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Abstract

One of the most fundamental problems in causal inference is the estimation of a causal ef-
fect when variables are confounded. This is difficult in an observational study, because one
has no direct evidence that all confounders have been adjusted for. We introduce a novel
approach for estimating causal effects that exploits observational conditional independen-
cies to suggest “weak” paths in a unknown causal graph. The widely used faithfulness
condition of Spirtes et al. is relaxed to allow for varying degrees of “path cancellations”
that imply conditional independencies but do not rule out the existence of confounding
causal paths. The outcome is a posterior distribution over bounds on the average causal
effect via a linear programming approach and Bayesian inference. We claim this approach
should be used in regular practice along with other default tools in observational studies.

Keywords: Causal inference, instrumental variables, Bayesian inference, linear program-
ming

1. Contribution

We provide a new methodology for obtaining bounds on the average causal effect (ACE) of
a variable X on a variable Y . For binary variables, the ACE is defined as

E[Y | do(X = 1)]− E[Y | do(X = 0)] = P (Y = 1 | do(X = 1))− P (Y = 1 | do(X = 0)), (1)

where do(·) is the operator of Pearl (2000), denoting distributions where a set of variables
has been intervened on by an external agent. In this paper, we assume the reader is familiar
with the concept of causal graphs, the basics of the do operator, and the basics of causal
discovery algorithms such as the PC algorithm of Spirtes et al. (2000). We provide a short
summary for context in Section 2.

The ACE is in general not identifiable from observational data. We obtain upper and
lower bounds on the ACE by exploiting a set of (binary) covariates, which we also assume are
not affected by X or Y (justified by temporal ordering or other background assumptions).
Such covariate sets are often found in real-world problems, and form the basis of many of
the observational studies done in practice (Rosenbaum, 2002a). However, it is not obvious
how to obtain the ACE as a function of the covariates. Our contribution modifies the
results of Entner et al. (2013), who exploit conditional independence constraints to obtain

c©2014 Ricardo Silva and Robin Evans.



Silva and Evans

U

X Y

U

X Y

W

X Y

U

X Y

W U

X Y

W U’

(a) (b) (c) (d) (e)

Figure 1: (a) A generic causal graph where X and Y are confounded by some U . (b) The
same system in (a) where X is intervened upon by an external agent. (c) A system
where W and Y are independent given X. (d) A system where it is possible to use
faithfulness to discover that U is sufficient to block all back-door paths between
X and Y . (e) Here, U itself is not sufficient.

point estimates of the ACE, but relying on assumptions that might be unstable with finite
sample sizes. Our modification provides a different interpretation of their search procedure,
which we use to generate candidate instrumental variables (Manski, 2007). The linear
programming approach of Dawid (2003), inspired by Balke and Pearl (1997) and further
refined by Ramsahai (2012), is then modified to generate bounds on the ACE by introducing
constraints on some causal paths, motivated as relaxations of Entner et al. (2013). The new
setup can be computationally expensive, so we introduce further relaxations to the linear
program to generate novel symbolic bounds, and a fast algorithm that sidesteps the full
linear programming optimization with some simple, message passing-like steps.

In Section 2, we briefly discuss the background of the problem. Section 3 contains our
main methodology, while commenting on why the unidentifiability of the ACE matters even
in a Bayesian context. Section 4 discusses an analytical approximation of the main results
of the methodology, as well as a way by which this provides scaling-up possibilities for
the approach. Our approach introduces free parameters, and Section 5 provides practical
guidelines on how to choose them. Section 6 contains experiments with synthetic and real
data.

2. Background: Instrumental Variables, Witnesses and Admissible Sets

Assuming X is a potential cause of Y , but not the opposite, a cartoon of the possibly
complex real-world causal system containing X and Y is shown in Figure 1(a). U represents
the universe of common causes of X and Y . In control and policy-making problems, we
would like to know what happens to the system when the distribution of X is overridden by
some external agent (e.g., a doctor, a robot or an economist). The resulting modified system
is depicted in Figure 1(b), and represents the family of distributions indexed by do(X = x):
the graph in (a) has undergone a “surgery” that removes incoming edges to X. Spirtes
et al. (2000) provide an account of the first graphical methods applying this idea, which are
related to the overriding of structural equations proposed by Haavelmo (1943). Notice that
if U is observed in the dataset, then we can obtain the distribution P (Y = y | do(X = x))
by simply calculating

∑
u P (Y = y |X = x, U = u)P (U = u) (Spirtes et al., 2000). This
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was popularized by Pearl (2000) as back-door adjustment. In general P (Y = y | do(X = x))
can be vastly different from P (Y = y |X = x).

The ACE can usually be estimated via a trial in whichX is randomized: this is equivalent
to estimating the conditional distribution of Y given X under data generated as in Figure
1(b). In contrast, in an observational study (Rosenbaum, 2002a) we obtain data generated
by the system in Figure 1(a). If one believes all relevant confounders U have been recorded in
the data then back-door adjustment can be used, though such completeness is uncommon.
By postulating knowledge of the causal graph relating components of U , one can infer
whether a measured subset of the causes of X and Y is enough (Pearl, 2000; VanderWeele
and Shpitser, 2011; Pearl, 2009). Without knowledge of the causal graph, assumptions such
as faithfulness (Spirtes et al., 2000) are used to infer it.

The faithfulness assumption states that a conditional independence constraint in the
observed distribution exists if and only if a corresponding structural independence exists
in the underlying causal graph. For instance, observing the independence W ⊥⊥ Y |X,
and assuming faithfulness and the causal order, we can infer the causal graph Figure 1(c);
in all the other graphs this conditional independence in not implied. We deduce that no
unmeasured confounders between X and Y exist. This simple procedure for identifying
chains W → X → Y is useful in exploratory data analysis (Chen et al., 2007; Cooper,
1997), where a large number of possible causal relations X → Y are unquantified but can
be screened using observational data before experiments are performed. The purpose of
using faithfulness is to be able to identify such quantities.

Entner et al. (2013) generalize the discovery of chain models to situations where a non-
empty set of covariates is necessary to block all back-doors. SupposeW is a set of covariates
which are known not to be effects of either X or Y , and we want to find an admissible set
contained in W: a set of observed variables which we can use for back-door adjustment to
obtain P (Y = y | do(X = x)). Entner et al.’s “Rule 1” states the following:

Rule 1: If there exists a variable W ∈ W and a set Z ⊆ W\{W} such that:

(i) W 6⊥⊥ Y |Z (ii) W ⊥⊥ Y |Z ∪ {X}.

then infer that Z is an admissible set1.

A point estimate of the ACE can then be found using Z. Given that (W,Z) satisfies Rule
1, we call W a witness for the admissible set Z. The model in Figure 1(c) can be identified
with Rule 1, where W is the witness and Z = ∅. In this case, a so-called Näıve Estimator2

P (Y = 1 |X = 1) − P (Y = 1 |X = 0) will provide the correct ACE. If U is observable
in Figure 1(d), then it can be identified as an admissible set for witness W . Notice that
in Figure 1(a), taking U as a scalar, it is not possible to find a witness since there are no
remaining variables. Also, if in Figure 1(e) our covariate set W is {W,U}, then no witness
can be found since U ′ cannot be blocked. Hence, it is possible for a procedure based on

1. Entner et al. (2013) aims also at identifying zero effects with a “Rule 2”. For simplicity of presentation,
we assume that the effect of interest was already identified as non-zero.

2. Sometimes we use the word “estimator” to mean a functional of the probability distribution instead of
a statistical estimator that is a function of samples of this distribution. Context should make it clear
when we refer to an actual statistic or a functional.

3



Silva and Evans

Rule 1 to answer “I don’t know” even when a back-door adjustment would be possible if
one knew the causal graph. However, using the faithfulness assumption alone one cannot
do better: Rule 1 is complete for non-zero effects without more information (Entner et al.,
2013).

Despite its appeal, the faithfulness assumption is not without difficulties. Even if un-
faithful distributions can be ruled out as pathological under seemingly reasonable conditions
(Meek, 1995), distributions which lie close to (but not on) a simpler model may in practice
be indistinguishable from distributions within that simpler model at finite sample sizes.

To appreciate these complications, consider the structure in Figure 1(d) with U unob-
servable. Here W is randomized but X is not, and we would like to know the ACE of X
on Y 3. W is sometimes known as an instrumental variable (IV), and we call Figure 1(d)
the standard IV structure (SIV): the distinctive features here being the constraints W ⊥⊥ U
and W ⊥⊥ Y | {X,U}, statements which include latent variables. If this structure is known,
optimal bounds

LSIV ≤ E[Y | do(X = 1)]− E[Y | do(X = 0)] ≤ USIV

can be obtained without further assumptions, and estimated using only observational data
over the binary variables W , X and Y (Balke and Pearl, 1997). However, there exist
distributions faithful to the IV structure but which at finite sample sizes may appear to
satisfy the Markov property for the structure W → X → Y ; in practice this can occur at
any finite sample size (Robins et al., 2003). The true average causal effect may lie anywhere
in the interval [LSIV ,USIV ], which can be rather wide even when W ⊥⊥ Y |X, as shown by
the following result:

Proposition 1 If W ⊥⊥ Y |X and the model follows the causal structure of the standard
IV graph, then USIV − LSIV = 1− |P (X = 1 |W = 1)− P (X = 1 |W = 0)|.

All proofs in this manuscript are given in Appendix A. For a fixed joint distribution
P (W,X, Y ), the length of such an interval cannot be further improved (Balke and Pearl,
1997). Notice that the length of the interval will depend on how strongly associated W and
X are: W = X implies UIV − LIV = 0 as expected, since this is the scenario of a perfect
intervention. The scenario where W ⊥⊥ X is analogous to not having any instrumental
variable, and the length of corresponding interval is 1.

Thus, the true ACE may differ considerably from the Näıve Estimator, appropriate for
the simpler structure W → X → Y but not for the standard IV structure. While we
emphasize that this is a ‘worst-case scenario’ analysis and by itself should not rule out
faithfulness as a useful assumption, it is desirable to provide a method that gives greater
control over violations of faithfulness.

3. Methodology: the Witness Protection Program

The core of our idea is (i) to invert the usage of Entner et al.’s Rule 1, so that pairs
(W,Z) should provide an instrumental variable bounding method instead of a back-door

3. A classical example is in non-compliance: suppose W is the assignment of a patient to either drug or
placebo, X is whether the patient actually took the medicine or not, and Y is a measure of health status.
The doctor controls W but not X. This problem is discussed by Pearl (2000) and Dawid (2003).
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adjustment; (ii) express violations of faithfulness as bounded violations of local independence;
(iii) find bounds on the ACE using a linear programming formulation.

Let (W,Z) be any pair found by a search procedure that decides when Rule 1 holds. W
will play the role of an instrumental variable, instead of being discarded. Conditional on Z,
the lack of an edge W → Y can be justified by faithfulness (as W ⊥⊥ Y | {X,Z}). For the
same reason, there should not be any (conditional) dependence between W and a possible
unmeasured common parent4 U of X and Y . Hence, W ⊥⊥ U and W ⊥⊥ Y | {U,X} hold
given Z. A standard IV bounding procedure such as (Balke and Pearl, 1997) can then be
used conditional on each individual value z of Z, then averaged over P (Z). That is, we can
independently obtain lower and upper bounds {L(z),U(z)} for each value z, and bound the
ACE by∑

z

L(z)P (Z = z) ≤ E[Y | do(X = 1)]− E[Y | do(X = 0)] ≤
∑
z

U(z)P (Z = z), (2)

since E[Y | do(X = 1)]−E[Y | do(X = 0)] =
∑

z(E[Y | do(X = 1),Z = z]−E[Y | do(X =
0),Z = z])P (Z = z).

Under the assumption of faithfulness and the satisfiability of Rule 1, the above interval
estimator is redundant, as Rule 1 allows the direct use of the back-door adjustment using Z.
Our goal is to not enforce faithfulness, but use Rule 1 as a motivation to exclude arbitrary
violations of faithfulness.

In what follows, assume Z is set to a particular value z and all references to distributions
are implicitly assumed to be defined conditioned on the event Z = z. That is, for simplicity
of notation, we will neither represent nor condition on Z explicitly. The causal ordering
where X and Y cannot precede any other variable is also assumed, as well as the causal
ordering between X and Y .

Consider a standard parameterization of a directed acyclic graph (DAG) model, not
necessarily causal, in terms of conditional probability tables (CPTs): let θVv.p represent
P (V = v | Par(V ) = p) where V ∈ {W,X, Y, U} denotes both a random variable and
a vertex in the corresponding DAG; Par(V ) is the corresponding set of parents of V .
Faithfulness violations occur when independence constraints among observables are not
structural, but due to “path cancellations.” This means that parameter values are arranged
so that W ⊥⊥ Y | X holds, but paths connecting W and U , or W and Y , may exist so that
either W 6⊥⊥ U or W 6⊥⊥ Y | {U,X}. In this situation, some combination of the following
should hold true:

P (Y = y | X = x,W = w,U = u) 6= P (Y = y | X = x, U = u)
P (Y = y | X = x,W = w,U = u) 6= P (Y = y | X = x,W = w)

P (X = x | W = w,U = u) 6= P (X = x | W = w)
P (U = u | W = w) 6= P (U = u),

(3)

for some {w, x, y, u} in the sample space of P (W,X, Y, U).

