
A framework for studying synaptic plasticity
with neural spike train data

Supplementary Material

Scott W. Linderman
Harvard University

Cambridge, MA 02138
swl@seas.harvard.edu

Christopher H. Stock
Harvard College

Cambridge, MA 02138
cstock@post.harvard.edu

Ryan P. Adams
Harvard University

Cambridge, MA 02138
rpa@seas.harvard.edu

1 Details of the Inference Algorithm
The main text describes the core of the inference algorithm for sampling the weights, W (t), and
the adjacency matrix,A. There are a number of other parameters that we infer as well, as described
here.

Sampling the impulse responses, r(∆t) Recall that the impulse responses are modeled as,

rn′→n(∆t) ≡
B∑

b=1

β
(n′→n)
b rb(∆t),

β(n′→n) ∼ Dirichlet(α),

where
∫∞
0
rb(τ) dτ = 1, ∀b and α is the parameter of a symmetric Dirichlet distribution. We sam-

ple the impulse response coefficients, β(n′→n), using Hamiltonian Monte Carlo. To avoid bound-
ary constraints, we use the “expanded-mean” parameterization described in Patterson and Teh [1].
Specifically, we let,

β
(n′→n)
b =

|θ(n
′→n)

b |∑B
b′=1 |θ

(n′→n)
b′ |

,

|θ(n
′→n)

b | ∼ Gamma(α, 1).

In our simulations we let α = 1 and ∆tmax = 100ms. Our impulse response basis vectors, rb(∆t)
consist of B = 6 rectified cosine tuning curves, as described in [2].

Sampling learning rule parameters, θ` The learning rules themselves also possess parameters,
e.g., the amplitude of the STDP update,A+. One of the benefits of particle MCMC is that each itera-
tion yields samples of the weight trajectories. Given these trajectories, it is generally straightforward
to employ Gibbs sampling on the parameters of the learning rule. The conditional probability of θ`
is a function of how much the current weight trajectory differs from that predicted by a learning
rule with parameters θ`. We place gamma priors on the nonnegative parameters, A+, A−, τ+,
and τ−. We use shape parameters a = 1 and rate parameters of 50, 150, 100, and 100, respectively
(time constants are measured in seconds). We restrict the weight boundaries such that Wmax > 0
and Wmin < 0, and place gamma priors on these as well. For the NEURON data, which consists of
purely excitatory connections, we set Wmax ∼ Gamma(1, 1) and −Wmin ∼ Gamma(1, 100).

We sample the conditional distributions using slice sampling. In theory, particle marginal
Metropolis-Hastings updates [3] may yield improved convergence, for example when there are
strong dependencies between the current weight trajectory and the weight bounds, but in practice
we find that slice sampling is sufficient for our purposes.

1



Sampling static refractory weights, Wn→n Though weights between neurons may change as
a result of activity, it is less clear that self weights in the GLM, which effectively implement
refractoriness, should change. In our simulations, we set a self-inhibitory prior on the self
weights, Wn→n N (−1.0, 0.5). For most typical choices of nonlinearities, g(·), specifically those
which are both convex and log concave, the conditional distribution of Wn→n will be log concave
if its prior is. This condition is met by a Gaussian prior, and renders the conditional distribution
amenable to adaptive rejection sampling (ARS). Furthermore, if we wish to sample the presence or
absence of a self connection An→n, then under a Gaussian prior we may use a joint approach as
we do with the time varying weights. Here, the marginal probability of an edge may be approxi-
mated using Gauss-Hermite quadrature. Then, the weights may be sampled using ARS, where the
abscissae of the quadrature may seed the hull of the conditional distribution.

Sampling the bias parameters, x0 Under typical choices of nonlinearity, g, and under a log
concave prior, the conditional distribution of x(n)0 is log concave and amenable to adaptive rejection
sampling. In practice, however, we opt for Hamiltonian Monte Carlo, as with the parameters of the
impulse responses.

Computational details Our inference algorithm was implemented in Python and built upon the
Theano framework for automatic differentiation and compilation to C or GPU kernels. The code
may be found at https://github.com/slinderman/pyglm. Though we have opted for a
fully-Bayesian approach, a particle SAEM approach could be used instead and may offer substantial
improvements in runtime while yielding similar results [4].

References
[1] Sam Patterson and Yee Whye Teh. Stochastic gradient Riemannian Langevin dynamics on the probability

simplex. In Advances in Neural Information Processing Systems, pages 3102–3110, 2013.

[2] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky, and
Eero P Simoncelli. Spatio-temporal correlations and visual signalling in a complete neuronal population.
Nature, 454(7207):995–999, 2008.

[3] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342, 2010.

[4] Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Ancestor sampling for particle Gibbs. In
Advances in Neural Information Processing Systems, pages 2600–2608, 2012.

2

https://github.com/slinderman/pyglm

