
Learning the Learning Rate for
Prediction with Expert Advice

Wouter M. Koolen
Queensland University of Technology and UC Berkeley

wouter.koolen@qut.edu.au

Tim van Erven
Leiden University, the Netherlands

tim@timvanerven.nl

Peter D. Grünwald
Leiden University and Centrum Wiskunde & Informatica, the Netherlands

pdg@cwi.nl

Abstract

Most standard algorithms for prediction with expert advice depend on a parameter
called the learning rate. This learning rate needs to be large enough to fit the data
well, but small enough to prevent overfitting. For the exponential weights algo-
rithm, a sequence of prior work has established theoretical guarantees for higher
and higher data-dependent tunings of the learning rate, which allow for increas-
ingly aggressive learning. But in practice such theoretical tunings often still per-
form worse (as measured by their regret) than ad hoc tuning with an even higher
learning rate. To close the gap between theory and practice we introduce an ap-
proach to learn the learning rate. Up to a factor that is at most (poly)logarithmic
in the number of experts and the inverse of the learning rate, our method performs
as well as if we would know the empirically best learning rate from a large range
that includes both conservative small values and values that are much higher than
those for which formal guarantees were previously available. Our method em-
ploys a grid of learning rates, yet runs in linear time regardless of the size of the
grid.

1 Introduction

Consider a learner who in each round t = 1, 2, . . . specifies a probability distribution wt on K
experts, before being told a vector `t ∈ [0, 1]K with their losses and consequently incurring loss
ht := wt · `t. Losses are summed up over trials and after T rounds the learner’s cumulative loss
HT =

∑T
t=1 ht is compared to the cumulative losses LkT =

∑T
t=1 `

k
t of the experts k = 1, . . . ,K.

This is essentially the framework of prediction with expert advice [1, 2], in particular the standard
Hedge setting [3]. Ideally, the learner’s predictions would not be much worse than those of the best
expert, who has cumulative loss L∗T = mink L

k
T , so that the regret RT = HT − L∗T is small.

Follow-the-Leader (FTL) is a natural strategy for the learner. In any round t, it predicts with a
point mass on the expert k with minimum loss Lkt−1, i.e. the expert that was best on the previous
t − 1 rounds. However, in the standard game-theoretic analysis, the experts’ losses are assumed
to be generated by an adversary, and then the regret for FTL can grow linearly in T [4], which
means that it is not learning. To do better, the predictions need to be less outspoken, which can
be accomplished by replacing FTL’s choice of the expert with minimal cumulative loss by the soft
minimum wkt ∝ e−ηL

k
t−1 , which is known as the exponential weights or Hedge algorithm [3]. Here

η > 0 is a regularisation parameter that is called the learning rate. As η → ∞ the soft minimum
approaches the exact minimum and exponential weights converges to FTL. In contrast, the lower η,
the more the soft minimum resembles a uniform distribution and the more conservative the learner.

1

LetRηT denote the regret for exponential weights with learning rate η. To obtain guarantees against
adversarial losses, several tunings of η have been proposed in the literature. Most of these may be
understood by starting with the bound

RηT ≤
lnK

η
+

T∑
t=1

δηt , (1)

which holds for any sequence of losses. Here δηt ≥ 0 is the approximation error (called mixability
gap by [5]) when the loss of the learner in round t is approximated by the so-called mix loss, which
is a certain η-exp-concave lower bound (see Section 2.1). The analysis then proceeds by giving
an upper bound bt(η) ≥ δηt and choosing η to balance the two terms ln(K)/η and

∑
t bt(η). In

particular, the bound δηt ≤ η/8 results in the most conservative tuning η =
√

8 ln(K)/T , for
which the regret is always bounded by O(

√
T ln(K)); the same guarantee can still be achieved

even if the horizon T is unknown in advance by using, for instance, the so-called doubling trick
[4]. It is possible though to learn more aggressively by using a bound on δηt that depends on the
data. The first such improvement can be obtained by using δηt ≤ eηwt · `t and choosing η =

ln(1 +
√

2 ln(K)/L∗T) ≈
√

2 ln(K)/L∗T , where again the doubling trick can be used if L∗T is
unknown in advance, which leads to a bound of O(

√
L∗T ln(K) + lnK) [6, 4]. Since L∗T ≤ T

this is never worse than the conservative tuning, and it can be better if the best expert has very
small losses (a case sometimes called the “low noise condition”). A further improvement has been
proposed by Cesa-Bianchi et al. [7], who bound δηt by a constant times the variance vηt of `kt when k
is distributed according to wt, such that vηt = wt · (`t − ht)2. Rather than using a constant learning
rate, at time t they play the Hedge weights wt based on a time-varying learning rate ηt that is
approximately tuned as

√
ln(K)/Vt−1 with Vt =

∑
s≤t v

ηs
s . This leads to a so-called second-order

bound on the regret of the form

RT = O
(√

Vt ln(K) + lnK
)
, (2)

which, as Cesa-Bianchi et al. show, implies

RT = O

(√
L∗T (T − L∗T)

T
ln(K) + lnK

)
(3)

and is therefore always better than the tuning in terms of L∗T (note though that (2) can be much
stronger than (3) on data for which the exponential weights rapidly concentrate on a single expert,
see also [8]). The general pattern that emerges is that the better the bound on δηt , the higher η
can be chosen and the more aggressive the learning. De Rooij et al. [5] take this approach to its
extreme and do not bound δηt at all. In their AdaHedge algorithm they tune ηt = ln(K)/∆t−1
where ∆t =

∑
s≤t δ

ηs
s , which is very similar to the second-order tuning of Cesa-Bianchi et al. and

indeed also satisfies (2) and (3). Thus, this sequence of prior works appears to have reached the
limit of what is possible based on improving the bound on δηt . Unfortunately, however, if the data
are not adversarial, then even second-order bounds do not guarantee the best possible tuning of η
for the data at hand. (See the experiments that study the influence of η in [5].) In practice, selecting
ηt to be the best-performing learning rate so far (that is, running FTL at the meta-level) appears to
work well [9], but this approach requires a computationally intensive grid search over learning rates
[9] and formal guarantees can only be given for independent and identically distributed (IID) data
[10]. A new technique based on speculatively trying out different η was therefore introduced in the
FlipFlop algorithm [5]. By alternating learning rates ηt = ∞ and ηt that are very similar to those
of AdaHedge, FlipFlop is both able to satisfy the second-order bounds (2) and (3), and to guarantee
that its regret is never much worse than the regretR∞T for Follow-the-Leader:

RT = O
(
R∞T

)
. (4)

Thus FlipFlop covers two extremes: on the one hand it is able to compete with η that are small
enough to deal with the worst case, and on the other hand it can compete with η =∞ (FTL).

