
Distributed Power-law Graph Computing:
Theoretical and Empirical Analysis

Cong Xie
Dept. of Comp. Sci. and Eng.
Shanghai Jiao Tong University

800 Dongchuan Road
Shanghai 200240, China

xcgoner1108@gmail.com

Ling Yan
Dept. of Comp. Sci. and Eng.
Shanghai Jiao Tong University

800 Dongchuan Road
Shanghai 200240, China

yling0718@sjtu.edu.cn

Wu-Jun Li
National Key Lab. for Novel Software Tech.

Dept. of Comp. Sci. and Tech.
Nanjing University

Nanjing 210023, China
liwujun@nju.edu.cn

Zhihua Zhang
Dept. of Comp. Sci. and Eng.
Shanghai Jiao Tong University

800 Dongchuan Road
Shanghai 200240, China

zhang-zh@cs.sjtu.edu.cn

Abstract

With the emergence of big graphs in a variety of real applications like social
networks, machine learning based on distributed graph-computing (DGC) frame-
works has attracted much attention from big data machine learning community.
In DGC frameworks, the graph partitioning (GP) strategy plays a key role to af-
fect the performance, including the workload balance and communication cost.
Typically, the degree distributions of natural graphs from real applications follow
skewed power laws, which makes GP a challenging task. Recently, many methods
have been proposed to solve the GP problem. However, the existing GP methods
cannot achieve satisfactory performance for applications with power-law graphs.
In this paper, we propose a novel vertex-cut method, called degree-based hash-
ing (DBH), for GP. DBH makes effective use of the skewed degree distributions
for GP. We theoretically prove that DBH can achieve lower communication cost
than existing methods and can simultaneously guarantee good workload balance.
Furthermore, empirical results on several large power-law graphs also show that
DBH can outperform the state of the art.

1 Introduction

Recent years have witnessed the emergence of big graphs in a large variety of real applications,
such as the web and social network services. Furthermore, many machine learning and data mining
algorithms can also be modeled with graphs [14]. Hence, machine learning based on distributed
graph-computing (DGC) frameworks has attracted much attention from big data machine learning
community [14, 16, 15, 7, 12, 8]. To perform distributed (parallel) graph-computing on clusters with
several machines (servers), one has to partition the whole graph across the machines in a cluster.
Graph partitioning (GP) can dramatically affect the performance of DGC frameworks in terms of
workload balance and communication cost. Hence, the GP strategy typically plays a key role in
DGC frameworks. The ideal GP method should minimize the cross-machine communication cost,
and simultaneously keep the workload in every machine approximately balanced.

1

Existing GP methods can be divided into two main categories: edge-cut and vertex-cut methods.
Edge-cut tries to evenly assign the vertices to machines by cutting the edges. In contrast, vertex-cut
tries to evenly assign the edges to machines by cutting the vertices. Figure 1 illustrates the edge-
cut and vertex-cut partitioning results of an example graph. In Figure 1 (a), the edges (A,C) and
(A,E) are cut, and the two machines store the vertex sets {A,B,D} and {C,E}, respectively. In
Figure 1 (b), the vertex A is cut, and the two machines store the edge sets {(A,B), (A,D), (B,D)}
and {(A,C), (A,E), (C,E)}, respectively. In edge-cut, both machines of a cut edge should maintain
a ghost (local replica) of the vertex and the edge data. In vertex-cut, all the machines associated
with a cut vertex should maintain a mirror (local replica) of the vertex. The ghosts and mirrors are
shown in shaded vertices in Figure 1. In edge-cut, the workload of a machine is determined by
the number of vertices located in that machine, and the communication cost of the whole graph is
determined by the number of edges spanning different machines. In vertex-cut, the workload of a
machine is determined by the number of edges located in that machine, and the communication cost
of the whole graph is determined by the number of mirrors of the vertices.

(a) Edge-Cut (b) Vertex-Cut

Figure 1: Two strategies for graph partitioning. Shaded vertices are ghosts and mirrors, respectively.

Most traditional DGC frameworks, such as GraphLab [14] and Pregel [16], use edge-cut method-
s [10, 19, 20, 21] for GP. Very recently, the authors of PowerGraph [7] find that the vertex-cut
methods can achieve better performance than edge-cut methods, especially for power-law graph-
s. Hence, vertex-cut has attracted more and more attention from DGC research community. For
example, PowerGraph [7] adopts a random vertex-cut method and two greedy variants for GP.
GraphBuilder [9] provides some heuristics, such as the grid-based constrained solution, to improve
the random vertex-cut method.

