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Lemma 3.1. Assume ✏
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where h > 0 is a constant. Combining the two results yields
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By triangle inequality,
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where h, c > 0 are constants.

Proof. Combining (13) and (12) yields,
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where the second inequality is because the rank of ⇡
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The bound on �k
F

can be subsequently obtained by solving a quadratic equation, and we get

1p
mn

k�k
F

 2c� logNp
N

+ 2

p
2r

�



(19)

Substituting � completes the proof.
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Theorem 3.4. Assume ˚
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Proof. (sketch) We consider an equivalent optimization problem
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�

c in comparison to y = x̊

�

c

we can upper bound k[0; x̂
�

c � x̊

�

c
]

T

(�

0
I + ⌃)

� 1
2 k

F

(*) in terms of kx̊k and a noise term. The
difference vector [0; x̂

�

c�x̊

�

c
] can be decomposed as [x

1

; y

1

]+[�x

1

; y

2

] where [x
1

, y

1

]

T 2 col(Q⇤
)

and [�x

1

; y

2

]

T 2 col((Q⇤
)

?
) and the goal is to upper bound them separately. By triangle inequality,

we have [0; x̂
�

c � x̊

�

c
]

T

(�

0
I+⌃)

� 1
2 k

F

� k[�x

1

; y

2

]

T

(�

0
I+⌃)

� 1
2 k

F

�k[x
1

; y

1

]

T

(�

0
I+⌃)

� 1
2 k

F

.
For a small � we can get upper and lower bounds on (�I + ⌃)
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Theorem 4.2. Let z
i

= sign(r0
i

) and h = (
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