Main Contribution We generalise the FlipFlop approach to cover a large range of η in between.
As before, let RηT denote the regret of exponential weights with fixed learning rate η. We introduce

2

the learning the learning rate (LLR) algorithm, which satisfies (2), (3) and (4) and in addition
guarantees a regret satisfying

RT = O

(
ln(K)

(
ln 1

η

)1+ε
RηT
)

for all η ∈ [ηah
t∗ , 1] (5)

for any ε > 0. Thus, LLR performs almost as well as the learning rate η̂T ∈ [ηah
t∗ , 1] that is

optimal with hindsight. Here the lower end-point ηah
t∗ ≥ (1 − o(1))

√
ln(K)/T (as follows from

(28) below) is a data-dependent value that is sufficiently conservative (i.e. small) to provide second-
order guarantees and consequently worst-case optimality. The upper end-point 1 is an artefact of the
analysis, which we introduce because, for general losses in [0, 1]K , we do not have a guarantee in
terms of RηT for 1 < η < ∞. For the special case of binary losses `t ∈ {0, 1}K , however, we can
say a bit more: as shown in Appendix B of the supplementary material, in this special case the LLR
algorithm guarantees regret bounded byRT = O(KRηT) for all η ∈ [1,∞].

The additional factor ln(K) ln1+ε(1/η) in (5) comes from a prior on an exponentially spaced grid
of η. It is logarithmic in the number of experts K, and its dependence on 1/η grows slower than
ln1+ε(1/η) ≤ ln1+ε(1/ηah

t∗) = O(ln1+ε(T)) for any ε > 0. For the optimally tuned η̂T , we have
in mind regret that grows likeRη̂TT = O(Tα) for some α ∈ [0, 1/2], so an additional polylog factor
seems a small price to pay to adapt to the right exponent α.

Although η ≥ ηah
t∗ appear to be most important, the regret for LLR can also be related to RηT for

lower η:

RT = O

(
lnK

η

)
for all η < ηah

t∗ , (6)

which is not in terms ofRηT , but still improves on the standard bound (1) because δηt ≥ 0 for all η.

The LLR algorithm takes two parameters, which determine the trade-off between constants in the
bounds (2)–(6) above. Normally we would propose to set these parameters to moderate values, but if
we do let them approach various limits, LLR becomes essentially the same as FlipFlop, AdaHedge
or FTL (see Section 2).

10
−4

10
−2

10
0

10
2

0

1000

2000

3000

4000

5000

6000

7000

8000

learning rate (η)

re
g

re
t

Worst−case bound and worst−case η

Hedge
(η)

AdaHedge

FlipFlop
LLR and η

t*

ah

Figure 1: Example data (details in Appendix A)
on which Hedge/exponential weights with inter-
mediate learning rate (global minimum) performs
much better than both the worst-case optimal
learning rate (local minimum on the left) and large
learning rates (plateau on the right). We also show
the performance of the algorithms mentioned in
the introduction.

We emphasise that we do not just have a bound
on LLR that is unavailable for earlier methods;
there also exist actual losses for which the op-
timal learning rate with hindsight η̂T is funda-
mentally in between the robust learning rates
chosen by AdaHedge and the aggressive choice
η =∞ of FTL. On such data, Hedge with fixed
learning rate η̂T performs significantly better
than both these extremes; see Figure 1. In Ap-
pendix A we describe the data used to generate
Figure 1 and explain why the regret obtained by
LLR is significantly smaller than the regret of
AdaHedge, FTL and all other tunings described
above.

Computational Efficiency Although LLR
employs a grid of η, it does not have to search
over this grid. Instead, in each time step it only
has to do computations for the single η that is
active, and, as a consequence, it runs as fast as
using exponential weights with a single fixed
η, which is linear in K and T . LLR, as pre-
sented here, does store information about all
the grid points, which requiresO(ln(K) ln(T))
storage, but we describe a simple approxima-
tion that runs equally fast and only requires a
constant amount of storage.

3

Outline The paper is organized as follows. In Section 2 we define the LLR algorithm and in
Section 3 we make precise how it satisfies (2), (3), (4), (5) and (6). Section 4 provides a discussion.
Finally, the appendix contains a description of the data in Figure 1 and most of the proofs.

2 The Learning the Learning Rate Algorithm

In this section we describe the LLR algorithm, which is a particular strategy for choosing a time-
varying learning rate in exponential weights. We start by formally describing the setting and then
explain how LLR chooses its learning rates.

2.1 The Hedge Setting

At the start of each round t = 1, 2, . . . the learner produces a probability distribution wt =
(w1

t , . . . , w
K
t) on K ≥ 2 experts. Then the experts incur losses `t = (`1t , . . . , `

K
t) ∈ [0, 1]K and the

learner’s loss ht = wt · `t =
∑
k w

k
t `
k
t is the expected loss under wt. After T rounds, the learner’s

cumulative loss isHT =
∑T
t=1 ht and the cumulative losses for the experts are LkT =

∑T
t=1 `

k
t . The

goal is to minimize the regretRT = HT −L∗T with respect to the cumulative loss L∗T = mink L
k
T of

the best expert. We consider strategies for the learner that play the exponential weights distribution

wkt =
e−ηtL

k
t−1∑K

j=1 e
−ηtLjt−1

for a choice of learning rate ηt that may depend on all losses before time t. To analyse such methods,
it is common to approximate the learner’s loss ht by the mix lossmt = − 1

ηt
ln
∑
k w

k
t e
−ηt`kt , which

appears under a variety of names in e.g. [7, 4, 11, 5]. The resulting approximation error or mixability
gap δt = ht−mt is always non-negative and cannot exceed 1. This, and some other basic properties
of the mix loss are listed in Lemma 1 of De Rooij et al. [5], which we reproduce as Lemma C.1 in
the additional material.

As will be explained in the next section, LLR does not monitor the regrets of all learning rates
directly. Instead, it tracks their cumulative mixability gaps, which provide a convenient lower bound
on the regret that is monotonically increasing with the number of rounds T , in contrast to the regret
itself. To show this, letRηT denote the regret of the exponential weights strategy with fixed learning
rate ηt = η, and similarly let Mη

T =
∑T
t=1m

η
t and ∆η

T =
∑T
t=1 δ

η
t denote its cumulative mix loss

and mixability gap.

Lemma 2.1. For any fixed learning rate η ∈ (0,∞], the regret of exponential weights satisfies

RηT ≥ ∆η
T . (7)

Proof. Apply property 3 in Lemma C.1 to the regret decompositionRηT = Mη
T − L∗T + ∆η

T .

We will use the following notational conventions. Lower-case letters indicate instantaneous quan-
tities like mt, δt and wt, whereas uppercase letters denote cumulative quantities like MT , ∆T and
RT . In the absence of a superscript the learning rates present in any such quantity are those chosen
by LLR. In contrast, the superscript η refers to using the same fixed learning rate η throughout.

2.2 LLR’s Choice of Learning Rate

The LLR algorithm is a member of the exponential weights family of algorithms. Its defining prop-
erty is its adaptive and non-monotonic selection of the learning rate ηt, which is specified in Al-
gorithm 1 and explained next. The LLR algorithm works in regimes in which it speculatively tries
out different strategies for ηt. Almost all of these strategies consist of choosing a fixed η from the
following grid:

η1 =∞, ηi = α2−i for i = 2, 3, . . . , (8)

where the exponential base
α = 1 + 1/ log2K (9)

4

Algorithm 1 LLR(πah, π∞). The grid η1, η2, . . . and weights π1, π2, . . . are defined in (8) and (12).