Large natural graphs usually follow skewed degree distributions like power-law distributions, which
makes GP challenging. Different vertex-cut methods can result in different performance for power-
law graphs. For example, Figure 2 (a) shows a toy power-law graph with only one vertex having
much higher degree than the others. Figure 2 (b) shows a partitioning strategy by cutting the vertices
{E, F, A, C, D}, and Figure 2 (c) shows a partitioning strategy by cutting the vertices {A, E}. We
can find that the partitioning strategy in Figure 2 (c) is better than that in Figure 2 (b) because the
number of mirrors in Figure 2 (c) is smaller which means less communication cost. The intuition
underlying this example is that cutting higher-degree vertices can result in fewer mirror vertices.
Hence, the power-law degree distribution can be used to facilitate GP. Unfortunately, existing vertex-
cut methods, including those in PowerGraph and GraphBuilder, make rarely use of the power-law
degree distribution for GP. Hence, they cannot achieve satisfactory performance in natural power-
law graphs. PowerLyra [4] tries to combine both edge-cut and vertex-cut together by using the
power-law degree distribution. However, it is lack of theoretical guarantee.

(a) Sample

(b) Bad partitioning

(c) Good partitioning

Figure 2: Partition a sample graph with vertex-cut.

2

In this paper, we propose a novel vertex-cut GP method, called degree-based hashing (DBH), for
distributed power-law graph computing. The main contributions of DBH are briefly outlined as
follows:

• DBH can effectively exploit the power-law degree distributions in natural graphs for vertex-
cut GP.

• Theoretical bounds on the communication cost and workload balance for DBH can be de-
rived, which show that DBH can achieve lower communication cost than existing methods
and can simultaneously guarantee good workload balance.

• DBH can be implemented as an execution engine for PowerGraph [7], and hence all
PowerGraph applications can be seamlessly supported by DBH.

• Empirical results on several large real graphs and synthetic graphs show that DBH can
outperform the state-of-the-art methods.

2 Problem Formulation
Let G = (V,E) denote a graph, where V = {v1, v2, . . . , vn} is the set of vertices and E ⊆ V × V
is the set of edges inG. Let |V | denote the cardinality of the set V , and hence |V | = n. vi and vj are
called neighbors if (vi, vj) ∈ E. The degree of vi is denoted as di, which measures the number of
neighbors of vi. Please note that we only need to consider the GP task for undirected graphs because
the workload mainly depends on the number of edges no matter directed or undirected graphs the
computation is based on. Even if the computation is based on directed graphs, we can also use the
undirected counterparts of the directed graphs to get the partitioning results.

Assume we have a cluster of p machines. Vertex-cut GP is to assign each edge with the two corre-
sponding vertices to one of the pmachines in the cluster. The assignment of an edge is unique, while
vertices may have replicas across different machines. For DGC frameworks based on vertex-cut GP,
the workload (amount of computation) of a machine is roughly linear in the number of edges located
in that machine, and the replicas of the vertices incur communication for synchronization. So the
goal of vertex-cut GP is to minimize the number of replicas and simultaneously balance the number
of edges on each machine.

Let M(e) ∈ {1, . . . , p} be the machine edge e ∈ E is assigned to, and A(v) ⊆ {1, . . . , p} be
the span of vertex v over different machines. Hence, |A(v)| is the number of replicas of v among
different machines. Similar to PowerGraph [7], one of the replicas of a vertex is chosen as the master
and the others are treated as the mirrors of the master. We let Master(v) denote the machine in
which the master of v is located. Hence, the goal of vertex-cut GP can be formulated as follows:

min
A

1

n

n∑
i=1

|A(vi)|

s.t. max
m
|{e ∈ E |M(e) = m}| < λ

|E|
p

, and max
m
|{v ∈ V |Master(v) = m}| < ρ

n

p
,

where m ∈ {1, . . . , p} denotes a machine, λ ≥ 1 and ρ ≥ 1 are imbalance factors. We de-

fine 1
n

n∑
i=1

|A(vi)| as replication factor, p
|E| max

m
|{e ∈ E | M(e) = m}| as edge-imbalance, and

p
n max

m
|{v ∈ V | Master(v) = m}| as vertex-imbalance. To get a good balance of workload, λ

and ρ should be as small as possible.

The degrees of natural graphs usually follow skewed power-law distributions [3, 1]:

Pr(d) ∝ d−α,

where Pr(d) is the probability that a vertex has degree d and the power parameter α is a positive
constant. The lower the α is, the more skewed a graph will be. This power-law degree distribu-
tion makes GP challenging [7]. Although vertex-cut methods can achieve better performance than
edge-cut methods for power-law graphs [7], existing vertex-cut methods, such as random method in
PowerGraph and grid-based method in GraphBuilder [9], cannot make effective use of the power-
law distribution to achieve satisfactory performance.

3

3 Degree-Based Hashing for GP
In this section, we propose a novel vertex-cut method, called degree-based hashing (DBH), to ef-
fectively exploit the power-law distribution for GP.

3.1 Hashing Model

We refer to a certain machine by its index idx, and the idxth machine is denoted as Pidx. We first de-
fine two kinds of hash functions: vertex-hash function idx = vertex hash(v) which hashes vertex
v to the machine Pidx, and edge-hash function idx = edge hash(e) or idx = edge hash(vi, vj)
which hashes edge e = (vi, vj) to the machine Pidx.