For instance, if the second and third statements above are true and under the assumption
of faithfulness, this implies the existence of an active path into X and Y via U , conditional

4. In this manuscript, we will sometimes refer to U as a set of common parents, although we do not change
our notation to bold face to reflect that.
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Figure 2: A visual depiction of the family of assumptions introduced in our framework.
Dashed edges correspond to conditional dependencies that are constrained ac-
cording to free parameters, displayed along each corresponding edge. This is
motivated by observing W ⊥⊥ Y | X.

on W 5, such as X ← U → Y . If the first statement is true, this corresponds to an active
path between W and Y into Y that is not blocked by {X,U}. If the fourth statement is
true, U and W are marginally dependent, with a corresponding active path. Notice some
combinations are still compatible with a model where W ⊥⊥ U and W ⊥⊥ Y | {U,X} hold:
if the second statement in (3) is false, this means U cannot be a common parent of X and
Y . This family of models is observationally equivalent6 to one where U is independent of
all variables.

When translating the conditions (3) into parameters {θVv.p}, we need to define which
parents each vertex has. In our CPT factorization, we define Par(X) = {W,U} and
Par(Y ) = {W,X,U}; the joint distribution of {W,U} can be factorized arbitrarily. In
the next subsection, we refine the parameterization of our model by introducing redundan-
cies: we provide a parameterization for the latent variable model P (W,X, Y, U), the in-
terventional distribution P (W,Y,U | do(X)) and the corresponding (latent-free) marginals
P (W,X, Y ), P (W,Y | do(X)). These distributions parameters are related, and cannot differ
arbitrarily. It is this fact that will allow us to bound the ACE using only P (W,X, Y ).

3.1 Encoding Faithfulness Relaxations with Linear Constraints

We define a relaxation of faithfulness as any set of assumptions that allows the relations in
(3) to be true, but not necessarily in an arbitrary way: this means that while the left-hand
and right-hand sides of each entry of (3) are indeed different, their difference is bounded by
either the absolute difference or by ratios. Without such restrictions, (3) will only imply
vacuous bounds of length 1, as discussed in our presentation of Proposition 1.

Consider the following parameterization of the distribution of {W,X, Y, U} under the
observational and interventional regimes, and their respective marginals obtained by in-

5. That is, a path that d-connects X and Y and includes U , conditional on W ; it is “into” X (and Y )
because the edge linking X to the path points to X. See Spirtes et al. (2000) and Pearl (2000) for formal
definitions and more examples.

6. Meaning a family of models where P (W,X, Y ) satisfies the same constraints.
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tegrating U way7. Again we condition everywhere on a particular value z of Z but, for
simplicity of presentation, we supress this from our notation, since it is not crucial to de-
velopments in this Section:

ζ?yx.w ≡ P (Y = y,X = x |W = w,U)

ζyx.w ≡
∑

U P (Y = y,X = x |W = w,U)P (U |W = w)
= P (Y = y,X = x |W = w)

η?xw ≡ P (Y = 1 |X = x,W = w,U)
ηxw ≡

∑
U P (Y = 1 |X = x,W = w,U)P (U |W = w)

= P (Y = 1 | do(X = x),W = w)

δ?w ≡ P (X = 1 |W = w,U)
δw ≡

∑
U P (X = x |W = w,U)P (U |W = w)

= P (X = 1 |W = w).

Under this encoding, the ACE is given by

η11P (W = 1) + η10P (W = 0)− η01P (W = 1)− η00P (W = 0). (4)

Notice that we do not explicitly parameterize the marginal of U , for reasons that will become
clear later.

We introduce the following assumptions, as illustrated by Figure 2:

|η?x1 − η?x0| ≤ εw (5)

|η?xw − P (Y = 1 |X = x,W = w)| ≤ εy (6)

|δ?w − P (X = 1 |W = w)| ≤ εx (7)

βP (U) ≤ P (U |W = w) ≤ β̄P (U). (8)

Setting εw = 0, β = β̄ = 1 recovers the standard IV structure. Further assuming εy = εx = 0
recovers the chain structure W → X → Y . Under this parameterization in the case εy =
εx = 1, β = β̄ = 1, Ramsahai (2012), extending Dawid (2003), used linear programming to
obtain bounds on the ACE. We will briefly describe the four main steps of the framework
of Dawid (2003), and refer to the cited papers for more details of their implementation.

For now, assume that ζyx.w and P (W = w) are known constants—that is, treat P (W,X, Y )
as known. This assumption will be dropped later. Dawid’s formulation of a bounding pro-
cedure for the ACE is as follows.

Step 1 Notice that parameters {η?xw} take values in a 4-dimensional polytope. Find the
extreme points of this polytope. Do the same for {δ?w}.

In particular, for εw = εy = 1, the polytope of feasible values for the four dimensional
vector (η?00, η

?
01, η

?
10, η

?
11) is the unit hypercube [0, 1]4, a polytope with a total of 16 vertices

(0, 0, 0, 0), (0, 0, 0, 1), . . . (1, 1, 1, 1). Dawid (2003) covered the case εw = 0, where a two-
dimensional vector {η?x} replaces {η?xw}. In Ramsahai (2012), the case 0 ≤ εw < 1 is also

7. Notice from the development in this Section that U is not necessarily a scalar, nor discrete.
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covered: some of the corners in [0, 1]4 disappear and are replaced by others. The case where
εw = εx = εy = 1 is vacuous, in the sense that the consecutive steps cannot infer non-trivial
constraints on the ACE.

Step 2 Find the extreme points of the joint space {ζ?yx.w} × {η?xw} by mapping them from

the extreme points of {δ?w} × {η?xw}, since ζ?yx.w = (δ?w)x(1− δ?w)(1−x)η?xw.

The extreme points of the joint space {δ?w} × {η?xw} are just the combination of the
extreme points of each space. Some combinations δ?x×η?xw map to the same ζ?yx.w, while the
mapping from a given δ?x×η?xw to η?xw is just the trivial projection. At this stage, we obtain
all the extreme points of the polytope {ζ?yx.w}×{η?xw} that are entailed by the factorization
of P (W,X, Y, U) and our constraints.

Step 3 Using the extreme points of the joint space {ζ?yx.w} × {η?xw}, find the dual polytope
of this space in terms of linear inequalities. Points in this polytope are convex combinations
of {ζ?yx.w} × {η?xw}, shown by Dawid (2003) to correspond to the marginalizations over ar-
bitrary P (U). This results in constraints over {ζyx.w} × {ηxw}.

This is the core step in Dawid (2003): points in the polytope {ζ?yx.w}×{η?xw} correspond
to different marginalizations of U according to different P (U). Describing the polytope in
terms of inequalities provides all feasible distributions that result from marginalizing U
according to some P (U). Because we included both ζ?yx.w and η?xw in the same space, this
will tie together P (Y,X |W ) and P (Y | do(X),W ).

Step 4 Finally, maximize/minimize (4) with respect to {ηxw} subject to the constraints
found in Step 3 to obtain upper/lower bounds on the ACE.

Allowing for the case where εx < 1 or εy < 1 is just a matter of changing the first
step, where box constraints are set on each individual parameter as a function of the known
P (Y = y,X = x |W = w), prior to the mapping in Step 2. The resulting constraints
are now implicitly non-linear in P (Y = y,X = x |W = w), but at this stage this does
not matter as the distribution of the observables is treated as a constant. That is, each
resulting constraint in Step 3 is a linear function of {ηxw} and a multilinear function on
{{ζyx.w}, εx, εy, εw, β̄, β, P (W )}, as discussed in Section 4. Within the objective function (4),
the only decision variables are {ηxw}, and hence Step 4 still sets up a linear programming
problem even if there are multiplicative interactions between {ζyx.w} and parameters of
constraints.

To allow for the case β < 1 < β̄, we substitute every occurrence of ζyx.w in the constraints
by κyx.w ≡

∑
U ζ

?
yx.wP (U); notice the difference between κyx.w and ζyx.w. Likewise, we

substitute every occurrence of ηxw in the constraints by ωxw ≡
∑

U η
?
xwP (U). Instead of

plugging in constants for the values of κyx.w and turning the crank of a linear programming
solver, we treat {κyx.w} (and {ωxw}) as unknowns, linking them to observables and ηxw by
the constraints

κyx.w ≤ ζyx.w/β κyx.w ≥ ζyx.w/β̄
ωxw ≤ ηxw/β ωxw ≥ ηxw/β̄

(9)
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input : Binary data matrix D; set of relaxation parameters ℵ; covariate index set
W; cause-effect indices X and Y

output: A set of triplets (W,Z,B), where (W,Z) is a witness-admissible set pair
contained in W and B is a distribution over lower/upper bounds on the
ACE implied by the pair

1 R ← ∅;
2 for each W ∈ W do
3 for every admissible set Z ⊆ W\{W} identified by W and ℵ given D do
4 B ← posterior over lower/upper bounds on the ACE as given by

(W,Z, X, Y,D,ℵ);
5 if there is no evidence in B to falsify the (W,Z,ℵ) model then
6 R ← R∪ {(W,Z,B)};
7 end

8 end

9 end
10 return R

Algorithm 1: The outline of the Witness Protection Program algorithm.

∑
yx

κyx.w = 1. (10)

Finally, the steps requiring finding extreme points and converting between representa-
tions of a polytope can be easily implemented using a package such as Polymake8 or the
scdd package9 for R. Once bounds are obtained for each particular value of Z, Equation
(2) is used to obtain the unconditional bounds assuming P (Z) is known.

In Section 5, we provide some guidance on how to choose the free parameters of the
relaxation. However, it is relevant to point out that any choice of εw ≥ 0, εy ≥ 0, εx ≥ 0, 0 ≤
β ≤ 1 ≤ β̄ is guaranteed to provide bounds that are at least as conservative as the back-door
adjusted point estimator of Entner et al. (2013), which is always covered by the bounds.
Background knowledge, after a user is suggested a witness and admissible set, can also be
used to set relaxation parameters.

So far, the linear programming formulated through Steps 1–4 assumes one has already
identified an appropriate witness W and admissible set Z, and that the joint distribution
P (W,X, Y,Z) is known. In the next Section, we discuss how this procedure is integrated
with statistical inference for P (W,X, Y,Z) and the search procedure of Entner et al. (2013).
As the approach provides the witness a degree of protection against faithfulness violations,
using a linear program, we call this framework the Witness Protection Program (WPP).

3.2 Bayesian Learning and Result Summarization

In the previous section, we treated (the conditional) ζyx.w and P (W = w) as known. A
common practice is to replace them by plug-in estimators (and in the case of a non-empty
admissible set Z, an estimate of P (Z) is also necessary). Such models can also be falsified, as

8. http://www.poymake.org
9. http://cran.r-project.org/
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the constraints generated are typically only supported by a strict subset of the probability
simplex. In principle, one could fit parameters without constraints, and test the model by
a direct check of satisfiability of the inequalities using the plug-in values. However, this
does not take into account the uncertainty in the estimation. For the standard IV model,
Ramsahai and Lauritzen (2011) discuss a proper way of testing such models in a frequentist
sense.

Our models can be considerably more complicated. Recall that constraints will depend
on the extreme points of the {ζ?yx.w} parameters. As implied by (6) and (7), extreme points
will be functions of ζyx.w. Writing the constraints fully in terms of the observed distribution
will reveal non-linear relationships. We approach the problem in a Bayesian way. We will
assume first the dimensionality of Z is modest (say, 10 or less), as this is the case in most
applications of faithfulness to causal discovery. We parameterize ζzyxw ≡ P (Y = y,X =
x,W = w | Z = z) as a full 2 × 2 × 2 contingency table10. In the context of the linear
programming problem of the previous Section, for a given z, we have ζyx.w = ζyxw/P (W =
w), P (W = w) =

∑
yx ζyxw.

Given that the dimensionality of the problem is modest, we assign to each three-variate
distribution P (Y,X,W |Z = z) an independent Dirichet prior for every possible assigment
of Z, constrained by the inequalities implied by the corresponding polytopes. The posterior
is also a 8-dimensional constrained Dirichlet distribution, where we use rejection sampling
to obtain a posterior sample by proposing from the unconstrained Dirichlet. A Dirichlet
prior is also assigned to P (Z). Using a sample from the posterior of P (Z) and a sample (for
each possible value z) from the posterior of P (Y,X,W |Z = z), we obtain a sample upper
and lower bound for the ACE by just running the linear program for each sample of {ηzyxw}
and {P (Z = z)}.

The full algorithm is shown in Algorithm 1, where ℵ ≡ {εw, εx, εy, β, β̄}. The search
procedure is left unspecified, as different existing approaches can be plugged into this step.
See Entner et al. (2013) for a discussion. In Section 6 we deal with small dimensional
problems only, using the brute-force approach of performing an exhaustive search for Z. In
practice, brute-force can be still valuable by using a method such as discrete PCA (Buntine
and Jakulin, 2004) to reduce W\{W} to a small set of binary variables. To decide whether
the premises in Rule 1 hold, we merely perform Bayesian model selection with the BDeu
score (Buntine, 1991) between the full graph {W → X,W → Y,X → Y } (conditional on
Z) and the graph with the edge W → Y removed.