Initialise b0 := 0; ∆ah
0 := 0; ∆i

0 := 0 for all i ≥ 1.
for t = 1, 2, . . . do

if all active indices and ah are bt−1-full then
Increase bt := φ∆ah

t−1/π
ah (with φ as defined in (14))

else
Keep bt := bt−1

end if
Let i be the least non-bt-full index.
if i is active then

Play ηi.
Update ∆i

t := ∆i
t−1 + δit. Keep ∆j

t := ∆j
t−1 for j 6= i and ∆ah

t := ∆ah
t−1.

else
Play ηah

t as defined in (10).
Update ∆ah

t := ∆ah
t−1 + δah

t . Keep ∆j
t := ∆j

t−1 for all j ≥ 1.
end if

end for

is chosen to ensure that the grid is dense enough so that ηi for i ≥ 2 is representative for all
η ∈ [ηi+1, ηi] (this is made precise in Lemma 3.3). We also include the special value η1 = ∞,
because it corresponds to FTL, which works well for IID data and data with a small number of
leader changes, as discussed by De Rooij et al. [5].

For each index i = 1, 2, . . . in the grid, let Ait ⊆ {1, . . . , t} denote the set of rounds up to trial t in
which the LLR algorithm plays ηi. Then LLR keeps track of the performance of ηi by storing the
sum of mixability gaps δit ≡ δ

ηi

t for which ηi is responsible:

∆i
t =

∑
s∈Ait

δis.

In addition to the grid in (8), LLR considers one more strategy, which we will call the AdaHedge
strategy, because it is very similar to the learning rate chosen by the AdaHedge algorithm [5]. In the
AdaHedge strategy, LLR plays ηt equal to

ηah
t =

lnK

∆ah
t−1

, (10)

where ∆ah
t =

∑
s∈Aah

t
δah
s is the sum of mixability gaps δah

t ≡ δ
ηah
t
t during the rounds Aah

t ⊆
{1, . . . , t} in which LLR plays the AdaHedge strategy. The only difference to the original Ada-
Hedge is that the latter sums the mixability gaps over all s ∈ {1, . . . , t}, not just those in Aah

t . Note
that, in our variation, ηah

t does not change during rounds outside Aah
t .

The AdaHedge learning rate ηah
t is non-increasing with t, and (as we will show in Theorem 3.6

below) it is small enough to guarantee the worst-case bound (3), which is optimal for adversarial
data. We therefore focus on η > ηah

t and call an index i in the grid active in round t if ηi > ηah
t .

Let imax ≡ imax(t) be the number of grid indices that are active at time t, such that ηimax(t) ≈ ηah
t .

Then LLR cyclically alternates grid learning rates and the AdaHedge learning rate, in a way that
approximately maintains

∆1
t

π1
≈ ∆2

t

π2
≈ . . . ≈ ∆imax

t

πimax
≈ ∆ah

t

πah for all t, (11)

where πah > 0 and π1, π2, . . . > 0 are fixed weights that control the relative importance of Ada-
Hedge and the grid points (higher weight = more important). The LLR algorithm takes as parameters
πah and π∞, where πah only has to be positive, but π∞ is restricted to (0, 1). We then choose

π1 = π∞, πi = (1− π∞)ρ(i− 1) for i ≥ 2, (12)

where ρ is a prior probability distribution on {1, 2, . . .}. It follows that
∑∞
i=1 π

i = 1, so that πi may
be interpreted as a prior probability mass on grid index i. For ρ, we require a distribution with very

5

heavy tails (meaning ρ(i) not much smaller than 1
i), and we fix the convenient choice

ρ(i) =

∫ i
lnK

i−1
lnK

1

(x+ e) ln2(x+ e)
dx =

1

ln
(
i−1
lnK + e

) − 1

ln
(

i
lnK + e

) . (13)

We cannot guarantee that the invariant (11) holds exactly, and our algorithm incurs overhead for
changing learning rates, so we do not want to change learning rates too often. LLR therefore uses
an exponentially increasing budget b and tries grid indices and the AdaHedge strategy in sequence
until they exhaust the budget. To make this precise, we say that an index i is b-full in round t if
∆i
t−1/π

i > b and similarly that AdaHedge is b-full in round t if ∆ah
t−1/π

ah > b. Let bt be the
budget at time t, which LLR chooses as follows: first it initialises b0 = 0 and then, for t ≥ 1, it
tests whether all active indices and AdaHedge are bt−1-full. If this is the case, LLR approximately
increases the budget by a factor φ > 1 by setting bt = φ∆ah

t−1/π
ah > φbt−1, otherwise it just keeps

the budget the same: bt = bt−1. In particular, we will fix budget multiplier

φ = 1 +
√
πah, (14)

which minimises the constants in our bounds. Now if, at time t, there exists an active index that is
not bt-full, then LLR plays the first such index. And if all active indices are bt-full, LLR plays the
AdaHedge strategy, which cannot be bt-full in this case by definition of bt. This guarantees that all
ratios ∆i

T /π
i
T are approximately within a factor φ of each other for all i that are active at time t∗,

which we define to be the last time t ≤ T that LLR plays AdaHedge:

t∗ = maxAah
T . (15)

Whenever LLR plays AdaHedge it is possible, however, that a new index i becomes active and it
then takes a while for this index’s cumulative mixability gap ∆i

T to also grow up to the budget.
Since AdaHedge is not played while the new index is catching up, the ratio guarantee always still
holds for all indices that were active at time t∗.

2.3 Choosing the LLR Parameters

LLR has several existing strategies as sub-cases. For πah → ∞ it essentially becomes AdaHedge.
For π∞ → 1 it becomes FlipFlop. For π∞ → 1 and πah → 0 it becomes FTL. Intermediate values
for πah and π∞ retain the benefits of these algorithms, but in addition allow LLR to compete with
essentially all learning rates ranging from worst-case safe to extremely aggressive.

2.4 Run time and storage

LLR, as presented here, runs in constant time per round. This is because, in each round, it only
needs to compute the weights and update the corresponding cumulative mixability gap for a single
learning rate strategy. If the current strategy exceeds its budget (becomes bt-full), LLR proceeds
to the next1. The memory requirement is dominated by the storage of ∆1

t , . . . ,∆
imax(t)
t , which,

following the discussion below (5), is at most

imax(T) = 2 +
ln 1

ηimax(T)

lnα
≤ 2 + logα

1

ηah
T

= O(ln(K) ln(T)).

However, a minor approximation reduces the memory requirement down to a constant: At any point
in time the grid strategies considered by LLR split in three. Let us say that ηi is played at time t.
Then all preceding ηj for j ≤ i are already at (or slightly past) the budget. And all succeeding ηj
for i < j ≤ imax are still at (or slightly past) the previous budget. So we can approximate their
cumulative mixability gaps by simply ignoring these slight overshoots. It then suffices to store only
the cumulative mixability gap for the currently advancing ηi, and the current and previous budget.