Our hashing model includes two main components:

• Master-vertex assignment: The master replica of vi is uniquely assigned to one of the
p machines with equal probability for each machine by some randomized hash function
vertex hash(vi).

• Edge assignment: Each edge e = (vi, vj) is assigned to one of the p machines by some
hash function edge hash(vi, vj).

It is easy to find that the above hashing model is a vertex-cut GP method. The master-vertex as-
signment can be easily implemented, which can also be expected to achieve a low vertex-imbalance
score. On the contrary, the edge assignment is much more complicated. Different edge-hash func-
tions can achieve different replication factors and different edge-imbalance scores. Please note that
replication factor reflects communication cost, and edge-imbalance reflects workload-imbalance.
Hence, the key of our hashing model lies in the edge-hash function edge hash(vi, vj).

3.2 Degree-Based Hashing

From the example in Figure 2, we observe that in power-law graphs the replication factor, which is
defined as the total number of replicas divided by the total number of vertices, will be smaller if we
cut vertices with relatively higher degrees. Based on this intuition, we define the edge hash(vi, vj)
as follows:

edge hash(vi, vj) =

{
vertex hash(vi) if di < dj ,

vertex hash(vj) otherwise.
(1)

It means that we use the vertex-hash function to define the edge-hash function. Furthermore, the
edge-hash function value of an edge is determined by the degrees of the two associated vertices.
More specifically, the edge-hash function value of an edge is defined by the vertex-hash function
value of the associated vertex with a smaller degree. Hence, our method is called degree-based
hashing (DBH). DBH can effectively capture the intuition that cutting vertices with higher degrees
will get better performance.

Our DBH method for vertex-cut GP is briefly summarized in Algorithm 1, where [n] = {1, . . . , n}.

Algorithm 1 Degree-based hashing (DBH) for vertex-cut GP
Input: The set of edges E; the set of vertices V ; the number of machines p.
Output: The assignment M(e) ∈ [p] for each edge e.

1: Initialization: count the degree di for each i ∈ [n] in parallel
2: for all e = (vi, vj) ∈ E do
3: Hash each edge in parallel:
4: if di < dj then
5: M(e)← vertex hash(vi)
6: else
7: M(e)← vertex hash(vj)
8: end if
9: end for

4

4 Theoretical Analysis

In this section, we present theoretical analysis for our DBH method. For comparison, the ran-
dom vertex-cut method (called Random) of PowerGraph [7] and the grid-based constrained solu-
tion (called Grid) of GraphBuilder [9] are adopted as baselines. Our analysis is based on random-
ization. Moreover, we assume that the graph is undirected and there are no duplicated edges in the
graph. We mainly study the performance in terms of replication factor, edge-imbalance and vertex-
imbalance defined in Section 2. Due to space limitation, we put the proofs of all theoretical results
into the supplementary material.

4.1 Partitioning Degree-fixed Graphs

Firstly, we assume that the degree sequence {di}ni=1 is fixed. Then we can get the following expected
replication factor produced by different methods.

Random assigns each edge evenly to the p machines via a randomized hash function. The result can
be directly got from PowerGraph [7].
Lemma 1. Assume that we have a sequence of n vertices {vi}ni=1 and the corresponding degree
sequence D = {di}ni=1. A simple randomized vertex-cut on p machines has the expected replication
factor:

E

[
1

n

n∑
i=1

|A(vi)|
∣∣∣∣D
]

=
p

n

n∑
i=1

[
1−

(
1− 1

p

)di]
.

By using the Grid hash function, each vertex has
√
p rather than p candidate machines compared to

Random. Thus we simply replace p with
√
p to get the following corollary.

Corollary 1. By using Grid for hashing, the expected replication factor on p machines is:

E

[
1

n

n∑
i=1

|A(vi)|
∣∣∣∣D
]

=

√
p

n

n∑
i=1

[
1−

(
1− 1
√
p

)di]
.

Using DBH method in Section 3.2, we obtain the following result by fixing the sequence {hi}ni=1,
where hi is defined as the number of vi’s adjacent edges which are hashed by the neighbors of vi
according to the edge-hash function defined in (1).
Theorem 1. Assume that we have a sequence of n vertices {vi}ni=1 and the corresponding degree
sequence D = {di}ni=1. For each vi, di − hi adjacent edges of it are hashed by vi itself. Define
H = {hi}ni=1. Our DBH method on p machines has the expected replication factor:

E

[
1

n

n∑
i=1

|A(vi)|
∣∣∣∣H,D

]
=
p

n

n∑
i=1

[
1−

(
1− 1

p

)hi+1
]
≤ p

n

n∑
i=1

[
1−

(
1− 1

p

)di]
,

where hi ≤ di − 1 for any vi.

This theorem says that our DBH method has smaller expected replication factor than Random of
PowerGraph [7].

