Supplementary Material

Lemma 3.1. Assume €; ; for (i,j) € Q are i.i.d. sub-gaussian with o = ||€; j||ly,. Then with

probability 1 — %7, |[75(A)|« < ||m5(A)[l« + % V"% 1602 N. Here h > 0 is an absolute
constant associated with the sub-gaussian noise.

Proof. Because X is the optimal solution to Eq.(Z),

%IIY*XII%+FIIXII HY*)O(II%+FIIXH (10)
PluginY; ; = X, ; + €; ; and reorganize the terms, we get
FIAE-§ X st < ==X = 1% +AlL) an
(4,J)€Q

From our assumptions, the noise ¢; ; ~ Sub(c?). From a Hoeffding-type inequality (see proposition
5.10 in [15]), with probability at least 1 — ﬁ,

D €Ay < 2colog N||Ag (12)
(i,5)eQ

where h > 0 is a constant. Combining the two results yields

1 2A e . 4202 log? N
—Al1E < ==(IX]|« — | X + Al[,) + ———=— 13
1813 < (1K — 1% + Al + =7 (13)
By triangle inequality,
IX + Al 2 [[ma(X) +75(A)]« = [7a(X)]« = [75(A)] (14)
We assume X has low rank and A, B are two orthogonal subspace, then
1X + Alle 2 [ Xl + l75(A) |« = [Ima(A)]« (15)
Substitute the result back to (13) and combine with fact that || A% > 0, we have
2c¢%0?\/m
7B (M) < lrg(A)]l« + = log? N (16)
NA
O
Theorem 3.2. Assume RSC for the set D(b,n, N) with parameter k. > 0 where b = M. Let
A=A calo\gﬁ then we have FHAHF < 200(f+ \/ﬂ)lngN with probability at least 1 — %z
where h, ¢ > 0 are constants.
Proof. Combining (13) and (12) yields,
1 2 4c%02log? N Q\F)\ 4c%02log? N
—|AlZ < ==||75(A)]. A _ 17
FIAIE < —lmp(@)) + T < DA+ 2 an
where the second inequality is because the rank of 75 (A) is at most 2r. From RSC property,
k 2v/2r A 4?02 log® N
—JAlE < Z=lAlr + —F— (18)
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The bound on A||r can be subsequently obtained by solving a quadratic equation, and we get
1 2colog N A
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\/m” HF > m + \/7,% ( )

Substituting A\ completes the proof. [



Lemma 33. If || X — X|[r <4, then |Z = %|[r < V26

Proof. Let PSQT be the SVD of vRX, then upon a unitary transformation U = R=2PS? and

V= QS%. Correspondingly ¥ = \/ernVVT = \/;TnQSQT. Note that QSQT is equivalent to the

polar decomposition of X defined as (X7 X )%. The perturbation bound for polar decomposition

(see [9]) then gives
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= V2|X - X||r (20)
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Theorem 3.4. Assume X; are i.i.d samples from a distribution with support only in a subspace

of dimension v and bounded norm | X;| < av/m. Let By and B, be the smallest and largest
eigenvalues of ¥*. Then, for large enough n, with probability at least 1 — -,
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Proof. (sketch) We first bound ||@" — ©*||op, < 20/ /m% by matrix Bernstein inequalities. If /31
is the minimum eigenvalue, || — $*||,, = [|(©™)2 — (©*)2|,p is upper bounded by 75 10" —
O*||op- Finally we have used |2 — S* || < /7| — 2% op- O

Combining this with the previous theorem, we find that for large enough n and ¢, with probability

atleast 1 — 27,
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Theorem 3.5. Suppose | — X*||p < § < B1, ¢ € D(y). For any & € row((Q*)T), our

observation x4 = &4 + €4 where €, ~ Sub(c?) is the noise vector. The predicted ratings over
the remaining entries are given by &4 = Lge s(N'I + Xy 4) *xy. Then, with probability at least

1 — exp(—cy min(cf, v/|g]c})),

P < VNEN S+ 2+ 201%"4)

thb“ — i’¢c
where Cc1,Coy > 0 are constants.

Proof. (sketch) We consider an equivalent optimization problem

Tge = argmin, [w¢;y]T(A’I +3) Hag; vl (23)
where the coordinates ¢ are arranged on top. From optimality of 4 in comparison to y = Z¢-
we can upper bound ||[0; Z4e — &4¢]T (NI 4+ £)~ 2| p (*) in terms of ||&|| and a noise term. The
difference vector [0; £ 4 —Z ¢ ] can be decomposed as [z1; y1]+[—1; yo] where [21,11]T € col(Q*)
and [—z1; y2]T € col((Q*)*) and the goal is to upper bound them separately. By triangle inequality,
we have [0; & ge — ] TN T+3) 72| p > [|[=z1592] T (N T+) 72| p = [[[21; 5] " (N T+2) 72 | .
For a small § we can get upper and lower bounds on (Al + X))~ projected to the two orthogonal
subspaces. Applying these bounds to the previous inequality and (x), we can bound ||[—z1; 2| F
as well as ||z1]|p. Finally, since ¢ € D(y) we can estimate ||[z1;y1]||7 as a function of ||z1]p.
The result follows by combining these and triangle inequality ||zge — Zge|lr < ||[z1;91]]lF +
=215 2]l



(>, |ri)/m. The minimizing distribution of (9) is

Theorem 4.2. Let z; = sign(r}) and h =
=1/2.

given by Pr(u = zh) = Pr(u = —zh)

Proof. Expanding the objective yields
Ep|luu® — 7T ||%

2,2 I~ 12,12
Ep g {uiuj = 2uguiryr; + 1y

B u?)?) - 2BI(Y wirh?] + (3 )

From the privacy constraint, E[(}",u?)?] > E?[},u?] = m?vw?% In addition, because
Eluuglrir, < \/ERZ|E[3]|riri| = vlriri], BI(3Z, wir))?] < v(32; |ri])?. Therefore the ob-

1] A
jective is lower bounded as
m20? = 20(3 0 Iri)? + (5 )
The lower bound is attained when © = \/vz a, where « is a single binary random variable taken
values in {—1, +1} with equal probability. Finally, optimizing v gives v = (%)2
O