1In the early stages it may happen that the next strategy is already over the budget and needs to be skipped,
but this start-up effect quickly disappears when the budget exceeds 1, as the weighted increment δit/πi ≤
ηi/8 log1+ε(1/η) is bounded for all 0 ≤ η ≤ 1.

6

3 Analysis of the LLR algorithm

In this section we analyse the regret of LLR. We first show that for each loss sequence the regret is
bounded in terms of the cumulative mixability gaps ∆i

T and ∆ah
T incurred by the active learning rates

(Lemma 3.1). As LLR keeps the cumulative mixability gaps approximately balanced according to
(11), we can then further bound the regret in terms of each of the individual learning rates in the grid
(Lemma 3.2). The next step is to deal with learning rates between grid points, by showing that their
cumulative mixability gap ∆η

T relates to ∆i
T for the nearest higher grid point ηi ≥ η (Lemma 3.3).

In Lemma 3.4 we put all these steps together. As the cumulative mixability gap ∆η
T does not exceed

the regret RηT for fixed learning rates (Lemma 2.1), we can then derive the bounds (2) through (6)
from the introduction in Theorems 3.5 and 3.6.

We start by showing that the regret of LLR is bounded by the cumulative mixability gaps of the
learning rates that it plays. The proof, which appears in Section C.4, is a generalisation of Lemma 12
in [5]. It crucially uses the fact that the lowest learning rate played by LLR is the AdaHedge rate ηah

t
which relates to ∆ah

t .
Lemma 3.1. On any sequence of losses, the regret of the LLR algorithm with parameters πah > 0
and π∞ ∈ (0, 1) is bounded by

RT ≤
(φ

φ− 1
+ 2
)

∆ah
T +

imax∑
i=1

∆i
T ,

where imax is the largest i such that ηi is active in round T and φ is defined in (14).

The LLR budgeting scheme keeps the cumulative mixability gaps from Lemma 3.1 approximately
balanced according to (11). The next result, proved in Section C.5, makes this precise.
Lemma 3.2. Fix t∗ as in (15). Then for each index i that was active at time t∗ and arbitrary j 6= i:

∆j
T ≤ φ

(
πj

πi
∆i
T +

πj

πah

)
+ min{1, ηj/8}, (16a)

∆j
T ≤ φ

πj

πah ∆ah
T + min{1, ηj/8}, (16b)

∆ah
T ≤

πah

πi
∆i
T + 1. (16c)

LLR employs an exponentially spaced grid of learning rates that are evaluated using — and played
proportionally to — their cumulative mixability gaps. In the next step (which is restated and proved
as Lemma C.7 in the additional material) we show that the mixability gap of a learning rate between
grid-points cannot be much smaller than that of its next higher grid neighbour. This establishes in
particular that an exponential grid is sufficiently fine.
Lemma 3.3. For γ ≥ 1 and for any sequence of losses with values in [0, 1]:

δγηt ≤ γe(γ−1)(lnK+η)δηt .

The preceding results now allow us to bound the regret of LLR in terms of the cumulative mixability
gap of any fixed learning rate (which does not exceed its regret by Lemma 2.1) and in terms of the
cumulative mixability gap of AdaHedge (which we will use to establish worst-case optimality).
Lemma 3.4. Suppose the losses take values in [0, 1], let πah > 0 and π∞ ∈ (0, 1) be the parameters
of the LLR algorithm, and abbreviate B =

(
φ
φ−1 + 2

)
πah +φ. Then the regret of the LLR algorithm

is bounded by

RT ≤ Bαe(α−1)(lnK+1) ∆η
T

πi(η)
+

(
α

8(α− 1)
+

φ

πah +
φ

φ− 1
+ 3

)
for all η ∈ [ηah

t∗ , 1], where i(η) = 2+ blogα(1/η)c is the index of the nearest grid point above η, and
by

RT ≤ B
∆∞T
π∞

+

(
α

8(α− 1)
+

φ

πah +
φ

φ− 1
+ 3

)

7

for η =∞. In addition

RT ≤ B
∆ah
T

πah +
α

8(α− 1)
+ 1,

and for any η < ηah
t∗

∆ah
T ≤

lnK

η
+ 1.

The proof appears in additional material Section C.6.

We are now ready for our main result, which is proved in Section C.7. It shows that LLR competes
with the regret of any learning rate above the worst-case safe rate and below 1 modulo a mild factor.
In addition, LLR also performs well on all data favoured by Follow-the-Leader.
Theorem 3.5. Suppose the losses take values in [0, 1], let πah > 0 and π∞ ∈ (0, 1) be the
parameters of the LLR algorithm, and introduce the constants B = 1 + 2

√
πah + 3πah and

CK = (log2K + 1)/8 +B/πah + 1. Then the regret of LLR is simultaneously bounded by

RT ≤
4Be1

1− π∞
(log2K + 1) ln(7/η) ln2

(
2 log2(5/η)

)︸ ︷︷ ︸
=O(ln1+ε(1/η)) for any ε > 0

RηT + CK for all η ∈ [ηah
t∗ , 1]

and by

RT ≤
B

π∞
R∞T + CK for η =∞.

In addition

RT ≤
B

πah

lnK

η
+ CK for any η < ηah

t∗ .

To interpret the theorem, we recall from the introduction that ln(1/η) is better than O(lnT) for all
η ≥ ηah

t∗ .

We finally show that LLR is robust to the worst-case. We do this by showing something much
stronger, namely that LLR guarantees a so-called second-order bound (a concept introduced in [7]).
The bound is phrased in terms of the cumulative variance VT =

∑T
t=1 vt, where vt = Vk∼wt

[
`kt
]

is the variance of `kt for k distributed according to wt. See Section C.8 for the proof.
Theorem 3.6. Suppose the losses take values in [0, 1], let πah > 0 and π∞ ∈ (0, 1) be the
parameters of the LLR algorithm, and introduce the constants B =

(
φ
φ−1 + 2

)
πah + φ and

CK = (log2K + 1)/8 +B/πah + 1. Then the regret of LLR is bounded by

RT ≤
B

πah

√
VT lnK +

(
CK +

2B lnK

3πah

)
and consequently by

RT ≤
B

πah

√
L∗T (T − L∗T)

T
lnK + 2

(
CK +

2B lnK

3πah +
B2 lnK

(πah)2

)
.

4 Discussion

We have shown that our new LLR algorithm is able to recover the same second-order bounds as
previous methods, which guard against worst-case data by picking a small learning rate if necessary.
What LLR adds is that, at the cost of a (poly)logarithmic overhead factor, it is also able to learn a
range of higher learning rates η, which can potentially achieve much smaller regret (see Figure 1).
This is accomplished by covering this range with a grid of sufficient granularity. The overhead
factor depends on a prior on the grid, for which we have fixed a particular choice with a heavy tail.
However, the algorithm would also work with any other prior, so if it were known a priori that certain
values in the grid were of special importance, they could be given larger prior mass. Consequently,
a more advanced analysis demonstrating that only a subset of learning rates could potentially be
optimal (in the sense of minimizing the regretRηT) would directly lead to factors of improvement in
the algorithm. Thus we raise the open question: what is the smallest subset E of learning rates such
that, for any data, the minimum of the regret over this subset minη∈E RηT is approximately the same
as the minimum minηRηT over all or a large range of learning rates?

