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The purpose of this supplementary document is to provide further details for the paper
”Bayesian Inference for Structured Spike and Slab Priors”.

Model specification

The model is a standard linear model of the form
y=Ax+e (1)

where y € RV, z € RP?, A € RV*P and eR". The noise in the system is assumed to be
i.i.d. Gaussian distributed

plylz) = N (y|Az, o31) (2)
and we impose a spike and slab model on the prior
p(zilzi) = (1 — 2) 0 (@) + 2N (l‘i 0,7‘) (3)
The support variables z = {21, 22, ..., zp } is assumed to be Bernoulli distribution
p(2i]7i) = Ber (2i|¢ (7)) (4)

where ¢ : R — (0, 1) is the standard normal CDF function. Finally, we impose a multivariate
Gaussian density on v = {v1,72, .., 7D}

p(Y) =N (7|10, Zo) (5)

The joint posterior over @, z and ~

D

D
p(z, z,v]y) = %N (y| Az, o3I) H [(1 = 2:) 6 (25) + 2N (2:]0,7)] HBer (2i|6 () N (7| 120, o)
i=1 i=1 (6)

Variational distribution for Expectation propagation

The joint variational distribution is of the form

Q(x,z,v)=N (w’rh, ‘7) f[Ber (zl‘(b(%))/\/' ('y‘ﬁ, f])

fi(@) f2(2) f5 (z,9) 1 (7)

=N<Jf|m1,‘~/1>/\/<w|m27‘72> ﬁBer (Zi|¢(’72,z‘))ﬁBer (Zi‘¢(?3,1:))/\/(’7|li3,23>f\/(’)’|/i4,2~34)
—_— i=1 i=1 —_—
f1

fo fs J1




where Vg is diagonal with elements {’l~)2’j} and similar for 533. We immediately make the
following identifications. The first approximation term f; corresponds to the likelihood term
and the fourth term f4 corresponds to the prior on «. Thus, we only have to approximate
the parameters in the second and third term, i.e. f, and f5 .

Computing joint approximation Q from fa

Given ﬁ for i =1,2,3,4, we get:

~ ~ - —1

V = ( 171 + 271> (8)
= (}‘Hﬁl +Vy n@) 9)
- - —1

£ (3457 (10)
p=3 (2;1/13 + 2114;14) (11)
’Yj :t(’?Q-,jaﬁ/B,j)a VJ € {17~'7D} (12)

We have defined the following auxilary functions

o [(A=@)ow) T i gt | (0@ —ew) T
) =0 [((1—¢<y»¢<x>“) ] H) =0 l( oo ) ]

where ¢~ !(z) is the probit function. The function ¢(-,-) amounts to computing the product
of two Bernoulli densities parametrized using ¢ (-) and d(-,-) is the corresponding function
for quotients of Bernoulli densities.

Computing the cavity distributions for fg

Q\QJ(:B 2m) = Qz, z,v) N(a:’rh, V) Hi‘;l Ber (ziw(%))-/\[('ﬂﬁ’ S) (13)
VT i) Ber (2;]¢ (2,5)) N (25]1ma,5, 2 )

The parameters for the j’th marginal cavity distribution then becomes:
, N1 -1
v = ((Vj ) - ) (14)
A RN |
m)29 = )2 ((ij) i — 5;§m27j) : (15)

Y\ = d (35, %2,7) (16)

Moment matching for the second term

Computing the normalization for fg,jQ\2’j:

Z2,j :Z//fz,j(wjaZj)Q\Q’j (z, z,7) dyde
= Z foi(xj,25) Z Q\Q’j (x, z,7) dyda, jdz; (17)
z,-/ i\Zj, %4 z\j// AT

Plugging in the densities
D

Zoj = Z/ [(1—zj)8(x;) + 2N (;]0,7)] Z//N (:c|m\2’j, V\Q’j) HBer (zz|q5 (’71;\2’j)) N (‘y’ﬂ,f]) dyda, ;
zj 2\ j =1

= Z/ [(1 — Zj)é(.%‘j) + Zj./\/ (.%‘j

= (1 —¢ (’y]\»m)) N <O|m]\2’j, vj\f]) + ¢ (7]\2’j) N (mj |m>2’j, T+ vj\.Q’j) (18)

0,7)] Ber (zj’(b (fy}”)) N (mj‘m>2’j,vj\-2’j> dz;



For the moment matching, we need the following moments:
T
Efz,jQ\z'j (=], Efz,jQ\z‘j [a:a: ] & ]EfQ,jQ\2’j (2]
The moment matching results in the following update equations:
. 2
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new __ a; (m> JT) U]\'QJT
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where
a; =¢ (7}“) N (0|mj\-27j7 T+ 1}]\-2’j>
= el )

Computing the cavity distributions for the third term

Qw,2y) N (@], V)12, Ber (2l (o) M (+]. %)

Q\B’j(my‘z77) = = S
f3,5(25,75) Ber (Zj‘(b('?&j))-/\[(,yj‘ﬂ37j723,j)

The parameters for the j’th marginal cavity distribution then becomes
s = () - (=) 7)
! = 2 ((‘793)1 ;i — (23’].)71 ﬁ3,j> :
7" = d(,95.5)

Moment matching for the third term

We need to following moments
]EfB,jQ\:;’j [7] ’ ]Efs,jQ\s’j ["Y’}/T] 5 & ¢ (7)ncw = Efs,jQ\3‘-7 [z]

Computing the normalization for f3 ;Q\37

Z3j = Z//f&j(zjﬁj)Q\S’j (z,2,7) dyde
:Z f3,'(z”’y')z Q\&j (wazv’Y)dwd’Y\’d’Y’
Zj/]JJz\j// S

= Z/f:s,j(zjﬁj)@\g’j (2,75) dv;

(19)

(32)



where x, z\; and ~\; are marginalized out. Plugging in the densities
Zos =Y [ Ber (2516 () Ber (5516 (177)) 4 (™. 257 )
zj

Carrying out the sum

Zoy = [ [0=000) (1= 0 (5")) + 606 (1)) A7 (3], 5 ) ey

Applying linearity of integrals

o ) fo s
\sj /¢ V)N %M?’J,zj\.s’j)dw

The integral evaluate to

\3.J
Joonn %W“”ﬁ“%m:¢(ujl):a@z@d

3,j
u} !