Next we turn to the analysis of the balance constraints. We still fix the degree sequence and have the
following result for our DBH method.
Theorem 2. Our DBH method on p machines with the sequences {vi}ni=1, {di}ni=1 and {hi}ni=1
defined in Theorem 1 has the edge-imbalance:

max
m
|{e ∈ E |M(e) = m}|

|E|/p
=

n∑
i=1

hi
p + max

j∈[p]

∑
vi∈Pj

(di − hi)

2|E|/p
.

Although the master vertices are evenly assigned to each machine, we want to show how the ran-
domized assignment is close to the perfect balance. This problem is well studied in the model of
uniformly throwing n balls into p bins when n� p(ln p)3 [18].

5

Lemma 2. The maximum number of master vertices for each machine is bounded as follows:{
Pr[MaxLoad > ka] = o(1) if a > 1,

Pr[MaxLoad > ka] = 1− o(1) if 0 < a < 1.

Here MaxLoad = max
m
|{v ∈ V |Master(v) = m}|, and ka = n

p +

√
2n ln p
p

(
1− ln ln p

2a ln p

)
.

4.2 Partitioning Power-law Graphs

Now we change the sequence of fixed degrees into a sequence of random samples generated from
the power-law distribution. As a result, upper-bounds can be provided for the above three methods,
which are Random, Grid and DBH.
Theorem 3. Let the minimal degree be dmin and each d ∈ {di}ni=1 be sampled from a power-law
degree distribution with parameter α ∈ (2, 3). The expected replication factor of Random on p
machines can be approximately bounded by:

ED

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)di)]
≤ p

[
1−

(
1− 1

p

)Ω̂
]
,

where Ω̂ = dmin × α−1
α−2 .

This theorem says that when the degree sequence is under power-law distribution, the upper bound
of the expected replication factor increases as α decreases. This implies that Random yields a worse
partitioning when the power-law graph is more skewed.

Like Corollary 1, we replace p with
√
p to get the similar result for Grid.

Corollary 2. By using Grid method, the expected replication factor on p machines can be approxi-
mately bounded by:

ED

[√
p

n

n∑
i=1

(
1−

(
1− 1
√
p

)di)]
≤ √p

[
1−

(
1− 1
√
p

)Ω̂
]
,

where Ω̂ = dmin × α−1
α−2 .

Note that
√
p

[
1−

(
1− 1√

p

)Ω̂
]
≤ p

[
1−

(
1− 1

p

)Ω̂
]

. So Corollary 2 tells us that Grid can reduce

the replication factor but it is not motivated by the skewness of the degree distribution.
Theorem 4. Assume each edge is hashed by our DBH method and hi ≤ di − 1 for any vi. The
expected replication factor of DBH on p machines can be approximately bounded by:

EH,D

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)hi+1
)]
≤ p

[
1−

(
1− 1

p

)Ω̂′
]
,

where Ω̂′ = dmin × α−1
α−2 − dmin ×

α−1
2α−3 + 1

2 .

Note that

p

[
1−

(
1− 1

p

)Ω̂′
]
< p

[
1−

(
1− 1

p

)Ω̂
]
.

Therefore, our DBH method can expectedly reduce the replication factor. The term α−1
2α−3 increases

as α decreases, which means our DBH reduces more replication factor when the power-law graph
is more skewed. Note that Grid and our DBH method actually use two different ways to reduce the
replication factor. Grid reduces more replication factor when p grows. These two approaches can
be combined to obtain further improvement, which is not the focus of this paper.

Finally, we show that our DBH methd also guarantees good edge-balance (workload balance) under
power-law distributions.

6

Theorem 5. Assume each edge is hashed by the DBH method with dmin, {vi}ni=1, {di}ni=1 and
{hi}ni=1 defined above. The vertices are evenly assigned. By taking the constant 2|E|/p =

ED
[
n∑
i=1

di

]
= nED [d] /p, there exists ε ∈ (0, 1) such that the expected edge-imbalance of DBH

on p machines can be bounded w.h.p (with high probability). That is,

EH,D

 n∑
i=1

hi
p

+ max
j∈[p]

∑
vi∈Pj

(di − hi)

 ≤ (1 + ε)
2|E|
p
.

Note that any ε that satisfies 1/ε � n/p could work for this theorem, which results in a tighter
bound for large n. Therefore, together with Theorem 4, this theorem shows that our DBH method
can reduce the replication factor and simultaneously guarantee good workload balance.

5 Empirical Evaluation

In this section, empirical evaluation on real and synthetic graphs is used to verify the effectiveness
of our DBH method. The cluster for experiment contains 64 machines connected via 1 GB Ethernet.
Each machine has 24 Intel Xeon cores and 96GB of RAM.

5.1 Datasets

The graph datasets used in our experiments include both synthetic and real-world power-law graphs.
Each synthetic power-law graph is generated by a combination of two synthetic directed graphs. The
in-degree and out-degree of the two directed graphs are sampled from the power-law degree distribu-
tions with different power parameters α and β, respectively. Such a collection of synthetic graphs is
separated into two subsets: one subset with parameter α ≥ β which is shown in Table 1(a), and the
other subset with parameter α < β which is shown in Table 1(b). The real-world graphs are shown
in Table 1(c). Some of the real-world graphs are the same as those in the experiment of PowerGraph.
And some additional real-world graphs are from the UF Sparse Matrices Collection [6].