Step 5 in Algorithm 1 is a “falsification test.” Since the data might provide a bad
fit to the constraints entailed by the model, we opt not to accept every pair (W,Z) that
passes Rule 1. One possibility is to calculate the posterior distribution of the model where
constraints are enforced, and compare it against the posteriors of the saturated model given
by the unconstrained contingency table. This requires another prior over the constraint
hypothesis and the calculation of the corresponding marginal likelihoods. As an alternative
approach, we adopt the pragmatic rule of thumb suggested by Richardson et al. (2011):
sample M samples from the {ζzyxw} posterior given the unconstrained model, and check the
proportion of values that are rejected. If more than 95% of them are rejected, we take this

10. That is, we allow for dependence between W and Y given {X,Z}, interpreting the decision of indepen-
dence used in Rule 1 as being only an indicator of approximate independence.
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as an indication that the proposed model provides a bad fit and reject the given choice of
(W,Z).

The final result provides a set of posterior distributions over bounds, possibly contradic-
tory, which should be summarized as appropriate. One possibility is to check for the union
of all intervals or, as a simpler alternative, report the lowest of the lower bound estimates
and the highest of the upper bound estimates using a point estimate for each bound11:

1. for each (W,Z) in R, calculate the posterior expected value of the lower and upper
bounds;

2. report the interval L ≤ ACE ≤ U where L is the minimum of the lower bounds and
U the maximum of the upper bounds.

Alternatively to using the expected posterior estimator for the lower/upper bounds, one
can, for instance, report the 0.025 quantile of the marginal lower bound distribution and
the 0.975 quantile of the marginal upper bound distribution. Notice, however, this does not
give a 0.95 credible interval over ACE intervals as the lower bound and the upper bound
are dependent in the posterior.

In our experiments, we use a different summary. As we calculate the log-marginal
posterior M1,M2,M3,M4 for the hypotheses W 6⊥⊥ Y | Z, W ⊥⊥ Y | Z, W ⊥⊥ Y | Z ∪ {X},
W 6⊥⊥ Y | Z ∪ {X}, respectively, we use the score

(M1 −M2) + (M3 −M4) (11)

to assess the quality of the bounds obtained with the corresponding witness-admissible
set pair. We then report the corresponding interval and evaluation metric based on this
criterion.

3.3 A Note on Weak Dependencies

As we briefly mentioned in the previous Section, our parameterization {ζzyxw} does not
enforce the independence condition W ⊥⊥ Y | Z ∪ {X} required by Rule 1. Our general
goal is to let WPP accept “near independencies,” in which the meaning of the symbol ⊥⊥
in practice means weak dependence12. We do not define what a weak dependence should
mean, except for the general guideline that some agreed measure of conditional association
should be “small.” Our pragmatic view on WPP is that Rule 1, when supported by weak
dependencies, should be used as a motivation for the constraints in Section 3.1. That is,
the assumption that “weak dependencies are not generated by arbitrary near-path cancel-
lations,” reflecting the belief that very weak associations should correspond to weak direct
causal effects (and, where this is unacceptable, WPP should either be adapted to exclude

11. One should not confuse credible intervals with ACE intervals, as these are two separate concepts: each
lower or upper bound is a function of the unknown P (W,X, Y,Z) and needs to be estimated. There is
posterior uncertainty over each lower/upper bound as in any problem where a functional of a distribution
needs to be estimated. So the posterior distribution and the corresponding credible intervals over the
ACE intervals are perfectly well-defined as in any standard Bayesian inference problem.

12. The procedure that decides conditional independencies in Section 3.2 is a method for testing exact
independencies, although the prior on the independence assumption regulates how strong the evidence
in the data should be for independence to be accepted.
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Figure 3: Posterior over the ACE obtained by three different priors conditioned on a syn-
thetic dataset of size 1,000,000. Posterior computed by running 1,000,000 itera-
tions of Gibbs sampling. The (independent) priors for θY1.xu and θXx.wu are Beta
(α, α), while θUu is given a Dirichlet (α, α, α, α). We set α = 0.1, 1, 10 for the
cases shown in (a), (b) and (c), respectively. Vertical red line shows the true
ACE, while the population IV bounds are shown with grey lines. As the prior
gets less informative (moving from (c) to (a)), the erratic shape of the posterior
distribution also shows the effect of bad Gibbs sampling mixing. Even with a
very large dataset, the concentration of the posterior is highly dependent on the
concentration of the prior.

relevant cases, or not be used). At the same time, users of WPP do not need to accept this
view, as the method does not change under the usual interpretation of ⊥⊥, but computational
gains can be obtained by using a parameterization that encodes the independence.

3.4 A Note on Unidentifiability

An alternative to bounding the ACE or using back-door adjustments is to put priors directly
on the latent variable model for {W,X, Y, U}. Using the standard IV model as an example,
we can define parameters θYy.xu ≡ P (Y = y | X = x, U = u), θXx.wu ≡ P (X = x | W =

w,U = u) and θUu ≡ P (U = u), on which priors are imposed13. No complicated procedure
for generating constraints in the observable marginal is necessary, and the approach provides
point estimates of the ACE instead of bounds.

This sounds too good to be true, and indeed it is: results strongly depend on the
prior, regardless of sample size. To illustrate this, consider a simulation from a standard
IV model (Figure 1(c)), with Z = ∅ and U an unobservable discrete variable of 4 levels.
We generated a model by setting P (W = w) = 0.5 and sampling parameters θY1.xu and
θX1.wu from the uniform [0, 1] distribution, while the 4-dimensional vector θUu comes from a
Dirichlet (1, 1, 1, 1). The resulting model had an ACE of −0.20, with a wide IV interval
[−0.50, 0.38] as given by the method of Balke and Pearl (1997). Narrower intervals can only

13. P (W = w) is not necessary, as the standard IV bounds Balke and Pearl (1997) do not depend on it.
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be obtained by making more assumptions: there is no free lunch. However, as in this case
where WPP cannot identify any witness, one might put priors on the latent variable model
to get a point estimate, such as the posterior expected value of the ACE.

To illustrate the pitfalls of this approach, we perform Bayesian inference by putting
priors directly on the CPT parameters of the latent variable model, assuming we know the
correct number of levels for U . Figure 3 shows some results with a few different choices of
priors. The sample size is large enough so that the posterior is essentially entirely within the
population bounds and the estimation of P (W,X, Y, Z) is itself nearly exact. The posterior
over the ACE covers a much narrower area than the IV interval, but its behaviour is erratic.

This is not to say that informative priors on a latent variable model cannot produce im-
portant results. For instance, Steenland and Greenland (2004) discuss how empirical priors
on smoking habits among blue-collar workers were used in their epidemiological question:
the causal effect of the occupational harzard of silica exposure on lung cancer incidence
among industrial sand workers. Smoking is a confounding factor given the evidence that
smoking and occupation are associated. The issue was that smoking was unrecorded among
the workers, and so priors on the latent variable relationship to the observables were nec-
essary. Notice, however, that this informative prior is essentially a way of performing a
back-door adjustment when the adjustment set Z and treatment-outcome pair {X,Y } are
not simultaneously measured within the same subjects. When latent variables are “un-
known unknowns,” a prior on P (Y | X,U) may be hard to justify. Richardson et al. (2011)
discuss more issues on priors over latent variable models as a way of obtaining ACE point es-
timates, one alternative being the separation of identifiable and unindentifiable parameters
to make transparent the effect of prior (mis)specification.

4. Algebraic Bounds and the Back-substitution Algorithm

Posterior sampling is expensive within the context of Bayesian WPP: constructing the dual
polytope for possibly millions of instantiations of the problem is time consuming, even if
each problem is small. Moreover, the numerical procedure described in Section 3 does not
provide any insight on how the different free parameters {εw, εx, εy, β, β̄} interact to produce
bounds, unlike the analytical bounds available in the standard IV case. Ramsahai (2012)
derives analytical bounds under (5) given a fixed, numerical value of εw. We know of no
previous analytical bounds as an algebraic function of εw.

4.1 Algebraic Bounds

We derive a set of bounds, whose validity are proved by three theorems. The first theorem
derives separate upper and lower bounds on ωxw using all the assumptions except Equation
(5); this means constraints which do not link distributions under different values of W = w.
The second theorem derives linear constraints on {ωxw} using (5) and more elementary
constraints. Our final result will construct less straightforward bounds, again using Equa-
tion (5) as the main assumption. As before, assume we are implicitly conditioning on some
Z = z everywhere.
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We introduce the notation

LY Uxw ≡ max(P (Y = 1|X = x,W = w)− εy, 0)
UY Uxw ≡ min(P (Y = 1|X = x,W = w) + εy, 1)
LXUw ≡ max(P (X = 1|W = w)− εx, 0)
UXUw ≡ min(P (X = 1|W = w) + εx, 1)

and define L ≡ min{LY Uxw }, Ū ≡ max{UY Uxw }. Morever, some further redundant notation is
used to simplify the description of the constraints:

δ?1.w ≡ δ?w
δ?0.w ≡ 1− δ?w
LXU11 ≡ LXU1

LXU01 ≡ 1− UXU1

UXU11 ≡ UXU1

UXU01 ≡ 1− LXU1

and, following Ramsahai (2012), for any x ∈ {0, 1}, we define x′ as the complementary
binary value (i.e. x′ = 1− x). The same convention applies to pairs {w,w′}. Finally, define
χx.w ≡

∑
U P (X = x | W = w,U)P (U) = κ1x.w + κ0x.w.

Theorem 2 The following constraints are entailed by the assumptions expressed in Equa-
tions (6), (7) and (8):

ωxw ≤ min


κ1x.w + UY Uxw (κ0x′.w + κ1x′.w)

κ1x.w/L
XU
xw

1− κ0x.w/UXUxw

(12)

ωxw ≥ max


κ1x.w + LY Uxw (κ0x′.w + κ1x′.w)

κ1x.w/U
XU
xw

1− κ0x.w/LXUxw

(13)

Theorem 3 The following constraints are entailed by the assumptions expressed in Equa-
tions (5), (6), (7) and (8):

ωxw ≤ min

{
(κ1x.w′ + εw(κ0x.w′ + κ1x.w′))/LXUxw′

1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′
(14)

ωxw ≥ max

{
(κ1x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′

1− (κ0x.w′ + εw(κ0x.w′ + κ1x.w′))/LXUxw′
(15)

ωxw − ωxw′UXUx′w ≤ κ1x.w + εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′LXUx′w ≥ κ1x.w − εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′UXUx′w ≥ 1− κ0x.w − UXUx′w − εw(κ0x′.w + κ1x′.w)
ωxw − ωxw′LXUx′w ≤ 1− κ0x.w − LXUx′w + εw(κ0x′.w + κ1x′.w)

ωxw − ωxw′ ≤ εw
ωxw − ωxw′ ≥ −εw

(16)
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Theorem 4 The following constraints are entailed by the assumptions expressed in Equa-
tions (5), (6), (7) and (8):

ωxw ≤ min

{
κ1x′.w′ + κ1x.w′ + κ1x.w − κ1x′.w + χx′w(Ū + L+ 2εw)− L
κ1x′.w + κ1x.w + κ1x.w′ − κ1x′.w′ + 2χx′wεw + χx′w′(Ū + L)− L

(17)

ωxw ≥ max

{
−κ1x′.w′ + κ1x.w′ + κ1x′.w + κ1x.w + χx′w′(Ū + L)− 2εwχx′w − Ū
−κ1x′.w + κ1x.w + κ1x′.w′ + κ1x.w′ − χx′w(2εw − Ū − L)− Ū

(18)

ωxw + ωx′w − ωx′w′ ≥ κ1x′.w + κ1x.w − κ1x′.w′ + κ1x.w′ − χxw′(Ū + L+ 2εw) + L
ωxw + ωx′w′ − ωx′w ≥ κ1x′.w′ + κ1x.w′ − κ1x′.w + κ1x.w − 2χxw′εw − χxw(Ū + L) + L
ωxw + ωx′w′ − ωx′w ≤ −κ1x′.w + κ1x.w + κ1x′.w′ + κ1x.w′ − χxw(Ū + L) + 2εwχxw′ + Ū
ωxw + ωx′w − ωx′w′ ≤ −κ1x′.w′ + κ1x.w′ + κ1x′.w + κ1x.w + χxw′(2εw − Ū − L) + Ū

(19)

Although at first sight such relations seem considerably more complex than those given
by Ramsahai (2012), on closer inspection they illustrate qualitative aspects of our free
parameters. For instance, consider

ωxw ≥ κ1x.w + LY Uxw (κ0x′.w + κ1x′.w),

one of the instances of (13). If εy = 1 and β = β̄ = 1, then LY Uxw = 0 and this relation
collapses to ηxw ≥ ζ1x.w, one of the original relations found by Balke and Pearl (1997) for
the standard IV model. Decreasing εy will linearly increase LY Uxw only after εy ≤ P (Y =
1 | X = x,W = w), tightening the corresponding lower bound given by this equation.

Consider now

ωxw ≤ 1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′ .