8

References

[1] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[2] V. Vovk. A game of prediction with expert advice. Journal of Computer and System Sciences,
56(2):153–173, 1998.

[3] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press,
2006.

[5] S. de Rooij, T. van Erven, P. D. Grünwald, and W. M. Koolen. Follow the leader if you can,
Hedge if you must. Journal of Machine Learning Research, 15:1281–1316, 2014.

[6] P. Auer, N. Cesa-Bianchi, and C. Gentile. Adaptive and self-confident on-line learning algo-
rithms. Journal of Computer and System Sciences, 64:48–75, 2002.

[7] N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction
with expert advice. Machine Learning, 66(2/3):321–352, 2007.

[8] T. van Erven, P. Grünwald, W. M. Koolen, and S. de Rooij. Adaptive hedge. In Advances in
Neural Information Processing Systems 24 (NIPS), 2011.

[9] M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz. Forecasting electricity consumption by ag-
gregating specialized experts; a review of the sequential aggregation of specialized experts,
with an application to Slovakian and French country-wide one-day-ahead (half-)hourly predic-
tions. Machine Learning, 90(2):231–260, 2013.

[10] P. Grünwald. The safe Bayesian: learning the learning rate via the mixability gap. In Proceed-
ings of the 23rd International Conference on Algorithmic Learning Theory (ALT). Springer,
2012.

[11] V. Vovk. Competitive on-line statistics. International Statistical Review, 69:213–248, 2001.
[12] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.

9

Learning the Learning Rate for Prediction with Expert Advice:
Additional Material

A Simulation Study

Figure 1 shows that an intermediate learning rate η̂T can outperform both the robust small learning
rates chosen by methods like AdaHedge and the aggressive large learning η = ∞ chosen by FTL.
In this section, we first discuss the features of Figure 1 in more detail. Then we describe how we
generated the underlying data and we explain why the regret obtained by LLR is significantly smaller
than the regret of AdaHedge, FTL and the other methods described in the introduction.

A.1 Interpretation

The red line in Figure 1 shows the regret RηT of the exponential weights algorithm with a fixed
learning rate ηt = η as a function of η. Its minimum at η̂T ≈ 1/70 is the optimal learning rate
in hindsight, with corresponding regret Rη̂TT ≈ 100. Two blue lines mark the conservative tuning
ηwc
T =

√
8(lnK)/T described in the introduction, and the corresponding worst-case regret bound

Rwc
T ≤

√
T ln(K)/2. As can be seen, both the bound for ηwc

T and its actual regret are substantially
larger (about 2200) than the global minimum at η̂T . The regret of AdaHedge is indicated by the
purple horizontal line, and this line may also be taken as indicative of the performance of the second-
order tuning of Cesa-Bianchi et al. [7], which is very similar. Although smaller than the regret for
the worst-case tuning ηwc

T , the regret for these second-order methods is still much larger than Rη̂TT .
The reason is that these methods use learning rates that are too small. On the other hand, large
learning rates (in particular η =∞ as used by FTL) also perform much worse than the best possible
learning rate, so it is important to find the right intermediate value. This is the objective of LLR (the
green line; we used parameters πah = π∞ = 1/5), which achieves the smallest regret of all adaptive
algorithms described in the introduction. Thus, this data pattern illustrates that intermediate learning
rates can be optimal on some data, and motivates the search for an adaptive algorithm like LLR that
can learn them. The remaining gap between LLR and the optimal learning rate η̂T is the price we
pay for learning the learning rate.

A.2 Data Generating Process

We now explain the data generating process that was used to generate the data in Figure 1. There
are K = 3 experts, which each receive T = 2 · 107 losses. Our focus really is on experts 1 and
2, because the third expert always gets the maximal loss 1; we explain why we include it further
below. On a high level, our method to generate the losses for experts 1 and 2 is as follows: there
exist some data for which small η is much better than large η, and there also exist data for which
large η is much better than small η. We simply alternate these two types of data, which ensures that
some intermediate η will be the best. In practice, especially when the number of experts is large,
there might be other, more complicated interactions between experts that cause intermediate η to be
best, but our current approach seems to be the simplest illustration of this phenomenon.

More precisely, T losses for the experts are constructed according to Algorithm 2, which depends
on parameters α > β and γ, for which we select the values α = 1/6, β = 1/14 and γ = 1/6. The
pattern of losses for experts 1 and 2 is constructed in four phases, which are repeated Tα times. Out
of these, the crucial parts are Phase 1 and Phase 3, during which the difference in cumulative loss
between experts 1 and 2 stays approximately constant, except that it goes up and down by 1 every
two rounds, which we call wiggling. Phase 1 takes place at a particular cumulative loss difference
designed to punish large learning rates and Phase 3 at another designed to punish small learning
rates. Phases 2 and 4 simply take care of the transition from Phase 1 to Phase 3 and vice versa. For
simplicity, we have ignored rounding issues in our rendering of Algorithm 2, which need to be taken
care of to make sure that all phases have integer lengths and that at each end of Phase 4 we have
L1
t − L2

t exactly equal to 1/2.

Phase 1: Punish Large Learning Rates In Phase 1, which lasts T 1/2−β rounds every time it is
repeated, the difference in cumulative loss between experts 1 and 2 is approximately 0 and every

10

Algorithm 2 The Data Generating Process
Parameters: T , 0 < α < 1/2, 0 < β < α, 0 < γ < 1/2
for t = 1, 2, . . . , T do . Expert 3 is always bad

`3t := 1
end for
`11 := 1/2 ; `21 := 0 ; t := 2 . Tie-breaker
for j := 1, 2, . . . , Tα do

for i := 1, 2, . . . , T 1/2−β do . Phase 1: Wiggles, |L1
t − L2

t | = 1/2
`1t := 0; `2t := 1 ; `1t+1 := 1 ; `2t := 0 ; t := t+ 2

end for
for i = 1, 2, . . . , T 1/2−γ do . Phase 2: Expert 2 gets better than 1

`1t := 1 ; `2t := 0 ; t := t+ 1
end for
for i = 1, 2, . . . , T 1−α − T 1/2−β − 2T 1/2−γ do . Phase 3: Wiggles, L1

t − L2
t ≈ T 1/2−γ

`1t := 1 ; `2t := 0 ; `1t+1 := 0 ; `2t := 1 ; t := t+ 2
end for
for i = 1, 2, . . . , T 1/2−γ do . Phase 4: Expert 2 gets worse again

`1t := 0 ; `2t := 1 ; t := t+ 1
end for . Now L1

t − L2
t = 1/2 again

end for

wiggle causes the leader (the expert with smallest cumulative loss) to change two times. As is well-
known, each such leader change leads to an additional regret of 1/2 for FTL. Since the total number
of rounds spent in Phase 1 is TαT 1/2−β = T 1/2+ε for ε = α − β > 0, this ensures that FTL will
incur regret of order strictly larger than

√
T and hence will not be competitive with the standard

worst-case learning rate ηwc
T , whose regret grows no faster than O(

√
T). Thus, in Phase 1, FTL and

similar large learning rates are ruled out.