Table 1: Datasets
(a) Synthetic graphs: α ≥ β

Alias α β |E|
S1 2.2 2.2 71,334,974
S2 2.2 2.1 88,305,754
S3 2.2 2.0 134,881,233
S4 2.2 1.9 273,569,812
S5 2.1 2.1 103,838,645
S6 2.1 2.0 164,602,848
S7 2.1 1.9 280,516,909
S8 2.0 2.0 208,555,632
S9 2.0 1.9 310,763,862

(b) Synthetic graphs: α < β

Alias α β |E|
S10 2.1 2.2 88,617,300
S11 2.0 2.2 135,998,503
S12 2.0 2.1 145,307,486
S13 1.9 2.2 280,090,594
S14 1.9 2.1 289,002,621
S15 1.9 2.0 327,718,498

(c) Real-world graphs

Alias Graph |V | |E|
Tw Twitter [11] 42M 1.47B
Arab Arabic-2005 [6] 22M 0.6B
Wiki Wiki [2] 5.7M 130M
LJ LiveJournal [17] 5.4M 79M
WG WebGoogle [13] 0.9M 5.1M

5.2 Baselines and Evaluation Metric

In our experiment, we adopt the Random of PowerGraph [7] and the Grid of GraphBuilder [9]1

as baselines for empirical comparison. The method Hybrid of PowerLyra [4] is not adopted for
comparison because it combines both edge-cut and vertex-cut which is not a pure vertex-cut method.

One important metric is the replication factor, which reflects the communication cost. To test the
speedup for real applications, we use the total execution time for PageRank which is forced to take
100 iterations. The speedup is defined as: speedup = 100%× (γAlg − γDBH)/γAlg, where γAlg is
the execution time of PageRank with the method Alg. Here, Alg can be Random or Grid. Because
all the methods can achieve good workload balance in our experiments, we do not report it here.

1GraphLab 2.2 released in July 2013 has used PowerGraph as its engine, and the Grid GP method has been
adopted by GraphLab 2.2 to replace the original Random GP method. Detailed information can be found at:
http://graphlab.org/projects/index.html

7

http://graphlab.org/projects/index.html

5.3 Results

Figure 3 shows the replication factor on two subsets of synthetic graphs. We can find that our DBH
method achieves much lower replication factor than Random and Grid. The replication factor of
DBH is reduced by up to 80% compared to Random and 60% compared to Grid.

S1 S2 S3 S4 S5 S6 S7 S8 S9
0

5

10

15

20

25

30

R
ep

lic
at

io
n

Fa
ct

or

1+10−12

Random
Grid
DBH

(a) Replication Factor

S10 S11 S12 S13 S14 S15
0

5

10

15

20

25

30

R
ep

lic
at

io
n

Fa
ct

or

1+10−12

Random
Grid
DBH

(b) Replication Factor
Figure 3: Experiments on two subsets of synthetic graphs. The X-axis denotes different datasets in Table 1(a)
and Table 1(b). The number of machines is 48.

Figure 4 (a) shows the replication factor on the real-world graphs. We can also find that DBH
achieves the best performance. Figure 4 (b) shows that the relative speedup of DBH is up to 60%
over Random and 25% over Grid on the PageRank computation.

WG LJ Wiki Arab Tw
0

2

4

6

8

10

12

14

16

18

R
ep

lic
at

io
n

Fa
ct

or

1+10−12

Random
Grid
DBH

(a) Replication Factor

WG LJ Wiki Arab Tw
0

10

20

30

40

50

60

70
S

pe
ed

up
(%

)

26
.5

%
8.

42
%

21
.2

%
4.

28
%

23
.6

%
6.

06
%

31
.5

%
13

.3
%

60
.6

%
25

%

1+10−12

Random
Grid

(b) Execution Speedup
Figure 4: Experiments on real-world graphs. The number of machines is 48.

Figure 5 shows the replication factor and execution time for PageRank on Twitter graph when the
number of machines ranges from 8 to 64. We can find our DBH achieves the best performance for
all cases.

8 16 24 48 64
0

2

4

6

8

10

12

14

16

18

20

1+10−12

R
ep

lic
at

io
n

Fa
ct

or

Number of Machines

Random
Grid
DBH

(a) Replication Factor

8 16 24 48 64

200

400

600

800

1000

1200

1400

1600

1800

2000

1+10−12

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

Number of Machines

Random
Grid
DBH

(b) Execution Time
Figure 5: Experiments on Twitter graph. The number of machines ranges from 8 to 64.

