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Abstract

Spectral clustering is a standard approach to label nodes on a graph by study-
ing the (largest or lowest) eigenvalues of a symmetric real matrix such as e.g.
the adjacency or the Laplacian. Recently, it has been argued that using instead a
more complicated, non-symmetric and higher dimensional operator, related to the
non-backtracking walk on the graph, leads to improved performance in detecting
clusters, and even to optimal performance for the stochastic block model. Here,
we propose to use instead a simpler object, a symmetric real matrix known as the
Bethe Hessian operator, or deformed Laplacian. We show that this approach com-
bines the performances of the non-backtracking operator, thus detecting clusters
all the way down to the theoretical limit in the stochastic block model, with the
computational, theoretical and memory advantages of real symmetric matrices.

Clustering a graph into groups or functional modules (sometimes called communities) is a central
task in many fields ranging from machine learning to biology. A common benchmark for this prob-
lem is to consider graphs generated by the stochastic block model (SBM) [7, 22]. In this case, one
considers n vertices and each of them has a group label gv ∈ {1, . . . , q}. A graph is then created
as follows: all edges are generated independently according to a q × q matrix p of probabilities,
with Pr[Au,v = 1] = pgu,gv . The group labels are hidden, and the task is to infer them from the
knowledge of the graph. The stochastic block model generates graphs that are a generalization of
the Erdős-Rényi ensemble where an unknown labeling has been hidden.

We concentrate on the sparse case, where algorithmic challenges appear. In this case pab is O(1/n),
and we denote pab = cab/n. For simplicity we concentrate on the most commonly-studied case
where groups are equally sized, cab = cin if a = b and cab = cout if a 6= b. Fixing cin > cout
is referred to as the assortative case, because vertices from the same group connect with higher
probability than with vertices from other groups. cout > cin is called the disassortative case. An
important conjecture [4] is that any tractable algorithm will only detect communities if

|cin − cout| > q
√
c , (1)

where c is the average degree. In the case of q = 2 groups, in particular, this has been rigorously
proven [15, 12] (in this case, one can also prove that no algorithm could detect communities if this
condition is not met). An ideal clustering algorithm should have a low computational complexity
while being able to perform optimally for the stochastic block model, detecting clusters down to the
transition (1).
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So far there are two algorithms in the literature able to detect clusters down to the transition (1). One
is a message-passing algorithm based on belief-propagation [5, 4]. This algorithm, however, needs
to be fed with the correct parameters of the stochastic block model to perform well, and its compu-
tational complexity scales quadratically with the number of clusters, which is an important practical
limitation. To avoid such problems, the most popular non-parametric approaches to clustering are
spectral methods, where one classifies vertices according to the eigenvectors of a matrix associated
with the network, for instance its adjacency matrix [11, 16]. However, while this works remarkably
well on regular, or dense enough graphs [2], the standard versions of spectral clustering are subop-
timal on graphs generated by the SBM, and in some cases completely fail to detect communities
even when other (more complex) algorithms such as belief propagation can do so. Recently, a new
class of spectral algorithms based on the use of a non-backtracking walk on the directed edges of the
graph has been introduced [9] and argued to be better suited for spectral clustering. In particular, it
has been shown to be optimal for graphs generated by the stochastic block model, and able to detect
communities even in the sparse case all the way down to the theoretical limit (1).

These results are, however, not entirely satisfactory. First, the use a of a high-dimensional matrix
(of dimension 2m - where m is the number of edges - rather than n, the number of nodes) can be
expensive, both in terms of computational time and memory. Secondly, linear algebra methods are
faster and more efficient for symmetric matrices than non-symmetric ones. The first problem was
partially resolved in [9] where an equivalent operator of dimensions 2n was shown to exist. It was
still, however, a non-symmetric one and more importantly, the reduction does not extend to weighted
graphs, and thus presents a strong limitation.

In this contribution, we provide the best of both worlds: a non-parametric spectral algorithm for clus-
tering with a symmetric n× n, real operator that performs as well as the non-backtracking operator
of [9], in the sense that it identifies communities as soon as (1) holds. We show numerically that our
approach performs as well as the belief-propagation algorithm, without needing prior knowledge of
any parameter, making it the simplest algorithmically among the best-performing clustering meth-
ods. This operator is actually not new, and has been known as the Bethe Hessian in the context of
statistical physics and machine learning [14, 17] or the deformed Laplacian in other fields. However,
to the best of our knowledge, it has never been considered in the context of spectral clustering.