Phase 3: Punish Small Learning Rates In Phase 3, the difference in cumulative loss L1
t − L2

t

between experts 1 and 2 is approximately T 1/2−γ . This distinguishes between small learning rates
η � T−1/2+γ for which the exponential weights are not converged on a single expert during Phase 3
and larger learning rates η � T−1/2+γ for which the exponential weights are converged. Con-
vergence of the weights is important, because it may be derived from Lemma C.2 below that the
mixability gap can be approximated as

δηt ∝ ηv
η
t for η ≤ 1,

where vηt is the variance of the exponential weights distribution at time t, which is approximately 0
if and only if the weights are converged on a single expert. And the mixability gap to a large extent
controls the regret, which (1) and Lemma 2.1 show to be sandwiched by

T∑
t=1

δηt ≤ R
η
T ≤

lnK

η
+

T∑
t=1

δηt .

Since α < 1/2, the fraction of rounds spent in Phase 3 goes to 1 as T tends to infinity, such that

RηT ≥ T
(
1 + o(1)

)
η for η � T−1/2+γ .

This explains the spike in the regret for η between ηwc
T ≈ T−1/2 ≈ 10−3.7 and T−1/2+γ ≈ 10−2.4,

and we see in Figure 1 that the spike continues for somewhat larger η as well.

If η becomes large enough, however, then Phase 3 stops hurting because vηt will be very small. This
can quantified using Lemma 6 of Van Erven et al. [8], which bounds the mixability gap by

δηt . η(1−max
k

wkt) ≤ 1− w2
t for η ≤ 1.

Assuming that the weight of expert 3 is negligible, we have 1 − w2
t ≈ exp

(
−ηT 1/2−γ), which

is exponentially small in T for η � T−1/2+γ . For such η the sum of mixability gaps over all
repetitions of Phase 3 is therefore bounded by a constant.

11

This leaves room for a learning rate η̂T that is significantly larger than T−1/2+γ (such that it is not
hurt by Phase 3), but at the same time is not so large that it suffers from Phase 1. And indeed our
experiments confirm that such an intermediate learning rate minimizes the regret. Choosing γ = 0,
we already find an η̂T that beats ηwc

T ∝ T−1/2 and FTL, but AdaHedge (which chooses a learning
rate substantially higher than T−1/2 when γ = 0) and hence FlipFlop are then still competitive with
all η. By choosing γ slightly above 0, we find that there exists an η̂T that also significantly beats
AdaHedge and FlipFlop. As mentioned above, Figure 1 was obtained for T = 2 · 107, α = 1/6,
β = 1/14 and γ = 1/6.

The Role of Expert 3 At the final time T , the cumulative losses of experts 1 and 2 differ by 1/2,
a constant. Therefore, if we were to leave out expert 3, which always gets maximal loss, it would
actually be optimal to use learning rate 0, i.e. not learn anything at all: Hedge would then predict
by a uniform mixture of expert 1 and 2 at all t, which would give a regret of at most 1/2. Including
expert 3 ensures that this trivial, non-learning version of Hedge does not perform well, for it would
put mass 1/3 at the bad expert 3. Indeed, if we repeat the experiment without this bad expert we end
up with a figure that, unlike Figure 1, has no local minimum at η0 ≈ 7 · 10−3; the red curve is then
increasing on (0, η0), while to the right of η0 it still behaves just like in Figure 1.

B For Binary Losses, LLR Is Also Competitive with All η ∈ [1,∞].

The following result substantially generalizes the first implication in Theorem 18 of [5], who show
that, for K = 2 experts and losses in {0, 1}, unbounded (as T → ∞) regret for FTL implies
unbounded regret for Hedge with constant learning rate ηt = η. Note that the case with losses in
{0, 1} corresponds to prediction with expert advice in which the experts always predict with a 0 or 1,
the loss is the 0/1-loss, and the learner is allowed to judge randomized predictions by their expected
loss.

Theorem B.1. Fix any 0 < η <∞ and K ∈ N. Consider a loss sequence `1, `2, . . . with each `t ∈
{0, 1}K . Then there is a constant C > 0, depending on η, such that for all T > 0, RηT ≥ C · R∞T .
In particular, for η ≥ 1, the inequality holds for C ≥ 1/(2eK).

The theorem shows that, if one is only interested in regret bounds up to constant factors, and the
losses of the experts are guaranteed to be in {0, 1}, then nothing is lost by only considering η =∞
(FTL) and all η < η0 where η0 is some fixed constant; the precise constants, hidden in the result,
depends on this choice of η0. On the other hand, Example 2 of [5] shows that there are cases with
losses in {0, 1} in which the regret of FTL is bounded, whereas for η = 1, Rη increases linearly
(!) in T . Hence, including η = ∞ is essential. This shows that in the special case of 0/1-valued
losses, the LLR algorithm is really competitive with all interesting values of η as long as one is only
interested in regret optimality up to constant factors.

Proof. Let K̂t−1 be the set of leaders at time t − 1, i.e. the set of k ∈ {1, . . . ,K} that achieve
minimum cumulative loss at time t−1. If there is no leader change at time t, i.e. if K̂t−1 = K̂t, then
`t,k = `t,k′ for all k, k′ ∈ K̂t−1 and FTL incurs no regret, i.e. R∞t = R∞t−1. The other possibility
is that there is a leader change, at time t, i.e. there is a k ∈ K̂t−1 with k 6∈ K̂t. Then there must
be an expert k′ ∈ K̂t so that Lt,k′ < Lt,k (because k does not lead any more at time t) whereas
Lt−1,k ≤ Lt−1,k′ (because k leads at time t − 1). Since Lt−1,k and Lt−1,k′ are integers and `t,k
and `t,k′ are both in {0, 1}, this implies that we must have `t,k = 1, `t,k′ = 0, Lt−1,k = Lt−1,k′ .
It follows that K̂t ∩ K̂t−1 is nonempty, and each k0 in the intersection has `t,k0 = 0, and each
k1 ∈ K̂t−1 \ K̂t has `t+1,k1 = 1. Setting K ′ ≥ 1 equal to the number of experts in K̂t−1 \ Kt, it
follows that

R∞t = R∞t−1 +
K ′

|K̂t−1|
≤ R∞t−1 + 1.

Thus,R∞T ≤ #(lc), where #(lc) denotes the number of leader changes up till time T .

Below we prove that for every t with a leader change, δηt ≥ C, where C is a constant, which
is at least 1/(2eK) if η ≥ 1. Since by Lemma C.1 below, at all other t′, δηt′ ≥ 0, it follows that

12

∆η
T ≥ C ·#(lc) ≥ CR∞T , where the final inequality was shown at the end of the previous paragraph.

SinceRηT ≥ ∆η
T by Lemma 2.1, the result then follows.