If also εw = 0 and εx = 1, from this inequality it follows that ηxw ≤ 1 − ζ0x.w′ . This is
another of the standard IV inequalities (Balke and Pearl, 1997).

Equation (5) implies |ωx′w − ωx′w′ | ≤ εw, and as such by setting εw = 0 we have that

ωxw + ωx′w − ωx′w′ ≥ κ1x′.w + κ1x.w − κ1x′.w′ + κ1x.w′ − χxw′(Ū + L+ 2εw) + L (20)

implies ηxw ≥ η1x.w+η1x.w′−η1x′.w′−η0x.w′ , one of the most complex relationships in (Balke
and Pearl, 1997). Further geometric intuition about the structure of the binary standard
IV model is given by Richardson and Robins (2010).

These bounds are not tight, in the sense that we opt not to fully exploit all possible
algebraic combinations for some results, such as (20): there we use L ≤ η?xw ≤ Ū and
0 ≤ δ?w ≤ 1 instead of all possible combinations resulting from (6) and (7). The proof idea
in Appendix A can be further refined, at the expense of clarity. Because our derivation is
a further relaxation, our final bounds are more conservative (i.e., looser).
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4.2 Efficient Optimization and Falsification Tests

Besides providing insight into the structure of the problem, the algebraic bounds give an
efficient way of checking whether a proposed parameter vector {ζyxw} is valid in Step 5
of Algorithm 1, as well as finding the ACE bounds: we can now use back-substitution on
the symbolic set of constraints to find box constraints Lxw ≤ ωxw ≤ Uxw. The proposed
parameter will be rejected whenever an upper bound is smaller than a lower bound, and
(4) can be trivially optimized conditioning only on the box constraints—this is yet another
relaxation, added on top of the ones used to generate the algebraic inequalities. We initialize
by intersecting all algebraic box constraints (of which (12) and (14) are examples); next
we refine these by scanning relations ±ωxw − aωxw′ ≤ c (the family given by (16)) in
lexicographical order, and tightening the bounds of ωxw using the current upper and lower
bounds on ωxw′ where possible. We then identify constraints Lxww′ ≤ ωxw − ωxw′ ≤ Uxww′

starting from −εw ≤ ωxw−ωxw′ ≤ εw and the existing bounds, and plug them into relations
±ωxw+ωx′w−ωx′w′ ≤ c (as exemplified by (20)) to get refined bounds on ωxw as functions of
(Lx′ww′ ,Ux′ww′). We iterate this until convergence, which is guaranteed since lower/upper
bounds never decrease/increase at any iteration. This back-substitution of inequalities
follows the spirit of message-passing and it can be orders of magnitude more efficient than
the fully numerical solution, while not increasing the width of the intervals by too much. In
Section 6, we provide evidence for this claim. The back-substitution method is t used in our
experiments, combined with the fully numerical linear programming approach as explained
in Section 6. The full algorithm is given in Algorithm 2.

5. Choosing Relaxation Parameters

The free parameters ℵ ≡ {εw, εx, εy, β, β̄} do not have an unique, clear-cut, domain-free
procedure by which they can be calibrated. However, as we briefly discussed in Section 3,
it is useful to state explicitly the following worst-case scenario guarantee of WPP:

Corollary 5 Given W 6⊥⊥ Y | Z and W ⊥⊥ Y | {X,Z}, the WPP population bounds on the
ACE will always include the back-door adjusted population ACE based on Z.

Proof The proof follows directly by plugging in the quantities εw = εy = εx = 0, β = β̄ = 1,
into the analytical bounds of Section 4.1, which will give the tightest bounds on the ACE
(generalized to accommodate a background set Z): a single point, which also happens to
be the functional obtained by the back-door adjustment.

The implication is that, regardless of the choice of free parameters, the result is guaran-
teed to be more conservative than the one obtained using the faithfulness assumption. In
any case, this does not mean that a judicious choice of relaxation parameters is of secondary
importance.

The setting of relaxation parameters can be interpreted in two ways:

• ℵ is set prior to calculating the ACE; this uses expert knowledge concerning the
remaining amount of unmeasured confounding, decided with respect to the provided
admissible set and witness, or by a default rule concerning beliefs on faithfulness
violations;
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input : Distributions {ζyx.w} and {P (W = w)};
output: Lower and upper bounds (Lxw,Uxw) for every ωxw

1 Find tightest lower and upper bounds (Lxw,Uxw) for each ωxw using inequalities
(12), (13) (14), (15), (17) and (18);

2 Let Lεwxw and U εwxw be lower/upper bounds of ωxw − ωxw′ ;
3 for each pair (x,w) ∈ {0, 1}2 do
4 Lεwxw ← −εw;
5 U εwxw ← εw;

6 end
7 while TRUE do
8 for each relation ωxw − b× ωxw′ ≤ c in (16) do
9 U εwxw ← min{U εwxw, (b− 1)Lxw + c}

10 end
11 for each relation ωxw − b× ωxw′ ≥ c in (16) do
12 Lεwxw ← max{Lεwxw, (b− 1)Uxw + c}
13 end
14 for each relation ωxw + ωx′w − ωx′w′ ≤ c in (19) do
15 Uxw ← min{Uxw, c− Lεwxw′}
16 end
17 for each relation ωxw − (ωx′w − ωx′w′) ≤ c in (19) do
18 Uxw ← min{Uxw, c+ U εwxw′}
19 end
20 for each relation ωxw + ωx′w − ωx′w′ ≥ c in (19) do
21 Uxw ← max{Uxw, c− U εwxw′}
22 end
23 for each relation ωxw − (ωx′w − ωx′w′) ≥ c in (19) do
24 Uxw ← max{Uxw, c+ Lεwxw′}
25 end
26 if no changes in {(Lxw,Uxw)} then
27 break
28 end

29 end
30 return (Lxw,Uxw) for each (x,w) ∈ {0, 1}2

Algorithm 2: The iterative back-substitution procedure for bounding Lxw ≤ ωxw ≤ Uxw
for all combinations of x and w in {0, 1}2.

• ℵ is deduced by the outcome of a sensivity analysis procedure; given a particular
interval length L, we derive a quantification of faithfulness violations (represented by
ℵ) required to generate causal models compatible with the observational data and an
interval of length L containing the ACE;

That is, in the first scenario the input is ℵ, the output are bounds on the ACE. In the
second scenario, the input is the acceptable width of an interval containing the ACE, the
output are the bounds on the ACE and a choice of ℵ. In his rejoinder to the discussion
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of (Rosenbaum, 2002b), Rosenbaum points out that the sensitivity analysis procedure just
states the logical outcome of the structural assumptions: the resulting deviation of, say,
P (Y = 1 | X = x,W = w) from P (Y = 1 | X = x,W = w,U = u) required to explain
the given length of variation on the ACE is not directly imposed by expert knowledge
concerning confounding effects. Expert knowledge is of course still necessary to decide
whether the resulting deviation is unlikely or not (and hence, whether the resulting interval
is believable), although communication by sensitivity analysis might facilitate discussion
and criticism of the study.

Motivated by the idea of starting from a pre-specified length L for the resulting inter-
val around the ACE, in what follows we describe two possible ways of setting relaxation
parameters. We contrast the methods against the idea of putting priors on latent variable
models, as discussed in Section 3.4.

5.1 Choice by Grid Search Conditioned on Acceptable Information Loss

One pragmatic default rule is to first ask how wide an ACE interval can be so that the result
is still useful for the goals of the analysis (e.g., sorting possible controls X as candidates
for a lab experiment based on lower bounds on the ACE). Let L be the interval width the
analyst is willing to pay for. Set εw = εx = εy = kε and β = c, β̄ = 1/c, for some pair
(kε, c) such that 0 ≤ k < 1, 0 < c ≤ 1, and let (k, c) range over a grid of values. For each
witness/admissible set candidate pair, pick the (k, c) choice(s) entailing interval(s) of length
closest to L. In case of more than one solution, summarize them by a criterion such the
union of the intervals.

This methodology provides an explicit trade-off between length of the interval and tight-
ness of assumptions. Notice that, starting from the backdoor-adjusted point estimator of
Entner et al. (2013), it is not clear how one would build a procedure to provide such a trade-
off: that is, a procedure by which one could build an interval around the point estimate
within a given acceptable amount of information loss. WPP provides a principled way of
building such an interval, with the resulting assumptions on ℵ being explicitly revealed as
a by-product. If the analyst believes that the resulting values of ℵ are not strict enough,
and no substantive knowledge exists that allows particular parameters to be tightened up,
then one either has to concede that wider intervals are necessary or to find other means of
identifying the ACE unrelated to the faithfulness assumption.

In the experiments in Section 6.2, we define a parameter space of kε ∈ {0.05, 0.10, . . . , 0.30}
and c ∈ {0.9, 1}. More than one interval of approximately the same width are identified.
For instance, the configurations (kε = 0.25, c = 1) and (kε = 0.05, c = 0.9) both produce
intervals of approximately length 0.30.

5.2 Linking Selection on the Observables to Selection on the Unobservables

The trade-off framework assumes the analyst has a known tolerance level for information
loss (that is, the length of the interval around the back-door adjusted estimator), around
which an automated procedure for choosing ℵ can be constructed. Alternatively, one might
choose a value of ℵ a priori using information from the problem at hand, and accept the
information loss that it entails. This still requires a way of connecting prior assumptions to
data.
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Observational studies cannot be carried out without making assumptions that are untestable
given the data at hand. There will always be degrees of freedom that must be chosen,
even if such choices are open to criticism. The game is to provide a language to ex-
press assumptions in as transparent a manner as possible. Our view on priors for the
latent variable model (Section 3.4) is that such prior knowledge is far too difficult to jus-
tify when the interpretation of U is unclear. Moreover, putting a prior on a parameter
such as P (Y = 1 |X = x,W = w,U = u) so that this prior is bounded by the constraint
|P (Y = 1 |X = x,W = w,U = u) − P (Y = 1 | X = w,W = w)| ≤ εw has no clear
advantage over the WPP: a specification of the shape of this prior is still necessary and
may have undesirable side effects; it has no computational advantages over the WPP, as
constraints will have to be dealt with now within a Markov chain Monte Carlo procedure;
it provides no insight on how constraints are related to one another (Section 4); it still
suggests a point estimate that should not be trusted lightly, and posterior bounds which
cannot be interpreted as worst-case bounds; and it still requires a choice of εw.

That is not to say that subjective priors on the relationship between U and the ob-
servables cannot be exploited, but the level of abstraction at which they need to be spec-
ified should have advantages when compared to the latent variable model approach. For
instance, Altonji et al. (2005) introduced a framework to deal with violations of the IV
assumptions (in the context of linear models). Their main idea is to linearly decompose the
(observational) dependence of W and Z, and the (causal) dependence of Y and Z, as two
signal-plus-noise decompositions, and assume that dependence among the signals allows one
to infer the dependence among the noise terms. In this linear case, the dependence among
noise terms gives the association between W and Y through unmeasured confounders. The
constraint given by the assumption can then be used to infer bounds on the (differential)
ACE. The details are not straightforward, but the justification for the assumption is in-
directly derived by assuming Z is chosen by a sampling mechanism that picks covariates
from the space of confounders U , so that |Z| and |U | are large. The principal idea is that
the dependence between the covariates which are observed (i.e. Z) and the other variables
(W,X, Y ) should tell us something about the impact of the unmeasured confounders. Their
method is presented for linear models only, and the justification requires a very large |Z|.

We introduce a very different method inspired by the same general principle, but ex-
ploiting the special structure of our procedure. Instead of relying on linearity and a fixed set
of covariates, consider the following postulate: the variability of back-door adjusted ACE
estimators based on different admissible sets, as implied by Rule 1, should provide some
information about the extent of the violations of faithfulness in the given domain.

For simplicity of exposition, we adopt the parameterization of ℵ as given by the three
parameters (εw, εxy = εx = εy, β = β = 1/β̄). Given a prior π(εw, εxy, β) over the three-
dimensional unit cube [0, 1]3, we want to assess probable values of such parameters using a
“likelihood” function that explains the variability of the ACEs provided by Entner et al.’s
rule. We want the posterior to converge to the single values εw = 0, εxy = 0 and β = 1
as the number of witness/admissible set pairs increase and under the condition that they
agree on the same value.

For that, we will consider a target witness/admissible set pair (W ?,Z?), and a reference
set R of other admissible sets. Given ℵ, W ?,Z? and the joint distribution over observables
P (V), a lower bound LB? and an upper bound UB? on the ACE are determined. Given
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the bounds, we define a likelihood function

L(ℵ;P (V),W ?,Z?,R) ≡
n∏
i=1

pN [−1,1](ACEi;m(LB?, UB?), v(LB?, UB?)) (21)

where pN [−1,1](·;m, v) is a truncated Gaussian density on [−1, 1] proportional to a Gaussian
with mean m and variance v; m(LB?, UB?) and v(LB?, UB?) are functions of the bounds.
Along with the prior, this defines a posterior over ℵ; ACEi is the back-door adjusted ACE
obtained with the ith entry of R, conditioned on P (V).