6 Conclusion
In this paper, we have proposed a new vertex-cut graph partitioning method called degree-based
hashing (DBH) for distributed graph-computing frameworks. DBH can effectively exploit the
power-law degree distributions in natural graphs to achieve promising performance. Both theo-
retical and empirical results show that DBH can outperform the state-of-the-art methods. In our
future work, we will apply DBH to more big data machine learning tasks.

7 Acknowledgements

This work is supported by the NSFC (No. 61100125, No. 61472182), the 863 Program of China
(No. 2012AA011003), and the Fundamental Research Funds for the Central Universities.

8

References
[1] Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glottometrics, 3(1):143–150,

2002.

[2] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression techniques. In Proceedings
of the 13th international conference on World Wide Web (WWW), 2004.

[3] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata,
Andrew Tomkins, and Janet Wiener. Graph structure in the web. Computer networks, 33(1):309–320,
2000.

[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, Haibing Guan, and Haibo Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. Technical Report IPADSTR-2013-001, Institute of Par-
allel and Distributed Systems, Shanghai Jiao Tong University, 2013.

[5] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in empirical data.
SIAM review, 51(4):661–703, 2009.

[6] Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM Transactions
on Mathematical Software, 38(1):1, 2011.

[7] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2012.

[8] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
GraphX: Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[9] Nilesh Jain, Guangdeng Liao, and Theodore L Willke. Graphbuilder: scalable graph etl framework. In
Proceedings of the First International Workshop on Graph Data Management Experiences and Systems,
2013.

[10] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP), 1995.

[11] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network or a
news media. In Proceedings of the 19th international conference on World Wide Web (WWW), 2010.

[12] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph computation on just a
PC. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2012.

[13] Jure Leskovec. Stanford large network dataset collection. URL http://snap. stanford. edu/data/index.
html, 2011.

[14] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. GraphLab: A new framework for parallel machine learning. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI), 2010.

[15] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. Distributed graphlab: A framework for machine learning in the cloud. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2012.

[16] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2010.

[17] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee.
Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM confer-
ence on Internet Measurement, 2007.

[18] Martin Raab and Angelika Steger. balls into binsa simple and tight analysis. In Randomization and
Approximation Techniques in Computer Science, pages 159–170. Springer, 1998.

[19] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In Pro-
ceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2012.

[20] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. Fennel: Stream-
ing graph partitioning for massive scale graphs. In Proceedings of the 7th ACM International Conference
on Web Search and Data Mining (WSDM), 2014.

[21] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a billion-node graph. In Pro-
ceedings of the International Conference on Data Engineering (ICDE), 2014.

9

A Proofs

A.1 The Proof of Theorem 1

Proof. Let the indicator Hj denote the event that vertex vi has at least one of hi edges in the jth machine.
Then the expectation E[Hj] is

E[Hj] = 1− Pr(none of the hi edges is on the machine j)

= 1−
(

1− 1

p

)hi
.

For some vertex vi, hi adjacent edges are hashed by the neighbours of vi and (di − hi) adjacent edges are
hashed by vi itself to the same machine. So for the (di − hi) edges, the number of replications of vi is simply
1 due to the assumption hi ≤ di − 1.

As for the residual hi of the adjacent edges, we have E[Hj] = 1 −
(

1 − 1
p

)hi
. Here Hj involves the other

p− 1 machines except for the one that already has a replication.

Putting the two parts together, we have

E [|A(vi)|] = 1 +

p−1∑
j=1

E[Hj] = 1 + (p− 1)

[
1−

(
1− 1

p

)hi]

= p

[
1−

(
1− 1

p

)hi+1
]
.

Thus, the expected replication factor is:

E

[
1

n

n∑
i=1

|A(v)|

]
=

1

n

n∑
i=1

[
p

(
1−

(
1− 1

p

)hi+1
)]

=
p

n

n∑
i=1

[
1−

(
1− 1

p

)hi+1
]
.

Note that we assume hi ≤ di−1, which means the hash function hashes at least one of the adjacent edges of vi
by vi itself. Such assumption is to guarantee that there will be no “single” master vertex as which no adjacent
edges are in the same partition.

By Lemma 1, we obtain

p

n

n∑
i=1

[
1−

(
1− 1

p

)hi+1
]
≤ p

n

n∑
i=1

[
1−

(
1− 1

p

)di]
,

which implies that the hash-based vertex-cut via degree-approach is at least as good as the randomized vertex-
cut in the replication factor.

A.2 The Proof of Theorem 2

Proof. Since we assume that the vertices are evenly hashed to all the machines, the hi adjacent edges of vi are
also evenly assigned to all the machines. Subsequently, each machine has hi

p
edges. Thus, we sum up all the

vertices, obtaining
n∑
i=1

hi
p

.

For the rest di − hi adjacent edges of vi, they are assigned to the same machine. So this part of edges incurs
imbalance.

In the above procedure each edge is actually assigned twice. Thus, the final result is

max
m
|{e ∈ E |M(e) = m}|

|E|/p =

n∑
i=1

hi
p

+ max
j∈[p]

∑
vi∈Pj

(di − hi)

2|E|/p .