Thus, it only remains to prove that δηt ≥ C with C as above if there is a leader change at time t. To
see this, note that by Lemma C.2, we have for each t, δt ≥ cηvt where cη = (e−η + η − 1)/η is a
constant depending on η which, by standard calculus, can be seen to be larger than 0 and increasing
for all η > 0. Thus, for η ≥ 1, cη ≥ c1 = e−1 and it is sufficient if we can show that, if there is a
leader change at time t, then vt ≥ 1/(2K). But we know that at time t − 1, there must be at least
two leaders (denoted k and k′ above). Since these have maximal weights and weights sum to 1, both
of these must have weight at least 1/K. Using that `t,k = 1 and `t,k′ = 0, we have

vt = wt · (`t − ht)2 ≥
1

K
(1− ht)2 +

1

K
h2t ≥

1

2K
,

where we used that mina∈[0,1](1− a)2 + a2 = 1/2. This finishes the proof.

C Proofs

This section is dedicated to the proofs referenced in the main exposition.

C.1 Lemma C.1: Basic Properties of the Mix Loss

The following lemma is proved in [5].

Lemma C.1 (Mix Loss with Constant Learning Rate). For any learning rate η ∈ (0,∞]

1. 0 ≤ mη
t ≤ h

η
t ≤ 1, so that 0 ≤ δηt ≤ 1.

2. Cumulative mix loss telescopes: Mη
T =

{
− 1
η ln

(∑
k w

k
1e
−ηLkT

)
for η <∞,

L∗T for η =∞.

3. Cumulative mix loss approximates the loss of the best expert: L∗T ≤M
η
T ≤ L

∗
T +

lnK

η
.

4. The cumulative mix loss Mη
T is non-increasing in η.

C.2 Bernstein Sandwich

Here we show that the mixability gap δt is well approximated by the variance vt = wt · (`t − ht)2
for small learning rates η.

Lemma C.2 (Bernstein Sandwich). For `t ∈ [0, 1]K and η > 0

(e−η + η − 1)

η
vt ≤ δt ≤

(eη − η − 1)

η
vt.

Proof. As (ex − x− 1)/x2 is increasing in x, all x ∈ [−1, 1] satisfy

e−η + η − 1 ≤ eηx − ηx− 1

x2
≤ eη − η − 1.

Combination with Lemma C.4 results in

(e−η + η − 1) min
λ

1

η

∑
k

wk(λ− `kt)2 ≤ δt ≤ (eη − η − 1) min
λ

1

η

∑
k

wk(λ− `kt)2

The lemma follows by plugging in the optimizer λ = w · `t.

13

C.3 Proof of Lemma 3.3, restated as Lemma C.7

We build up to the proof using a series of lemmas.

Lemma C.3. Let wη,kt = e
−ηLkt−1∑
j e
−ηLj

t−1

be the exponential weights distribution on K experts for

learning rate η > 0 and let γ ≥ 1. Then

wγη,kt ≤ Kγ−1wη,kt for all k. (17)

Proof. By the log-sum inequality (see [12])

ln
wγη,kt

wη,kt
= ln

∑
j e
−η(Ljt−1−L

k
t−1)∑

j e
−γη(Ljt−1−Lkt−1)

≤
∑
j

e−η(L
j
t−1−L

k
t−1)∑

j e
−η(Ljt−1−Lkt−1)

ln
e−η(L

j
t−1−L

k
t−1)

e−γη(L
j
t−1−Lkt−1)

= (γ − 1)
∑
j

e−η(L
j
t−1−L

k
t−1)∑

j e
−η(Ljt−1−Lkt−1)

η(Ljt−1 − Lkt−1)

≤ (γ − 1)

(
−
∑
j

e−η(L
j
t−1−L

k
t−1)∑

j e
−η(Ljt−1−Lkt−1)

ln
(e−η(L

j
t−1−L

k
t−1)∑

j e
−η(Ljt−1−Lkt−1)

))
.

The second inequality follows by
∑
j e
−η(Ljt−1−L

k
t−1) ≥ e−η(L

k
t−1−L

k
t−1) = 1. Upper bounding that

Shannon entropy by lnK results in (17).

Lemma C.4. Fix any learning rate η and probability vector w. Let δηt (w) = w · `t −mη
t (w) be

the mixability gap of w, where mη
t (w) = −1

η ln
∑
k wke

−η`kt is the mix loss of w. Then

δηt (w) = min
λ

1

η

∑
k

wkψ
(
η(λ− `kt)

)
where ψ(x) = ex − x− 1 and the minimum is achieved by λ = mη

t (w).

Proof. Let 4 be the probability simplex on K outcomes. We will use that, up to scaling, the mix
loss is the convex conjugate of the Kullback-Leibler divergence D(v‖w) =

∑
k vk ln vk

wk
:

−ηmη
t (w) = sup

v∈4
v · (−η`t)−D(v‖w).

As the Kullback-Leibler may be extended off the simplex to D(v‖w) =
∑
k(vk ln vk

wk
− vk + wk)

for any vectors v and w with non-negative components, we may introduce a Lagrange multiplier λ
to enforce the restriction to the simplex and reason as follows:

mη
t (w) = inf

v∈4

1

η
D(v‖w) + v · `t

= sup
λ

inf
v∈RK+

1

η
D(v‖w) + v · `t − λ(1 · v − 1)

= sup
λ

1

η

∑
k

wk

(
1− eη(λ−`

k
t)
)

+ λ

= w · `t − inf
λ

1

η

∑
k

wkψ
(
η(λ− `kt)

)
,

from which the result follows.

14

Lemma C.5 (Continuous Log-Sum Inequality). Let f, g : [a, b]→ R be positive functions such that∫ b
a
g(x)dx <∞. Then

ln

∫ b
a
f(x)dx∫ b

a
g(x)dx

≤
∫ b

a

f(x)∫ b
a
f(y)dy

ln
f(x)

g(x)
dx.

Proof. Let h(x) = f(x)/g(x). Then, by Jensen’s inequality and convexity of z ln z,∫ b

a

f(x)∫ b
a
g(y)dy

ln
f(x)

g(x)
dx =

∫ b

a

g(x)∫ b
a
g(y)dy

(
h(x) lnh(x)

)
dx

≥
(∫ b

a

g(x)∫ b
a
g(y)dy

h(x)dx
)

ln
(∫ b

a

g(x)∫ b
a
g(y)dy

h(x)dx
)

=

∫ b
a
f(x)dx∫ b

a
g(y)dy

ln

∫ b
a
f(x)dx∫ b

a
g(y)dy

.

Dividing both sides by
∫ b
a
f(x)dx∫ b

a
g(y)dy

, the result follows.

Lemma C.6. Let ψ(x) = ex − x− 1. Then for γ ≥ 1 and x ≤ B for B ≥ 0

ψ(γx)

ψ(x)
≤ γ2e(γ−1)B .

Proof. We use that

ψ(x) = x2
∫ 1

0

(1− u)exu du.