There are many degrees of freedom in this formulation, and we do not claim it represents
anything other than subjective knowledge: an approximation to the idea that large/small
variability of the ACEs should indicate large/small violations of faithfulness, and that we
should get more confident about the magnitude of the violations as more ACEs are reported
by Entner et al.’s back-door estimator. In our implementation we treat m as a free param-
eter, with a uniform prior in [LB?, UB?]. We treat v as a deterministic function of the
bounds,

v(LB?, UB?) ≡ ((UB? − LB?)/6)2 (22)

to reflect the assumption that the interval [LB?, UB?] should cover a large amount of mass
of the model—in this case, UB? − LB? is approximately 6 times the standard deviation of
the likelihood model.

Finally, our problem has one last degree of freedom: (21) treats the ACEs implied by R
as conditionally independent. Since many admissible sets overlap, this can result in over-
confident posteriors, in the sense that they do not reflect our belief that similar admissible
sets do not provide independent pieces of evidence concerning violations of faithfulness.
Our pragmatic correction to that is to discard from R any admissible set which is a strict
superset of some other element of R∪{Z?}. Notice that in some situations, R might contain
the empty set as a possible admissible set, implying that the resulting R will contain at
most one element (the empty set itself). Optionally, one might forbid a priori the empty
set ever entering R.

The criterion above can be refined in many ways: among other issues, one does not want
to inflate the confidence on ℵ by measuring many highly correlated (sets of) covariates that
will end up being added independently to R. One idea is to modify the likelihood function
to allow for dependencies among different ACE “data points.” We leave this as future work.

Besides the priors over ℵ and m(LB?, UB?), we can also in principle define a prior for
P (V). In the following illustration, and in the application in Section 6.3, we simplify the
analysis by treating P (V) as known, using the posterior expected value of P (V) given an
BDeu prior with effective sample size of 10. The full algorithm is shown in Algorithm 3.

It should be stressed out that the posterior over ℵ will in general be unidentifiable, since
the sufficient statistics for the likelihood are the upper and lower bounds and different values
of ℵ can yield the same bounds. Our implementation of Algorithm 3 consists of using a
simple Metropolis-Hastings scheme to sample each of the three components εw, εxw, β one
at a time, and mixing will be a practical issue. Priors will matter. In particular, a situation
with a very small R and an uniform prior π(ℵ) might require many MCMC iterations.

Consider Figure 4. Here, we have a synthetic problem where we know no admissible
set exists. Due to sampling variability and near-faithfulness violations, WPP identifies
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input : Data set D over observed variables V; hyperparameter α for the BDeu prior;
prior π(ℵ); a flag allow empty indicating whether empty sets are allowed

output: A posterior distribution over ℵ
1 Find all witness/admissible set pairs P according to Rule 1, data D and BDeu

hyperparameter α
2 Let (W ?,Z?) be the highest scoring pair according to the WPP scoring rule (11)
3 Let R be the set of all admissible sets in P
4 Remove the empty set from R if allow empty is false
5 Remove from R any set that strictly contains some other set in R
6 Remove Z? from R
7 Let P (V) be the posterior expected value of the distribution of V as given by D and
α

8 Return the posterior distribution implied by π(ℵ), R, (W ?,Z?) and P (V)

Algorithm 3: Finding a posterior distribution over relaxation parameters ℵ using can-
didate solutions generated by Entner et al.’s Rule 1.

three such sets. This is one of the hardest positions for the ℵ learning procedure, since
the posterior will also be very broad. The true ACE is −0.16, while the estimated ACEs
given by R are {−0.44,−0.34}. With only two (reasonably spread out) data points and an
uniform prior for ℵ, we obtain the posterior distribution for the entries of ℵ as shown in
Figure 4(a). This reflects uncertainty and convergence difficulties of the MCMC procedure.
More informative priors make a difference, as shown in Figure 4(b). In Section 6.3, a simple
empirical study with far more concentrated ACEs provides a far more tightly concentrated
set of marginal posteriors.

6. Experiments

In this Section, we start with a comparison of the back-substitution algorithm of Section
4.2 against the fully numerical procedure, which generates constraints using standard al-
gorithms for changing between polytope representations. We then perform studies with
synthetic data, comparing different back-door estimation algorithms against WPP. Finally,
we perform analysis with a real dataset.

6.1 Empirical Investigation of the Back-substitution Algorithm

We compare the back-substitution algorithm introduced in Section 4.2 with the fully nu-
merical algorithm. Comparison is done in two ways: (i) computational cost, as measured
by the wallclock time taken to generate 100 samples by rejection sampling; (ii) width of the
generated intervals. As discussed in Section 4.2, bounds obtained by the back-substitution
algorithm are at least as wide as in the numerical algorithm, barring rounding problems14.

14. About 1% of the time we observed numerical problems with the polytope generator, as we were not
using rational arithmetic in order to speed it up. Those were excluded from the statistics reported in
this Section.
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Figure 4: In (a), the posterior marginal densities for εw, εxy and β with an uniform prior,
smoothed kernel density estimates based on 10, 000 Monte Carlo samples. An
analogous picture is shown in (b), for the situation where the prior is now a prod-
uct of three univariate truncated Gaussians in [0, 1], each marginal proportional
to an univariate Gaussian with means (0.2, 0.2, 0.95) and variances (0.1, 0.1, 0.05),
respectively.

We ran two batches of 1000 trials each, varying the level of the relaxation parameters.
In the first batch, we set εx = εy = εw = 0.2, and β = 0.9, β̄ = 1.1. In the second
batch, we change parameters so that β = β̄ = 1. Experiments were run on a Intel Xeon
E5-1650 at 3.20Ghz. Models were simulated according the the structure W → X → Y ,
sampling each conditional distribution of a vertex being equal to 1 given its parent from
the uniform (0, 1) distribution. The numerical procedure of converting extreme points to
linear inequalities was done using the package rcdd, a R wrapper for the cddlib by Komei
Fukuda. Inference is done by rejection sampling, requiring 100 samples per trial. We fix
the number of interations of the back-substitution method to 4, which is more than enough
to achieve convergence. All code was written in R.

For the first batch, the average time difference between the fully numerical method and
the back-substitution algorithm was 1 second, standard deviation (s.d.) 0.34. The ratio
between times had a mean of 203 (s.d. 82). Even with a more specialized implementation
of the polytope dualization step15, two orders of magnitude of difference seem hard to
remove by better coding. Concerning interval widths, the mean difference was 0.15 (s.d.

15. One advantage of the analytical bounds, as used by the back substitution method, is that it is easy
to express them as matrix operations over all Monte Carlo samples, while the polytope construction
requires iterations over the samples.
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0.06), meaning that the back-substitution on average has intervals where the upper bound
minus the lower bound difference is 0.15 units more than the numerical method, under
this choice of relaxation parameters and averaged over problems generated according to our
simulation scheme. There is a correlation between the width difference and the interval
width given by the numerical method the gap, implying that differences tend to be larger
when bounds are looser: the gap between methods was as small as 0.04 for a fully numerical
interval of width 0.19, and as large as 0.23 for a fully numerical interval of width 0.49. For
the case where β̄ = β = 1, the average time difference was 0.92 (s.d. of 0.24), ratio of 152
(s.d. 54.3), interval width difference of 0.09 (s.d. 0.03); The gap was as small as 0.005 for
a fully numerical interval of width 0.09, and as large as 0.17 for a fully numerical interval
of with 0.23.

6.2 Synthetic Studies

We describe a set of synthetic studies where we assess the trade-off between ACE intervals
and error, as wider intervals will be less informative than point estimators such as the
back-door adjustment, but by definition have more chances of correctly covering the ACE.

In the synthetic study setup, we compare our method against NE1 and NE2, two näıve
point estimators defined by back-door adjustment on the whole of set of available covariates
W and on the empty set, respectively. The former is widely used in practice, even when
there is no causal basis for doing so (Pearl, 2009). The point estimator of Entner et al.
(2013), based solely on the faithfulness assumption, is also assessed.

We generate problems where conditioning on the whole set W is guaranteed to give
incorrect estimates. In detail: we generate graphs where W ≡ {Z1, Z2, . . . , Z8}. Four
independent latent variables L1, . . . , L4 are added as parents of each {Z5, . . . , Z8}; L1 is
also a parent of X, and L2 a parent of Y . L3 and L4 are each randomly assigned to be a
parent of either X or Y , but not both. {Z5, . . . , Z8} have no other parents. The graph over
Z1, . . . , Z4 is chosen by adding edges uniformly at random according to the lexicographic
order. In consequence using the full set W for back-door adjustment is always incorrect, as
at least four paths X ← L1 → Zi ← L2 → Y are active for i = 5, 6, 7, 8. The conditional
probabilities of a vertex given its parents are generated by a logistic regression model with
pairwise interactions, where parameters are sampled according to a zero mean Gaussian
with standard deviation 20 / number of parents. Parameter values are also squashed, so
that if the generated value if greater than 0.975 or less than 0.025, it is resampled uniformly
in [0.950, 0.975] or [0.025, 0.050], respectively.

We analyze two variations: one where it is guaranteed that at least one valid pair
witness-admissible set exists; in the other, all latent variables in the graph are set also as
common parents also of X and Y , so no valid witness exists. We divide each variation into
two subcases: in the first, “hard” subcase, parameters are chosen (by rejection sampling,
proposing from the model described in the previous paragraph) so that NE1 has a bias of
at least 0.1 in the population; in the second, no such a selection exists, and as such our
exchangeable parameter sampling scheme makes the problem relatively easy. We summarize
each WPP interval by the posterior expected value of the lower and upper bounds. In
general WPP returns more than one bound: we select the upper/lower bound corresponding
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to the (W,Z) pair which maximizes the score described at the end of Section 3.2. A BDeu
prior with an equivalent sample size of 10 was used.

Our main evaluation metric for an estimate is the Euclidean distance (henceforth, “er-
ror”) between the true ACE and the closed point in the given estimate, whether the estimate
is a point or an interval. For methods that provide point estimates (NE1, NE2, and faith-
fulness), this means just the absolute value of the difference between the true ACE and
the estimated ACE. For WPP, the error of the interval [L,U ] is zero if the true ACE lies
in this interval. We report error average and error tail mass at 0.1, the latter meaning
the proportion of cases where the error exceeds 0.1. Moreover, the faithfulness estimator is
defined by averaging over all estimated ACEs as given by the accepted admissible sets in
each problem.

As discussed in Section 5.1, WPP can be understood as providing a trade-off between
information loss and accuracy. For instance, while the trivial interval [−1, 1] will always have
zero error, it is not an interesting solution. We assess the trade-off by running simulations
at different levels of kε, where εw = εy = εx = kε. We also have two configurations for
{β, β̄}: we set them at either β = β̄ = 1 or β = 0.9, β̄ = 1.1.

For the cases where no witness exists, Entner’s Rule 1 should theoretically report no
solution. Entner et al. (2013) used stringent thresholds for deciding when the two conditions
of Rule 1 held. Instead we take a more relaxed approach, using a uniform prior on the
hypothesis of independence. As such, due to the nature of our parameter randomization,
more often than not is will propose at least one witness. That is, for the problems where
no exact solution exists, we assess how sensitive the methods are given conclusions taken
from “approximate independencies” instead of exact ones.

The analytical bound are combined with the numerical procedure as follows. We use
the analytical bounds to test each proposed model using the rejection sampling criterion.
Under this scheme, we calculate the posterior expected value of the contingency table and,
using this single point, calculate the bounds using the fully numerical method. This is
not guaranteed to work: the point estimator using the analytical bounds might lie outside
the polytope given by the full set of constraints. If this situation is detected, we revert to
calculating the bounds using the analytical method. The gains in interval length reduction
using the full numerical method are relatively modest (e.g., at kε = 0.20, the average
interval width reduced from 0.30 to 0.24) but depending on the application they might
make a sensible difference.