/ \3,j
1+3%;
Therefore, the normalization becomes

Zsg= (10 (1)) (1= Ca) + 6 (3)*7) Css

Similarly, we compute the first moment of z

new 1 ]
60" = 5= [ hus(5,9)Q (5,7
gz

where we have defined z as

z =

= ZL Z / z;Ber (2|0 (v;)) Ber (Zj|¢ (7}“)) N ('Yj ]u}g’j, 2}3’j) dy;

3 \3, 3,j
\ ’ /¢ )N %Iuj ) ]) dy;
_ 1 \3, ])
T s ¢ ( Cs.i
where the result in eq. is used. Therefore

e

o= (1))

Similarly, the first moment w.r.t. -; evaluates to

e — Zij Z/%'Ber (26 (7)) Ber (zjlgzs (v}?”j)) N (wlu]\-?”ja 2}‘”) dv;
zj

Hence, the update becomes

(35)

(36)

= Z;j/w (=00 (1=0(3")) + 006 ()] V (3>, 23> ) dvg

= (120 () [ -0l N (i 2 a

+ Zi ¢('7]\3J)/'7j¢(% (), 27 vy

(42)



Using the the results from ch. 3.9 in the Gaussian process book (www.gpml.org), we have
the following result:

SN (2]0,1)

037]‘\/ 1+ E}S’j

Note, that the scaling Cs ; is necessary since the integral is not normalized. Now define

=IN (2]0,1)

/%¢(%‘)N (7j|/~t>3’j7§3>3’j) dy; = Coy | ™ + (43)

W3, = C3J‘/L>3’j + o (44)
1+37
and inserting this result yields the expression for the first moment
new 1 \J 2J 2J
e B
J

And for the second moment, we get

1 | o
By, 000 1] = 5= 30 [ 2B (50 () Ber (510 (7)) (i) 27 g

_ Zij (1-0 (1)) [/ RN (), £)7) oy - /’yquﬁ () N (], 279 d%}

1 . . )
+%f«ﬁ0/ﬁme@m$ﬂ$“ww (46)

Using the same result for the integral, we get the following result
2
2]\3’]> zN (2|0,1)
\3,j = M3,j
(1+=*)

. | e
/%%(%’)N (’Yj{u]\g’],xj\s’j) dy; =2, Wy j + Cs {EY”] - (M}g’j) } -
Inserting M3 ;:

Bae B = o (10 (5) [() 4200 -] 0 (5%9) o) am

5]

Finally, we obtain the variance as:

new 2
EJ' = Efs,jQ\a’j [’YJQ] - Efz,jQ\s'j hj] (48)
The update equations for the mean and variance are then given by:
. 1 a1
m?bﬂ)@”)} (49)
~new Snew new) 1 new N 3,
fiz g =23 ((Ej ) - (2\3’]) m J) (50)
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Figure 1: Illustration of the properties of the low rank approximation of ¥3y. Data are
generated the way as described for experiment 1 in the paper, except that A € R125%500
and the sparsity level is fixed at K/D = 0.1.

Experiment: Effect of low rank approximation

This experiment is designed to investigate the properties and implications of the low rank
approximation of ¥j. We generate the problems in the same ways as in the first experiment
(described in the paper), but now sweep over the rank R of the approximation of ¥ with
fixed problem size, i.e. N = 125 and D = 500. The results are shown in figure [I| For the
specific choice of covariance function, figure b)-(c) shows that a 40-rank approximation
does not introduce significant errors in terms of NMSE and F-measure. but the run time is
reduced by a factor ~ 3.5. The reduction is expected to become even more significant as D
increases.

Experiment: Shepp Logan Recovery

We have also recreated the Shepp-Logan Phantom experiment from [I] with D = 10* un-
knowns, K = 1723 non-zero weights, N = 2K observations and SNR = 10dB. That is,
we generated a set of measurements using the model y = Axy + e, where the true signal
@( is the Shepp-Logan Phantom image (see figure ) For the EP method, we imposed a
squared exponential covariance function with length-scale 8 for « defined on the 100 x 100
image grid. We use three methods for reconstruction xq: Our proposed method, BG-AMP
[2] and an oracle estimator, which computes a least squares estimate based on knowledge of
the true support. We consider the Normalized Mean Square Error (NMSE) of the estimated
coefficients @ as well as the F-measure of the estimated support Z. The reconstructions are
shown in figure[2] where the first row shows the reconstructed coefficients and the second row
shows the reconstructed support. Our proposed method yields F5, = 0.994 and NMSE,,
= 0.336 for this experiment, whereas BG-AMP yields F' = 0.624 and NMSE = 0.717. For
reference, the oracle estimator yields NMSE = 0.326.



(a) True coefficients xo

(d) :i:oracle
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Figure 2: Recovery of the Shepp-Logan Phantom. The first row shows the reconstructed
coefficients & and the second row shows the reconstructed support Z.
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