10

Like Theorem 1, the result in Theorem 2 also depends on the choice of hash functions. For example, if a certain
hash function has always hashed a constant number of all the adjacent edges of vi by the vi itself (which means
di − hi = c is constant and 1 ≤ c < min

i
di), then the expected edge-imbalance is

max
m
|{e ∈ E |M(e) = m}|

|E|/p =

n∑
i=1

hi
p

+ max
j∈[p]

∑
vi∈Pj

(di − hi)

2|E|/p =

n∑
i=1

di−c
p

+ cn
p

2|E|/p = 1

for
n∑
i=1

di = 2|E|.

Note that there must be a tradeoff between the replication factor and edge-imbalance. To make the replica-
tion factor smaller, hi must be reduced. As a result, a smaller hi yields larger edge-imbalance according to
Theorems 1 and 2.

A.3 The Proof of Theorem 3

Proof. Before proving the following theorems, we introduce some properties of the power-law distribution.
Note that although the degree distribution of a random graph should take integers, it is common to approximate
the power-law degree distribution by continuous real numbers, which is suggested by [5]. Furthermore, al-
though the maximum degree is n−1, for convenience we assume that the maximum degree approaches infinity
as n is very large.

Lemma 3. The power-law distribution is defined as:

Pr(d = x) = p(x) = (α− 1)xα−1
minx

−α, for x ≥ xmin. (2)

The corresponding CDF (cumulative distribution function) is

Pr(d ≤ x) = F (x) = 1− x1−α

x1−α
min

. (3)

The kth moment is

E
[
xk
]

= xmin ×
α− 1

α− 1− k , for α > k + 1. (4)

We then introduce an important inequality for our proof.

Lemma 4.
bx ≥ θx+ c, for b ∈ (0, 1), x ≥ 0, θ = bΩ ln b, c = bΩ − ΩbΩ ln b, (5)

where Ω can be any positive value. Now we return to the proof.

Let b = 1− 1/p. By Eqn. (5) we have

1−
(

1− 1

p

)di
≤ (1− c)− θdi.

Taking expectation on the degree sequence D = {di}ni=1 and by Eqn. (4), we get

ED
[
1−

(
1− 1

p

)di]
≤ ED [(1− c)− θdi]

= (1− c)− θED [di] = (1− c)− θdmin ×
α− 1

α− 2
.

Since di are i.i.d, we obtain the result:

ED

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)di)]
=
p

n

n∑
i=1

ED
[
1−

(
1− 1

p

)di]
≤ p

[
1− c− θdmin ×

α− 1

α− 2

]
,

where c = (1− 1
p
)Ω−Ω(1− 1

p
)Ω ln(1− 1

p
) and θ = (1− 1

p
)Ω ln(1− 1

p
). We take the derivative with respect to

Ω to get the tightest bound. Thus when Ω = dmin(α−1
α−2

), the derivative is 0 and the second order derivative on
this point is positive. Note that the derivative is positive if Ω > dmin(α−1

α−2
) and negative if Ω < dmin(α−1

α−2
).

So Ω̂ = dmin(α−1
α−2

) is a global minimizer. Finally we can have:

ED

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)di)]
≤ p

[
1−

(
1− 1

p

)Ω̂
]
,

where Ω̂ = dmin × α−1
α−2

.

11

A.4 The Proof of Theorem 4

Proof. First we view the two sequences D = {di}ni=1 and H = {hi}ni=1 as constant values. By Eqn. (5) we
have:

1−
(

1− 1

p

)hi+1

≤ (1− c)− θ(hi + 1).

Then we take the expectation on {hi}ni=1 conditional on {di}ni=1, leading to

EH
[
1−

(
1− 1

p

)hi+1∣∣D] ≤ EH
[
(1− c)− θ(hi + 1)

∣∣D]
= (1− c)− θEH

[
(hi + 1)

∣∣D] .
Note that under our assumption, each of the adjacent edges is chosen to be hashed by vi with probability

Pr(d ≥ di) = 1− Pr(d ≤ di) =
d1−αi

d1−αmin

. Thus, by the assumption hi ≤ di − 1, we have

EH
[
di − hi

∣∣D] = 1 + (di − 1)× d1−α
i

d1−α
min

,

which means

EH
[
hi + 1

∣∣D] = di − (di − 1)× d1−α
i

d1−α
min

= di −
d2−α
i

d1−α
min

+
d1−α
i

d1−α
min

.

Then we further take the expectation on D = {di}ni=1:

ED
[
di −

d2−α
i

d1−α
min

+
d1−α
i

d1−α
min

]
=

∫ +∞

dmin

(
di −

d2−α
i

d1−α
min

+
d1−α
i

d1−α
min

)
(α− 1)dα−1

mind
−αddi

= dmin ×
α− 1

α− 2
− dmin ×

α− 1

2α− 3
+

1

2
.