We simulate 100 datasets for each one of the four cases (hard case/easy case, with the-
oretical solution/without theoretical solution), 5000 points per dataset, 1000 Monte Carlo
samples per decision. Results for the point estimators (NE1, NE2, faithfulness) are obtained
using the population contingency tables. Results are summarized in Table 6.2. The first
observation is at very low levels of kε we increase the ability to reject all witness candidates:
this is due mostly not because Rule 1 never fires, but because the falsification rule of WPP
(which does not enforce independence constraints) rejects the proposed witnesses found by
Rule 1. The trade-off set by WPP is quite stable, where larger intervals are indeed asso-
ciated with smaller error. The point estimates vary in quality, being particularly bad in
the situation where no witness should theoretically exist. The set-up where β = 0.9, β̄ = 1
is particularly less informative. At kε = 0.2, we obtain interval widths around 0.50. As
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Hard, Solvable: NE1 = (0.12, 1.00), NE2 = (0.02, 0.03)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.74 0.03 0.05 0.02 0.05 0.05 0.00 0.00 0.34
0.10 0.94 0.04 0.05 0.01 0.01 0.11 0.00 0.00 0.41
0.15 0.99 0.04 0.05 0.01 0.02 0.16 0.00 0.00 0.46
0.20 1.00 0.05 0.05 0.01 0.01 0.24 0.00 0.00 0.53
0.25 1.00 0.05 0.07 0.00 0.00 0.32 0.00 0.00 0.60
0.30 1.00 0.05 0.10 0.00 0.00 0.41 0.00 0.00 0.69

Easy, Solvable: NE1 = (0.01, 0.01), NE2 = (0.07, 0.24)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.81 0.03 0.02 0.02 0.04 0.04 0.00 0.01 0.34
0.10 0.99 0.02 0.02 0.01 0.02 0.09 0.00 0.00 0.40
0.15 1.00 0.02 0.01 0.00 0.00 0.17 0.00 0.00 0.46
0.20 1.00 0.02 0.01 0.00 0.00 0.24 0.00 0.00 0.54
0.25 1.00 0.02 0.01 0.00 0.00 0.32 0.00 0.00 0.61
0.30 1.00 0.02 0.01 0.00 0.00 0.41 0.00 0.00 0.67

Hard, Not Solvable: NE1 = (0.16, 1.00), NE2 = (0.20, 0.88)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.67 0.20 0.90 0.17 0.76 0.06 0.04 0.14 0.32
0.10 0.91 0.19 0.91 0.13 0.63 0.10 0.02 0.07 0.39
0.15 0.97 0.19 0.92 0.10 0.41 0.18 0.01 0.03 0.45
0.20 0.99 0.19 0.95 0.07 0.25 0.24 0.01 0.01 0.51
0.25 1.00 0.19 0.96 0.03 0.13 0.31 0.00 0.00 0.58
0.30 1.00 0.19 0.96 0.02 0.06 0.39 0.00 0.00 0.66

Easy, Not Solvable: NE1 = (0.09, 0.32), NE2 = (0.14, 0.56)

kε Found Faith.1 WPP1 Width1 WPP2 Width2

0.05 0.68 0.13 0.51 0.10 0.37 0.05 0.02 0.07 0.33
0.10 0.97 0.12 0.53 0.08 0.28 0.10 0.01 0.05 0.39
0.15 1.00 0.12 0.52 0.05 0.17 0.16 0.01 0.03 0.46
0.20 1.00 0.12 0.53 0.03 0.08 0.23 0.01 0.03 0.52
0.25 1.00 0.12 0.48 0.02 0.05 0.31 0.00 0.02 0.59
0.30 1.00 0.12 0.48 0.01 0.04 0.39 0.00 0.01 0.65

Table 1: Summary of the outcome of the synthetic studies. Columns labeled WPP1 refer
to results obtained for β = β̄ = 1, while WPP2 refers to the case β = 0.9, β̄ = 1.1.
The first column is the level in which we set the remaining parameters, εx = εy =
εw = kε. The second column is the frequency by which a WPP solution has been
found among 100 runs. For each particular method (NE1, NE2, Faithfulness and
WPP) we report the pair (error average, error tail mass at 0.1), as explained in the
main text. The Faithfulness estimator is the back-door adjustment obtained by
using as the admissible set the same set found by WPP1. Averages are taken only
over the cases where a witness-admissible set pair has been found. The columns
following each WPP results are the median width of the respective WPP interval
across the 100 runs.
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Manski (2007) emphasizes, this is the price for making fewer assumptions. Even there, they
typically cover only about 25% of the interval [−1, 1] of a priori possibilities for the ACE.

6.3 Influenza Study

Our empirical study concerns the effect of influenza vaccination on a patient being later on
hospitalized with chest problems. X = 1 means the patient got a flu shot, Y = 1 indicates
the patient was hospitalized. A negative ACE therefore suggests a desirable vaccine. The
study was originally discussed by McDonald et al. (1992). Shots were not randomized, but
doctors were randomly assigned to receive a reminder letter to encourage their patients
to be inoculated, an event recorded as binary variable GRP. This suggests the standard
IV model in Figure 1(d), with W = GRP and U unobservable. That is, W and U are
independent because W is randomized, and there are resonable justifications to believe the
lack of a direct effect of letter randomization on patient hospitalization. Richardson et al.
(2011) and Hirano et al. (2000) provide further discussion.

From this randomization, it is possible to directly estimate the ACE16 of W on Y : −0.01.
This is called intention-to-treat (ITT) analysis (Rothman et al., 2008), as it is based on the
treatment assigned by randomization and not on the variable of interest (X), which is not
randomized. While the ITT can be used for policy making, the ACE of X on Y would be a
more interesting result, as it reveals features of the vaccine that are not dependent on the
encouragement design. X and Y can be confounded, as X is not controlled. For instance,
the patient choice of going to be vaccinated might be caused by her general health status,
which will be a factor for hospitalization in the future.

The data contains records of 2, 681 patients, with some demographic indicators (age, sex
and race) and some historical medical data (for instance, whether the patient is diabetic). A
total of 9 covariates is available. Using the bounds of Balke and Pearl (1997) and observed
frequencies gives an interval of [−0.23, 0.64] for the ACE. WPP could not validate GRP as
a witness for any admissible set.

Instead, when forbidding GRP to be included in an admissible set (since the theory
says GRP cannot be a common direct cause of vaccination and hospitalization), WPP
selected as the highest-scoring pair the witness DM (patient had history of diabetes prior to
vaccination) with admissible set composed of AGE (dichotomized as “60 or less years old,”
and “above 60”) and SEX. Choosing, as an illustration, εw = εy = εx = 0.2 and β = 0.9,
β̄ = 1.1, we obtain the posterior expected interval [−0.10, 0.17]. This does not mean the
vaccine is more likely to be bad (positive ACE) than good: the posterior distribution is
over bounds, not over points, being completely agnostic about the distribution within the
bounds. Notice that even though we allow for full dependence between all of our variables,
the bounds are stricter than in the standard IV model due to the weakening of hidden
confounder effects postulated by observing conditional independences. It is also interesting
that two demographic variables ended up being chosen by Rule 1, instead of other indicators
of past diseases.

When allowing GRP to be included in an admissible set, the pair (DM, AGE, SEX)
is now ranked second among all pairs that satify Rule 1, with the first place being given

16. Notice that while the ACE might be small, this does not mean that in another scale, such as odd-ratios,
the results do not reveal an important effect. This depends on the domain.
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Figure 5: Scatterplot of the joint posterior distribution of lower bounds and upper bounds,
Pearson correlation coefficient of 0.71.

by RENAL as the witness (history of renal complications), with the admissible set being
GRP, COPD (history of pulmonary disease), and SEX. In this case, the expected posterior
interval was approximately the same, [−0.07, 0.16]. It is worthwhile to mention that, even
though this pair scored highest by our criterion that measures the posterior probability
distribution of each premise of Rule 1, it is clear that the fit of this model is not as good
as the one with DM as the witness, as measured by the much larger proportion of rejected
samples when generating the posterior distribution. This suggests future work on how to
rank such models.

In Figure 5 we show a scatter plot of the posterior distribution over lower and upper
bounds on the influenza vaccination, where DM is the witness. In Figure 6(a) and (b)
we show kernel density estimators based on the Monte Carlo samples for the cases where
DM and RENAL are the witnesses, respectively. While the witnesses were tested using
the analytical bounds, the final set of samples shown here were generated with the fully
numerical optimization procedure, which is quite expensive.

We also analyze how Algorithm ?? and its variants for τw and τc can be used to select
ℵ = {εw, εx, εy, β, β̄}. The motivation is that this is a domain with overall weak dependencies
among variables. From one point of view, this is bad as instruments will be weak and
generate wide intervals (as suggested by Proposition 1). From another perspective, this
suggests that the effect of hidden confounders may also be weak.

Following the framework of Algorithm 3 in Section 5.2, we put independent uniform
[0, 1] priors on the relaxation parameters εw, εx = εy and β = 1/β̄. 8 admissible sets provide
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Figure 6: In (a), the marginal densities for the lower bound (red) and upper bound (blue) on
the ACE, smoothed kernel density estimates based on 5000 Monte Carlo samples.
Bounds were derived using DM as the witness. In (b), a similar plot using
RENAL as the witness.

the reference set for the target set (DM, (AGE, SEX)), where we disallow the empty set
and any admissible set containing GRP. Reference set back-door adjusted ACEs are all
very weak. Figure 7 shows the posterior inference and a Gaussian density estimate of the
distribution of reference ACEs using the empirical distribution to estimate each individual
ACE.

The result is used to define strongly informative relaxation parameters 0.56, 0.02 and
0.99, with a corresponding expected posterior interval of [0.01, 0.02], suggesting a deleterious
effect of the vaccination. The 95% posterior credible interval for the lower bound, however,
also includes zero. While we do not claim by any means that this procedure provides
irrefutable ACE bounds for this problem (such is the case for any observational study),
this illustrates that, even for a small number of covariates, there is an opportunity to use
reasonably broad priors and obtain informative consequences on the values of ℵ by a more
conservative exploitation of the faithfulness assumption of Spirtes et al. (2000).

7. Conclusion

Our model provides a novel compromise between point estimators given by the faithfulness
assumption and bounds based on instrumental variables. We believe such an approach
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Figure 7: In (a), MCMC plots for the relaxation parameters εw (red curve), εx = εy (blue
curve) and β = 1/β̄ (black curve) using the framework of Section 5.2. The respec-
tive means are 0.38, 0.02 and 0.99. In (b), a Gaussian fit for the chosen ACEs
used to generate the posterior over the relaxation parameters (mean −0.0007,
standard deviation 0.0009).

should become a standard item in the toolbox of anyone who needs to perform an observa-
tional study17.

Unlike risky Bayesian approaches that put priors directly on the parameters of the
unidentifiable latent variable model P (Y,X,W,U |Z), the constrained Dirichlet prior on
the observed distribution does not suffer from massive sensitivity to the choice of hyperpa-
rameters. By focusing on bounds, WPP keeps inference more honest. While it is tempting
to look for an alternative that will provide a point estimate of the ACE, it is also impor-
tant to have a method that trades-off information for fewer assumptions. WPP provides a
framework to express such assumptions.

As future work, we will look at a generalization of the procedure beyond relaxations of
chain structures W → X → Y . Much of the machinery here developed, including Entner et
al.’s Rules, can be adapted to the case where causal ordering is unknown: starting from the
algorithm of Mani et al. (2006) to search for “Y-structures,” it is possible to generalize Rule
1 to setups where we have an outcome variable Y that needs to be controlled, but where
there is no covariate X known not to be a cause of other covariates. Finally, the techniques
used to derive the symbolic bounds in Section 4 may prove useful in a more general context,

17. R code for all methods is available at http://www.homepages.ucl.ac.uk/∼ucgtrbd/wpp.
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and complement other methods to find subsets of useful constraints such as the graphical
approach of Evans (2012).
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Appendix A. Proofs

In this Appendix, we prove the results mentioned in the main text.

Proof of Proposition 1 In the standard IV case, simple analytical bounds are known for
P (Y = y | do(X = x)) (Balke and Pearl, 1997; Dawid, 2003):

η0 ≤ min


1− ζ00.0
1− ζ00.1
ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 + ζ01.1 + ζ10.1

η0 ≥ max


ζ10.1

ζ10.0

ζ10.0 + ζ11.0 − ζ00.1 − ζ11.1
−ζ00.0 − ζ11.0 + ζ10.1 + ζ11.1

η1 ≤ min


1− ζ01.1
1− ζ01.0
ζ10.0 + ζ11.0 + ζ00.1 + ζ11.1

ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1

η1 ≥ max


ζ11.1

ζ11.0

−ζ01.0 − ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1

where ηx ≡ P (Y = 1 | do(X = x)) and ζyx.w ≡ P (Y = y,X = x | W = w). Define also
αx ≡ P (Y = 1 | X = x) and βw ≡ P (X = 1 | W = w) so that

ζyx.w = αI(y=1)
x (1− αx)I(y=0)βI(x=1)

w (1− βw)I(x=0), (23)

where I(·) is the indicator function returning 1 or 0 depending on whether its argument is
true or false, respectively.

Assume for now that β1 ≥ β0, that is, P (X = 1 | W = 1) ≥ P (X = 1 |W = 0). We will
first show that 1−ζ00.0 ≤ min{1−ζ00.1, ζ01.0 +ζ10.0 +ζ10.1 +ζ11.1, ζ10.0 +ζ11.0 +ζ01.1 +ζ10.1}.

That 1−ζ00.0 ≤ 1−ζ00.1 follows directly from the relationship (23) and the assumptions
W ⊥⊥ Y |X and β1 ≥ β0: (1− ζ00.0)− (1− ζ00.1) = −(1− α0)(1− β0) + (1− α0)(1− β1) =
(1− α0)(β0 − β1) ≤ 0.