The paper is organized as follows. In Sec. 1 we give the expression of the Bethe Hessian operator.
We discuss in detail its properties and its connection with both the non-backtracking operator and an
Ising spin glass in Sec. 2. In Sec. 3, we study analytically the spectrum in the case of the stochastic
block model. Finally, in Sec. 4 we perform numerical tests on both the stochastic block model and
on some real networks.

1 Clustering based on the Bethe Hessian matrix

Let G = (V,E) be a graph with n vertices, V = {1, ..., n}, and m edges. Denote by A its adjacency
matrix, and by D the diagonal matrix defined by Dii = di, ∀i ∈ V , where di is the degree of
vertex i. We then define the Bethe Hessian matrix, sometimes called the deformed Laplacian, as

H(r) := (r2 − 1)1− rA+D , (2)

where |r| > 1 is a regularizer that we will set to a well-defined value |r| = rc depending on the
graph, for instance rc =

√
c in the case of the stochastic block model, where c is the average degree

of the graph (see Sec. 2.1).

The spectral algorithm that is the main result of this paper works as follows: we compute the eigen-
vectors associated with the negative eigenvalues of both H(rc) and H(−rc), and cluster them with
a standard clustering algorithm such as k-means (or simply by looking at the sign of the components
in the case of two communities). The negative eigenvalues of H(rc) reveal the assortative aspects,
while those of H(−rc) reveal the disassortative ones.

Figure 1 illustrates the spectral properties of the Bethe Hessian (2) for networks generated by the
stochastic block model. When r =±

√
c the informative eigenvalues (i.e. those having eigenvectors

correlated to the cluster structure) are the negative ones, while the non-informative bulk remains
positive. There are as many negative eigenvalues as there are hidden clusters. It is thus straight-
forward to select the relevant eigenvectors. This is very unlike the situation for the operators used
in standard spectral clustering algorithms (except, again, for the non-backtracking operator) where
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Figure 1: Spectral density of the Bethe Hessian for various values of the regularizer r on the stochas-
tic block model. The red dots are the result of the direct diagonalization of the Bethe Hessian for a
graph of 104 vertices with 2 clusters, with c=4, cin =7, cout =1. The black curves are the solutions
to the recursion (15) for c= 4, obtained from population dynamics (with a population of size 105),
see section 3. We isolated the two smallest eigenvalues, represented as small bars for convenience.
The dashed black line marks the x=0 axis, and the inset is a zoom around this axis. At large value of
r (top left) r=5, the Bethe Hessian is positive definite and all eigenvalues are positive. As r decays,
the spectrum moves towards the x=0 axis. The smallest (non-informative) eigenvalue reaches zero
for r= c= 4 (middle top), followed, as r decays further, by the second (informative) eigenvalue at
r= (cin − cout)/2 = 3, which is the value of the second largest eigenvalue of B in this case [9] (top
right). Finally, the bulk reaches 0 at rc=

√
c=2 (bottom left). At this point, the information is in the

negative part, while the bulk is in the positive part. Interestingly, if r decays further (bottom middle
and right) the bulk of the spectrum remains positive, but the informative eigenvalues blend back into
the bulk. The best choice is thus to work at rc=

√
c=2.

one must decide in a somehow ambiguous way which eigenvalues are relevant (outside the bulk) or
not (inside the bulk). Here, on the contrary, no prior knowledge of the number of communities is
needed.

On more general graphs, we argue that the best choice for the regularizer is rc =
p
ρ(B), where

ρ(B) is the spectral radius of the non-backtracking operator. We support this claim both numerically,
on real world networks (sec. 4.2), and analytically (sec. 3). We also show that ρ(B) can be computed
without building the matrix B itself, by efficiently solving a quadratic eigenproblem (sec. 2.1).

The Bethe Hessian can be generalized straightforwardly to the weighed case: if the edge (i, j) carries
a weight wij , then we can use the matrix H̃(r) defined by

H̃(r)ij = δij

�
1 +

X

k∈∂i

w2
ik

r2 − w2
ik

�
− rwijAij
r2 − w2

ij

, (3)

where ∂i denotes the set of neighbors of vertex i. This is in fact the general expression of the Bethe
Hessian of a certain weighted statistical model (see section 2.2). If all weights are equal to unity, H̃
reduces to (2) up to a trivial factor. Most of the arguments developed in the following generalize im-
mediately to H̃ , including the relationship with the weightednon-backtracking operator, introduced
in the conclusion of [9].

2 Derivation and relation to previous works

Our approach is connected to both the spectral algorithm using the non-backtracking matrix and
to an Ising spin glass model. We now discuss these connections, and the properties of the Bethe
Hessian operator along the way.
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