Finally, we obtain the result:

EH,D

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)hi+1
)]

=
p

n

n∑
i=1

EH,D
[
1−

(
1− 1

p

)hi+1
]

≤ p
[
1− c− θ

(
dmin ×

α− 1

α− 2
− dmin ×

α− 1

2α− 3
+

1

2

)]
.

Here c =
(

1− 1
p

)Ω

−Ω
(

1− 1
p

)Ω

ln(1− 1
p
) and θ =

(
1− 1

p

)Ω

ln
(

1− 1
p

)
. The expectation above is taken

w.r.t. both {hi}ni=1 and {di}ni=1.

Similar to Theorem 3, we take derivative w.r.t. Ω and get the global minimizer Ω̂′ =
(
dmin × α−1

α−2
− dmin ×

α−1
2α−3

+ 1
2

)
. Thus we get the tightest bound:

EH,D

[
p

n

n∑
i=1

(
1−

(
1− 1

p

)hi+1
)]
≤ p

[
1−

(
1− 1

p

)Ω̂′
]
,

where Ω̂′ =
(
dmin × α−1

α−2
− dmin × α−1

2α−3
+ 1

2

)
.

Note that our assumption suggests dmin ≥ 2. And for α ∈ (2, 3), −dmin α−1
2α−3

+ 1
2
< 0. Thus we have(

dmin ×
α− 1

α− 2
− dmin ×

α− 1

2α− 3
+

1

2

)
< dmin ×

α− 1

α− 2
.

Thus we have:

p

[
1−

(
1− 1

p

)Ω̂′
]
< p

[
1−

(
1− 1

p

)Ω̂
]
.

12

A.5 The Proof of Theorem 5

Proof. Define xi = (di − hi). If {di}ni=1 is fixed, then xi ∈ [1, di]. For specific j ∈ [p], by Hoeffding’s tail
inequality, we get the following inequality conditional on the sequence D = {di}ni=1:

PrH
{ ∑
vi∈Pj

xi ≥ EH [
∑
vi∈Pj

xi] + t
∣∣D} ≤ exp

(
−2t2∑

vi∈Pj
(di − 1)2

)
, for any t > 0.

Thus we obtain the inequality of the maximum value of the p individual sums:

PrH

{
max
j∈[p]

∑
vi∈Pj

xi ≤
n

p
EH [xi] + t

∣∣D} ≥ [1− exp
(−2t2∑
vi∈Pj

(di − 1)2

)]p
.

Here we take t = εED
[∑
vi∈Pj

di
]

= εn
p
E
[
d
]

where ε ∈ (0, 1). Then we have

∑
vi∈Pj

(di − 1)2

t2
=
∑
vi∈Pj

(di − 1)2

E2 [d] ε2n2/p2
.

Note that for vi ∈ Pj , {di − 1}ni=1 is also a sequence of values under power-law distribution. When n→∞,
the number of any specific value of degree #di w nPr(di). Thus we have

lim
n→∞

∑
vi∈Pj

(di − 1)2

n2/p2
w lim
n→∞

∫ n−1

dmin

(d− 1)2nPr(d)

n2
dd.

By our assumption α ∈ (2, 3) and Pr(d) ∝ d−α,

lim
n→∞

∫ n−1

dmin

(d− 1)2nPr(d)

n2
dd = 0.

Thus for n large enough, under our choice of t,

(
1− exp

(
− 2t2/

∑
vi∈Pj

(di − 1)2
))p

is nearly 1. That is,

max
j∈[p]

∑
vi∈Pj

xi ≤ n
p
E[xi] + t w.h.p. (with high probability) when n is very large. Namely,

max
j∈[p]

∑
vi∈Pj

xi ≤
n

p
EH [xi] + t =

n

p
EH [xi] + ε

n

p
E [d] .

Now we return to the imbalance factor. By using the result above, the following is gained w.h.p:
n∑
i=1

hi
p

+ max
j∈[p]

∑
vi∈Pj

(di − hi) ≤
n∑
i=1

hi
p

+
n

p
EH [xi] + ε

n

p
E [di] .

Then we take the expectation w.r.t. {hi}ni=1 and {di}ni=1:

EH,D

 n∑
i=1

hi
p

+ max
j∈[p]

∑
vi∈Pj

(di − hi)

≤ EH,D

[
n∑
i=1

hi
p

]
+
n

p
EH,D[di − hi] + ε

n

p
EH,D [d]

= (1 + ε)nEH,D [d] /p

= (1 + ε)nED [d] /p

which completes the proof.

13

	Introduction
	Problem Formulation
	Degree-Based Hashing for GP
	Hashing Model
	Degree-Based Hashing

	Theoretical Analysis
	Partitioning Degree-fixed Graphs
	Partitioning Power-law Graphs

	Empirical Evaluation
	Datasets
	Baselines and Evaluation Metric
	Results

	Conclusion
	Acknowledgements
	Proofs
	The Proof of Theorem 1
	The Proof of Theorem 2
	The Proof of Theorem 3
	The Proof of Theorem 4
	The Proof of Theorem 5