Now consider (1− ζ00.0)− (ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1). This is equal to

= (1− (1− α0)(1− β0))− ((1− α1)β0 + α0(1− β0) + α0(1− β1) + α1β1)
= (β0 + α0(1− β0))− (β0 − α1β0 + α0(1− β0) + α0 − α0β1 + α1β1)
= α1(β0 − β1)− α0(1− β1) ≤ 0

Analogously, we can show that 1 − ζ00.0 ≤ ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1. Tedious but
analogous manipulations lead to the overall conclusion
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1− ζ00.0 = min


1− ζ00.0
1− ζ00.1
ζ01.0 + ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 + ζ01.1 + ζ10.1

ζ10.0 = max


ζ10.1

ζ10.0

ζ10.0 + ζ11.0 − ζ00.1 − ζ11.1
−ζ00.0 − ζ11.0 + ζ10.1 + ζ11.1

1− ζ01.1 = min


1− ζ01.1
1− ζ01.0
ζ10.0 + ζ11.0 + ζ00.1 + ζ11.1

ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1

ζ11.1 = max


ζ11.1

ζ11.0

−ζ01.0 − ζ10.0 + ζ10.1 + ζ11.1

ζ10.0 + ζ11.0 − ζ01.1 − ζ10.1

The upper bound on the ACE η1 − η0 is obtained by subtracting the lower bound on
η0 from the upper bound on η1. That is, η1 − η0 ≤ (1 − ζ01.1) − ζ10.0 = USIV . Similarly,
η1 − η0 ≥ ζ11.1 − (1 − ζ00.0) = LSIV . It follows that USIV − LSIV = 1 − (P (X = 1 | W =
1)− P (X = 1 | W = 0)).

Finally, assuming β1 ≤ β0 gives by symmetry the interval width 1 − (P (X = 1 | W =
0) − P (X = 1 | W = 1)), implying the width in the general case is given by 1 − |P (X =
1 | W = 1)− P (X = 1 | W = 0)|.

Now we will prove the main theorems stated in Section 4. To facilitate reading, we
repeat here the notation used in the description of the constraints with a few additions, as
well as the identities mapping different parameter spaces and the corresponding assumptions
exploited in the derivation.

We start with the basic notation,

ζ?yx.w ≡ P (Y = y,X = x | W = w,U)

ζyx.w ≡
∑

U P (Y = y,X = x | W = w,U)P (U | W = w)
= P (Y = y,X = x | W = w)

κyx.w ≡
∑

U P (Y = y,X = x | W = w,U)P (U)

η?xw ≡ P (Y = 1 | X = x,W = w,U)
ηxw ≡

∑
U P (Y = 1 | X = x,W = w,U)P (U | W = w)

= P (Y = 1 | do(X = x),W = w)
ωxw ≡

∑
U P (Y = 1 | X = x,W = w,U)P (U)

δ?w ≡ P (X = 1 | W = w,U)
δw ≡

∑
U P (X = 1 | W = w,U)P (U | W ) = P (X = 1 | W = w)

= ζ11.w + ζ01.w
χx.w ≡

∑
U P (X = x | W = w,U)P (U)

= κ1x.w + κ0x.w
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The explicit relationship between parameters describing the latent variable model is:

ζ?00.0 = (1− η?00)(1− δ?0)
ζ?01.0 = (1− η?10)δ?0
ζ?10.0 = η?00(1− δ?0)
ζ?11.0 = η?10δ

?
0

ζ?00.1 = (1− η?01)(1− δ?1)
ζ?01.1 = (1− η?11)δ?1
ζ?10.1 = η?01(1− δ?1)
ζ?11.1 = η?11δ

?
1

All upper bound constants U ·U·· are assumed to be positive. For L·U·· = 0, c ≥ 0, all
ratios c/L·U·· are defined to be positive infinite.

In what follows, we define “the standard IV model” as the one which obeys exogeneity
of W and exclusion restriction – that is, the model following the directed acyclic graph
{W → X → Y,X ← U → Y }. All variables are binary, and the goal is to bound the
average causal effect (ACE) of X on Y given a non-descendant W and a possible (set of)
confounder(s) U of X and Y .

Proof of Theorem 2 Start with the relationship between ηxw and its upper bound:

η?xw ≤ UY Uxw (Multiply both sides by δ?x′.w)
η?xw(1− (1− δ?x′.w)) ≤ UY Uxw δ?x′.w (Marginalize over P (U))

ωxw − κ1x.w ≤ UY Uxw χx′.w
ωxw ≤ κ1x.w + UY Uxw (κ0x′.w + κ1x′.w)

and an analogous series of steps gives ωxw ≥ κ1x.w + LY Uxw (κ0x′.w + κ1x′.w). Notice such
bounds above will depend on how tight εy is. As an illustration of its implications, consider
the derived identity ζ?0x.w = (1 − η?xw)δ?x.w ⇒ 1 − η?xw = ζ?0x.w/δ

?
x.w ⇒ 1 − η?xw ≥ ζ?0x.w ⇒

η?xw ≤ 1− ζ?0x.w = ζ?0x.w + ζ?0x′.w + ζ?1x′.w ⇒ ωxw ≤ κ0x.w + κ0x′.w + κ1x′.w.

It follows from UY Uxw ≤ 1 that that the derived bound ωxw ≤ κ1x.w+UY Uxw (κ0x′.w+κ1x′.w)
is at least as tight as the one obtained via η?xw ≤ 1 − ζ?0x.w. Notice also that the standard
IV bound ηxw ≤ 1− ζ0x.w (Balke and Pearl, 1997; Dawid, 2003) is a special case for εy = 0,
β = β̄ = 1.

For the next bounds, consider

δ?x.w ≤ UXUxw

η?xwδ
?
x.w ≤ UXUxw η?xw (Marginalize over P (U))

κ1x.w ≤ UXUxw ωxw
ωxw ≥ κ1x.w/U

XU
xw

where the bound ωxw ≤ κ1x.w/LXUxw can be obtained analogously. The corresponding bound
for the standard IV model (with possible direct effect W → Y ) is ηxw ≥ ζ1x.w, obtained
again by choosing εx = 1, β = β̄ = 1. The corresponding bound ωxw ≥ κ1x.w is a looser

bound for UXUxw < 1. Notice that if LXUxw = 0, the upper bound is defined as infinite.
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Finally, the last bounds are similar to the initial ones, but as a function of εx instead of
εy:

δ?x.w ≤ UXUxw

(1− η?xw)δ?x.w ≤ UXUxw (1− η?xw) (Marginalize over P (U))
κ0x.w ≤ UXUxw (1− ωxw)
ωxw ≤ 1− κ0x.w/UXUxw

The lower bound ωxw ≥ 1 − κ0x.w/LXUxw is obtained analogously, and implied to be minus
infinite if LXUxw = 0.

Proof of Theorem 3 We start with the following derivation,

η?xw′ − η?xw ≤ εw
η?xw′δ?x.w′ − η?xwδ?x.w′ ≤ εwδ

?
x.w′ (Use −UXUxw′ ≤ −δ?x.w′)

η?xw′δ?x.w′ − η?xwUXUxw′ ≤ εwδ
?
x.w′ (Marginalize over P (U))

κ1x.w′ − ωxwUXIxw ≤ εwχx.w′

ωxw ≥ (κ1x.w′ − εwχx.w′)/UXUxw′

ωxw ≥ (κ1x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′

Analogously, starting from η?xw′−η?xw ≥ εw, we obtain ωxw ≤ (κ1x.w′+εw(κ0x.w′+κ1x.w′))/LXUxw′ .
Notice that for the special case εw and UXUxw′ = 1, we obtain the corresponding lower bound
ωxw ≥ κ1x.w′ that relates ω and κ across different values of W .

The result corresponding to the upper bound ηxw ≤ 1−ζ0x.w′ can be obtained as follows:

η?xw′ − η?xw ≥ −εw
1 + η?xw′ − 1− η?xw ≥ −εw

(1− η?xw)− (1− η?xw′) ≥ −εw
(1− η?xw)δ?x.w′ − (1− η?xw′)δ?x.w′ ≥ −εwδ?x.w′

(1− η?xw)UXUxw′ − (1− η?xw′)δ?x.w′ ≥ −εwδ?x.w′ (Marginalize over P (U))
(1− ωxw)UXUxw′ − κ0x.w′ ≥ −εwχx.w′

ωxw ≤ 1− (κ0x.w′ − εw(κ0x.w′ + κ1x.w′))/UXUxw′

with the corresponding lower bound (non-trivial for LXUxw′ > 0) given by ω?xw ≥ 1− (κ0x.w′ +
εw(κ0x.w′ + κ1x.w′))/LXUxw′ .

The final block of relationships can be derived as follows:

η?xw − η?xw′ ≤ εw
η?xwδ

?
x′.w − η?xw′δ?x′.w ≤ εwδ

?
x′.w

η?xw(1− (1− δ?x′.w))− η?xw′δ?x′.w ≤ εwδ
?
x′.w (Use −UXUx′w ≤ −δ?x′.w)

η?xw − η?xw(1− δ?x′.w)− η?xw′UXUx′.w ≤ εwδ
?
x′.w (Marginalize over P (U))

ωxw − κ1x.w − ωxw′UXUx′w ≤ εwχx′.w
ωxw − ωxw′UXUx′w ≤ κ1x.w + εw(κ0x′.w + κ1x′.w)
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with the lower bound ωxw − ωxw′LXUx′w ≥ κ1x.w − εw(κ0x′.w + κ1x′.w) derived analogously.
Moreover,

η?xw′ − η?xw ≤ εw
(1− η?xw)δ?x′.w − (1− η?xw′)δ?x′.w ≤ εwδ

?
x′.w

(1− η?xw)(1− (1− δ?x′.w))− (1− η?xw′)UXUx′w ≤ εwδ
?
x′.w

1− ωxw − κ0x.w − (1− ωxw′)UXUx′w ≤ εwχx′.w
ωxw − ωxw′UXUx′w ≥ 1− κ0x.w − UXUx′w − εw(κ0x′.w + κ1x′.w)

and the corresponding ωxw − ωxw′LXUx′w ≤ 1 − κ0x.w − LXUx′w + εw(κ0x′.w + κ1x′.w). The last
two relationships follow immediately from the definition of εw.

Our constraints found so far collapse to some of the constraints found in the standard
IV models (Balke and Pearl, 1997; Dawid, 2003) given εw = 0, β = β̄ = 1. Namely,

ηxw ≤ 1− ζ0x.w
ηxw ≤ 1− ζ0x.w′

ηxw ≥ ζ1x.w
ηxw ≥ ζ1x.w′

However, none of the constraints so far found counterparts in the following:

ηxw ≤ ζ0x.w + ζ1x.w + ζ1x.w′ + ζ1x′.w′

ηxw ≤ ζ0x.w′ + ζ1x.w′ + ζ1x.w + ζ1x′.w
ηxw ≥ ζ1x.w + ζ1x′.w − ζ0x.w′ − ζ1x′.w′

ηxw ≥ ζ1x.w′ + ζ1x′.w′ − ζ0x.w − ζ1x′.w
These constraints have the distinct property of being functions of both P (Y = x,X =

x | W = w) and P (Y = x,X = x | W = w′), simultaneously. So far, we have only used
the basic identities and constraints, without attempting at deriving constraints that are
not a direct application of such identities. In the framework of (Dawid, 2003; Ramsahai,
2012), it is clear that general linear combinations of functions of {δ?x.wη?1x.w, δ?x.w, η?1x.w}
can generate constraints on observable quantities ζyx.w and causal quantities of interest,
ηxw. We need to emcompass these possibilities in a way we get a framework for generating
symbolic constraints as a function of {εw, εy, εx, β, β̄}.

One of the difficulties on exploiting a black-box polytope package for that is due to
the structure of the process, which exploits the constraints in Section 3 by first finding the
extreme points of the feasible region of {δ?w}, {η?xw}. If we use the constraints

|η?x1 − η?x0′ | ≤ εw
0 ≤ η?xw ≤ 1

then assuming 0 < εw < 1, we always obtain the following six extreme points

(0, 0)
(0, εw)
(εw, 0)

(1− εw, 1)
(1, 1− εw)

(1, 1)
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In general, however, once we introduce constraints LY Uxw ≤ η?xw ≤ UXUxw , the number of
extreme points will vary. Moreover, when multiplied with the extreme points of the space
δ?1 × δ?0 , the resulting extreme points of ζ?yx.w might be included or excluded of the polytope
depending on the relationship among {εw, εx, εy} and the observable P (Y,X | W ). Numeri-
cally, this is not a problem (barring numerical instabilities, which do occur with a nontrivial
frequency). Algebraically, this makes the problem considerably complicated18. Instead, in
what follows we will define a simpler framework that will not give tight constraints, but
will shed light on the relationship between constraints, observable probabilities and the ε
parameters. This will also be useful to scale up the full Witness Protection Program, as
discussed in the main paper.

Methodology for Cross-W Constraints

Consider the standard IV model again, i.e., where W is exogenous with no direct effect on Y .
So far, we have not replicated anything such as e.g. η1 ≤ ζ00.0 + ζ11.0 + ζ10.1 + ζ11.1. We call
this a “cross-W” constraint, as it relates observables under different values of W ∈ {0, 1}.
These are important when considering weakening the effect W → Y . The recipe for deriving
them will be as follows. Consider the template

δ?0f1(η
?
0, η

?
1) + δ?1f2(η

?
0, η

?
1) + f3(η

?
0, η

?
1) ≥ 0 (24)

such that fi(·, ·) are linear. Linearity is imposed so that this function will correspond to
a linear function of {ζ?, η?, δ?}, of which expectations will give observed probabilities or
interventional probabilities.

We will require that evaluating this expression at each of the four extreme points of the
joint space (δ?0 , δ

?
1) ∈ {0, 1}2 will translate into one of the basic constraints 1 − η?i ≥ 0 or

η?i ≥ 0, i ∈ {0, 1}. This implies any combination of {δ?0 , δ?1 , η?0, η?1} will satisfy (24) (more
on that later).

