground truth for the synthetic data with 20 cells with two similar appearances,
RA equal to 7 and two activation pattern with different decay function. Our sparse space-time
deconvolution is able to identify and monitor neuronal activity at single cell while learns the cell
appearance and the underlying activation patterns, and also able to discriminate among cell type
given the appearance filters.

4.2 Computational Cost Comparison

Average computational time for each method and the proposed method with and without filter learn-
ing are shown in Table. 1.

Learning cell shapes and impulse responses is basically the bottleneck of the algorithm and the main
reason of this high computational cost. Once the filters are learned, i.e. from a set of training se-
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Method Time (sec)
Adina 1901

NMF+Adina 2100
CSBC+SC 601

CSBC+STD 100
SSTD (w filter learning) 900

SSTD (w/o filter learning) 430

Table 1: Comparison of computational cost

quences, the proposed method can use these a priori information and only infer the cell locations and
the spike train faster than before and comparable with the other algorithms that requires to conduct
all the analysis for each new sequence and without exploiting a prior information. The following
table shows the average computational time for each method and also includes the proposed method
with and without the learning of the filters.

4.3 Inferring spike trains

Fig. 2 shows that, unsurprisingly, best results are obtained when methods use the true impulse re-
sponse rather than learning it from the data. Given the true impulse response, both FAST and STD
fare better than Peeling, showing that a greedy algorithm is faster but gives somewhat worse results.
Even when learning the impulse response, STD outperforms FAST and Peeling but is worse than
using the true impulse.

4.4 Real Sequences

Fig. 3 and 4 show the learned cell appearances and impulse response for different number of filters
and random initializations. Despite of random initialization, the proposed formulation tends to learn
similar cell appearances and impulse responses.
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Figure 1: Example of ground truth for the synthetic data. From top to bottom: outline of all neurons
used to generate the artificial sequence superimposed on a maximum intensity projection across the
free-noise image sequence and their respective Calcium transients; the same outline but on the noisy
images; and finally, the inferred cells projected image and the approximated Calcium transients by
the convolution of a spike train and two activation pattern filters.
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Figure 2: Receiver operating characteristic (ROC) of different methods for spike train estimation.
Methods that need to learn the activation pattern perform worse than those using the true (but gener-
ally unknown) activation pattern and its parameters. FAST is at an advantage here because it infers
the spike magnitude at each time step instead of a binary variable as in STD or Peeling.
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Figure 3: Qualitative results of learning cell appearance and impulse response on two real data sets.
The data set on the left column shows mostly cell bodies, while the data set on the right shows
both cell bodies (large) and dendrites (small). For each data set, the left shows the two learned cell
appearance and the right shows two learned impulse responses for multiple random initializations.
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Figure 4: Qualitative results of learning cell appearance and impulse response on two real data
sets. The data set on the left column shows mostly cell bodies, while the data set on the right
shows both cell bodies (large) and dendrites (small). For each data set, the left shows the three
learned cell appearance and the right shows the three learned impulse responses for multiple random
initializations.
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