Given a choice of basic constraint (say, η?1 ≥ 0), and setting δ?0 = δ?1 = 0, this im-
mediately identifies f3(·, ·). We assign the constraint corresponding to δ?0 = δ?1 = 1 with
the “complementary constraint” for η1 (in this case, η?1 ≤ 1). This leaves two choices for
assigning the remaining constraints.

Why do we associate the δ?0 = δ?1 = 1 case with the complementary constraint? Let
us parameterize each function as fi(η

?
0, η

?
1) ≡ aiη

?
0 + biη

?
1 + ci. Let a3 = q, where either

q = 1 (case η?0 ≥ 0) or q = −1 (case 1 − η?0 ≥ 0). Without loss of generality, assume case
(δ?0 = 1, δ?1 = 0) is associated with the complementary constraint where the coefficient of
η?0 should be −q. For the other two cases, the coefficient of η?0 should be 0 by construction.
We get the system

a3 = q
a1 + a3 = −q
a2 + a3 = 0

a1 + a2 + a3 = 0

18. As a counterpart, imagine we defined a polytope through the matrix inequality Ax ≤ b. If we want to
obtain its extreme point representation as an algebraic function of the entries of matrix A and vector
b, this will be a complicated problem since we cannot assume we know the magnitudes and signs of the
entries.
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This system has no solution. Assume instead δ?0 = δ?1 = 1 is associated with the comple-
mentary constraint where the coefficient of η?0 should be −q. The system now is:

a3 = q
a1 + a3 = 0
a2 + a3 = 0

a1 + a2 + a3 = −q

This system always have the solution a1 = a2 = −q. We do have freedom with b1, b2, b3,
which means we can choose to allocate the remaining two cases in two different ways.

Lemma 6 Consider the constraints derived by the above procedure. Then any choice of
(δ?0 , δ

?
1 , η

?
0, η

?
1) ∈ [0, 1]4 will satisfy these constraints.

Proof Without loss of generality, let f3(η
?
0, η

?
1) = qη?0 + (1 − q)/2, q ∈ {−1, 1}. That

is, a3 = q, b3 = 0, c3 = (1 − q)/2. This implies a1 = a2 = −q (as above). Associating
(δ?0 = 1, δ?1 = 0) with η?1 ≥ 0 gives {b1 = 1, c1 = (q − 1)/2} and consequently associating
(δ?0 = 0, δ?0 = 1) with 1 − η?1 ≥ 0 implies {b2 = −1, c2 = (1 + q)/2}. Plugging this into the
expression δ?0f1(η

?
0, η

?
1) + δ?1f2(η

?
0, η

?
1) + f3(η

?
0, η

?
1) we get

= δ?0(−qη?0 + η?1 + (q − 1)/2) + δ?1(−qη?0 − η?1 + (1 + q)/2) + qη?0 + (1− q)/2
= η?0(q − (δ?0 + δ?1)q) + η?1(δ?0 − δ?1) + δ?0(q − 1)/2 + δ?1(1 + q)/2 + (1− q)/2
= η?0(q − (δ?0 + δ?1)q) + η?1(δ?0 − δ?1) + (−q + (δ?0 + δ?1)q)/2 + (δ?1 − δ?0 + 1)/2

= q((δ?1 + δ?0)− 1)(1− 2η?0)/2 + ((δ?1 − δ?0)(1− 2η?1) + 1)/2
= (δ?1 + δ?0 − 1)s/2 + (δ?1 − δ?0)t/2 + 1/2

where s = q(1 − 2η?0) ∈ [−1, 1] and t = (1 − 2η?1) ∈ [−1, 1]. Then evaluating at the four
extreme points s, t ∈ {−1,+1} we get δ0, δ1, 1− δ0, 1− δ1, all of which are non-negative.

The procedure derives 8 bounds (4 cases that we get by associating f3 with either ηx ≥ 0
or 1− ηx ≥ 0. For each of these cases, 2 subcases what we get by assigning (δ?0 = 1, δ?1 = 0)
with either ηx′ ≥ 0 or 1− ηx′ ≥ 0). Now, for an illustration of one case:

Deriving a constraint for the standard IV model, example: f3(η
?
0, η

?
1) ≡ η?0 ≥ 0

Associate η?1 ≥ 0 with assigment (δ?0 = 1, δ?1 = 0) (implying we associate η?1 ≤ 1 with
assigment (δ?0 = 0, δ?1 = 1) and η?0 ≤ 1 with (δ?0 = 1, δ?1 = 1)). This uniquely gives
f1(η

?
0, η

?
1) = η?1 − η?0, f2(η

?
0, η

?
1) = −η?1 − η?0 + 1. The resulting expression is

δ?0(η?1 − η?0) + δ?1(−η?1 − η?0 + 1) + η?0 ≥ 0

from which we can verify that the assignment (δ?0 = 1, δ?1 = 1) gives η?0 ≤ 1. Now, we
need to take the expectation of the above with respect to U to obtain observables ζ and
causal distributions η. However, first we need some rearrangement so that we match η?0
with corresponding (1− δ?w) and so on.

η?1(δ?0 − δ?1) + η?0(1− δ?0 − δ?1) + δ?1 ≥ 0
η?1(δ?0 − δ?1) + η?0((1− δ?0) + (1− δ?1)− 1) + δ?1 ≥ 0
ζ?11.0 − ζ?11.1 + ζ?10.0 + ζ?10.1 − η?0 + ζ?01.1 + ζ?11.1 ≥ 0
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Taking expectations and rearranging it, we have

η0 ≤ ζ11.0 + ζ10.0 + ζ10.1 + ζ01.1

rediscovering one of the IV bounds for η0. Choosing to associate η?1 ≥ 0 with assigment
(δ?0 = 0, δ?1 = 1) will give instead

η0 ≤ ζ11.1 + ζ10.1 + ζ10.0 + ζ01.0

Basically the effect of one of the two choices within any case is to switch ζyx.w with ζyx.w′ .

Deriving Cross-W Constraints

What is left is a generalization of that under the condition |ηxw − ηxw′ | ≤ εw, w 6= w′,
instead of ηxw = ηxw′ . In this situation, we exploit the constraint L ≤ η?xw ≤ Ū instead
of 0 ≤ η?xw ≤ 1 or LY Uxw ≤ η?xw ≤ UY Uxw , where L ≡ min{LY Uxw }, Ū ≡ max{UY Uxw }. Using
LY Uxw ≤ η?xw ≤ UY Uxw complicates things considerably. Also, we will not derive here the ana-
logue proof of Lemma 1 for the case where (η?0, η

?
1) ∈ [L, Ū ]2, as it is analogous but with a

more complicated notation.

Proof of Theorem 4 We demonstrate this through two special cases.
General Model, Special Case 1: f3(η

?
0w, η

?
1w) ≡ η?xw − L ≥ 0

There are two modifications. First, we perform the same associations as before, but with
respect to L ≤ η?xw ≤ Ū instead of 0 ≤ η?x ≤ 1. Second, before we take expectations, we
swap some of the η?xw with η?xw′ up to some error εw.

Following the same sequence as in the example for the IV model, we get the resulting
expression (where x′ ≡ {0, 1}\x):

δ?w(η?x′w − η?xw) + δ?w′(−η?x′w − η?xw + Ū + L) + η?xw − L ≥ 0

from which we can verify that the assignment (δ?w = 1, δ?w′ = 1) gives Ū − η?xw ≥ 0. Now,
we need to take the expectation of the above with respect to U to obtain “observables”
κ and causal effects ω. However, the difficulty now is that terms η?xwδ

?
w′ and η?xw′δ?w have

no observable counterpart under expectation. We get around this transforming η?xw′δ?w into
η?xwδ

?
w (and η?xwδ

?
w′ into η?xw′δ?w′) by adding the corresponding correction −η?xw ≤ −η?xw′ +εw:

δ?w(η?x′w − η?xw) + δ?w′(−η?x′w − η?xw + Ū + L) + η?xw − L ≥ 0
δ?w(η?x′w − η?xw) + δ?w′(−η?x′w′ + εw − η?xw′ + εw + Ū + L) + η?xw − L ≥ 0
η?x′wδ

?
w + η?xw(1− δ?w)− ηx′w′δ?w′ − ηxw′δ?w′ + δ?w′(Ū + L+ 2εw)− L ≥ 0

Now, the case for x = 1 gives

η?0wδ
?
w + η?1w(1− δ?w)− η0w′δ?w′ − η1w′δ?w′ + . . . ≥ 0

η?0w(1− (1− δ?w)) + η?1w(1− δ?w)− η?0w′(1− (1− δ?w′))− η?1w′δ?w′ + . . . ≥ 0
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Taking the expectations:

ω0w − κ10.w + ω1w − κ11.w − ω0w′ + κ10.w′ − κ11.w′ + χw′(Ū + L+ 2εw)− L ≥ 0 (25)

Notice that for β = β̄ = 1, L = 0, Ū = 1, εw = 0, this implies ηxw = ηxw′ and this collapses
to

η0w − ζ10.w + η1w − ζ11.w − η0w′ + ζ10.w′ − ζ11.w′ + δw′ ≥ 0

η1w ≥ ζ10.w + ζ11.w − ζ10.w′ − ζ01.w′

which is one of the lower bounds one obtains under the standard IV model.
The case for x = 0 is analogous and gives

ω0w′ ≤ κ11.w + κ10.w + κ10.w′ − κ11.w′ + χw′(Ū + L+ 2εw)− L (26)

The next subcase is when we exchange the assignment of (δ?w, δ
?
w′) to other constraints. We

obtain the following inequality:

δ?w′(η?x′w − η?xw) + δ?w(−η?x′w − η?xw + Ū + L) + η?xw − L ≥ 0

which from an analogous sequence of steps leads to

δ?w′(η?x′w − η?xw) + δ?w(−η?x′w − η?xw + Ū + L) + η?xw − L ≥ 0
δ?w′(η?x′w′ + εw − η?xw′ + εw) + δ?w(−η?x′w − η?xw + Ū + L) + η?xw − L ≥ 0

η?x′w′δ?w′ − η?xw′δ?w′ + 2δ?w′εw − η?x′wδ?w + η?xw(1− δ?w) + δ?w(Ū + L)− L ≥ 0

For x = 1,

η?0w′δ?w′ − η?1w′δ?w′ + η?0wδ
?
w + η?1w(1− δ?w) + . . . ≥ 0

η?0w′(1− (1− δ?w′))− η?1w′δ?w′ − η?0w(1− (1− δ?w)) + η?1w(1− δ?w) + . . . ≥ 0

Taking expectations,

ω0w′ − κ10.w′ − κ11.w′ − ω0w + κ10.w + ω1w − κ11.w + 2χw′εw + χw(Ū + L)− L ≥ 0 (27)

For x = 0,

η?1w′δ?w′ − η?0w′δ?w′ + η?1wδ
?
w + η?0w(1− δ?w) + . . . ≥ 0

η?1w′δ?w′ − η?0w′(1− (1− δ?w′))− η?1wδ?w + η?0w(1− δ?w) + . . . ≥ 0
κ11.w′ − ω0w′ + κ10.w′ − κ11.w + κ10.w + 2χw′εw + χw(Ū + L)− L ≥ 0

ω0w′ ≤ κ11.w′ + κ10.w′ − κ11.w + κ10.w + 2χw′εw + χw(Ū + L)− L (28)

General Model, Special Case 2: f3(η
?
0w, η

?
1w) ≡ Ū − η?xw ≥ 0

Associate η?x′w ≥ L with assigment (δ?w = 1, δ?w′ = 0) (implying we associate η?x′w ≤ Ū with
assigment (δ?w = 0, δ?w′ = 1) and η?xw ≥ L with (δ?w = 1, δ?w′ = 1)). The resulting expression
is

δ?w(η?x′w + η?xw − Ū − L) + δ?w′(−η?x′w + η?xw) + Ū − η?xw ≥ 0
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Following the same line of reasoning as before, we get this for x = 1:

ω0w − ω0w′ − ω1w − κ10.w + κ11.w + κ10.w′ + κ11.w′ − χw(Ū + L) + 2εwχw′ + Ū ≥ 0 (29)

We get this for x = 0:

ω0w′ ≥ −κ11.w + κ10.w + κ11.w′ + κ10.w′ + χw(Ū + L)− 2εwχw′ − Ū (30)

With the complementary assignment, we start with the relationship

δ?w′(η?x′w + η?xw − Ū − L) + δ?w(−η?x′w + η?xw) + Ū − η?xw ≥ 0

For x = 1,

ω0w′ − ω0w − ω1w − κ10.w′ + κ11.w′ + κ10.w + κ11.w + χw′(2εw − Ū − L) + Ū ≥ 0 (31)

For x = 0,

ω0w′ ≥ −κ11.w′ + κ10.w′ + κ11.w + κ10.w − χw′(2εw − Ū − L)− Ū (32)

Notice that the bounds obtained are asymmetric in x, i.e., we derive different bounds for
ω0w and ω1w. Symmetry is readily obtained by the same derivation where δ?w is interpreted
as P (X = 0 | W = w,U) and x is swapped with x′.
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