By the log-sum inequality (c.f. Lemma C.5)

ln
ψ(γx)

ψ(x)
≤
∫ 1

0

(γx)2(1− u)eγxu

ψ(γx)
ln

(γx)2(1− u)eγxu

x2(1− u)exu
du

= ln γ2 + (γ − 1)x

∫ 1

0

(γx)2(1− u)eγxu

ψ(γx)
u du

≤ ln γ2 + (γ − 1)B

∫ 1

0

(γx)2(1− u)eγxu

ψ(γx)
u du

≤ ln γ2 + (γ − 1)B,

where the last inequality uses u ≤ 1.

Lemma C.7. Fix η > 0 and γ ≥ 1. Let wη be the exponential weight distribution with learning
rate η (as defined in Lemma C.3) and let δη(w) be the mixability gap of w as defined in Lemma C.4.
Then for any `t ∈ [0, 1]K

δγηt (wγη) ≤ γe(γ−1)ηK1−γδηt (wη).

Proof. Substituting the sub-optimal λ = mη
t (wη) into the expression for δγηt (v) given by

Lemma C.4, using Lemma C.3 and ψ ≥ 0, followed by Lemma C.6 we find

δγηt (wγη) ≤ 1

γη

∑
k

wγη,kt ψ
(
γη(mη

t (wη)− `kt)
)

≤ Kγ−1 1

γη

∑
k

wη,kt ψ
(
γη(mη

t (wη)− `kt)
)

≤ Kγ−1 1

γη

∑
k

wη,kt ψ
(
η(mη

t (wη)− `kt)
)
γ2e(γ−1)η

= Kγ−1e(γ−1)ηγδηt (wη).

15

C.4 Proof of Lemma 3.1

Suppose that after round T LLR has increased its budget d times. For j = 1, . . . , d, let vj be
the last round before the j-th increase of the budget, and also define v0 = 0 and vd+1 = T for
convenience. For j = 1, . . . , d + 1, let M[j] =

∑vj
t=vj−1+1mt be the cumulative mix loss during

the j-th value of the budget. By construction, the learning rate ηt chosen by LLR is non-increasing
from round vj−1 +1 to round vj . Consequently, as the cumulative mix lossMη

t for the first t rounds
is non-increasing in η (see Lemma C.1),

M[j] = mvj−1+1 +

vj∑
t=vj−1+2

Mηt
t −M

ηt
t−1 ≤ mvj−1+1 +

vj∑
t=vj−1+2

Mηt
t −M

ηt−1

t−1

= mvj−1+1 +M
ηvj
vj −M

ηvj−1+1

vj−1+1 = M
ηvj
vj −M

ηvj−1+1

vj−1 ≤M
ηah
vj
vj −M

ηvj−1+1

vj−1 . (18)

For j = 1, M
ηvj−1+1

vj−1 = M
ηvj−1+1

0 = 0 = M
ηah
vj−1
vj−1 ; for j = 2, . . . , d+ 1, property 3 of Lemma C.1

implies

M
ηvj−1+1

vj−1 ≥ L∗vj−1
≥M

ηah
vj−1
vj−1 −

lnK

ηah
vj−1

= M
ηah
vj−1
vj−1 −∆ah

vj−1−1 ≥M
ηah
vj−1
vj−1 −∆ah

vj−1
.

Combining this with (18), we get

MT =

d+1∑
j=1

M[j] ≤
d+1∑
j=1

(
M

ηah
vj
vj −M

ηvj−1+1

vj−1

)
≤

d+1∑
j=1

(
M

ηah
vj
vj −M

ηah
vj−1
vj−1

)
+

d+1∑
j=2

∆ah
vj−1

= M
ηah
T

T +

d∑
j=1

∆ah
vj

(†)
≤ L∗T + ∆ah

T−1 +

d∑
j=1

∆ah
vj ≤ L

∗
T + ∆ah

T +

d∑
j=1

∆ah
vj .

where inequality (†) follows from property 3 of Lemma C.1 and the definition (10) of ηah
T . Because

the budget has been exceeded d times, we know that

∆ah
vd
≥ φ∆ah

vd−1
≥ φ2∆ah

vd−2
≥ . . . ≥ φd−1∆ah

v1 ,

so that

d∑
j=1

∆ah
vj ≤

d∑
j=1

φj−d∆ah
vd

= ∆ah
vd

d−1∑
j=0

φ−j ≤ ∆ah
vd

∞∑
j=0

φ−j = ∆ah
vd

φ

φ− 1
≤ ∆ah

T

φ

φ− 1
.

We can now decompose the regret of LLR as

RT = MT − L∗T + ∆T ≤ ∆ah
T +

d∑
j=1

∆ah
vj + ∆T ≤

(φ

φ− 1
+ 1
)

∆ah
T + ∆T

=
(φ

φ− 1
+ 2
)

∆ah
T +

imax∑
i=1

∆i
T ,

as required.

C.5 Proof of Lemma 3.2

The value of the budget after T rounds is bT . Assume first that bT > 0. Let u be the round just
before the budget was last increased, i.e. u is the last round such that bu < bT . At time t∗, we know
bt∗ ≥ bu because AdaHedge was played at least once while the budget was bu to cause its increase.
Since i was active at time t∗ but AdaHedge was played, i must have been full, i.e. ∆i

t∗/π
i > bt∗ .

Hence
bu ≤ bt∗ < ∆i

t∗/π
i ≤ ∆i

T /π
i. (19)

16

By definition of the LLR budgeting, ∆j
t/π

j ≤ bt + δjt /π
j and similarly ∆ah

t /π
ah ≤ bt + δah

t /π
ah at

any time t. By Lemma C.1 δηt ≤ 1, and by Hoeffding’s bound on the cumulant generating function
[4, Lemma A.1] δηt ≤ η/8 regardless of the choice of η. Hence

∆j
T

πj
≤ bT +

min{1, ηj/8}
πj

= φ∆ah
u /π

ah +
min{1, ηj/8}

πj

≤ φ
(
bu +

1

πah

)
+

min{1, ηj/8}
πj

≤ φ
(

∆i
T

πi
+

1

πah

)
+

min{1, ηj/8}
πj

,

where the last inequality follows by (19). Similarly, bT = φ∆ah
u /π

ah ≤ φ∆ah
T /π

ah implies

∆j
T

πj
≤ bT +

min{1, ηj/8}
πj

≤ φ∆ah
T

πah +
min{1, ηj/8}

πj
. (20)

For the last bound we use that AdaHedge is played by LLR only after all active i are full (i.e. have
exhausted the current budget).

∆ah
T

πah =
∆ah
t∗

πah ≤ bt∗ +
δah
t∗

πah <
∆i
t∗

πi
+
δah
t∗

πah ≤
∆i
T

πi
+

1

πah .

If bT = 0 then ηah
t∗ = ∞ and hence no i is active at time t∗, so we only need to prove (16b). Since

bT = 0 ≤ φ∆ah
T /π

ah this again follows by (20).

C.6 Proof of Lemma 3.4

Let i be an arbitrary index that is active at time t∗. Then in Lemma 3.1 we bound ∆ah
T and ∆j

T for
j 6= i in terms of ∆i

T using Lemma 3.2, which gives

RT ≤
(φ

φ− 1
+ 2
)(πah

πi
∆i
T + 1

)
+

∑
j≤imax;j 6=i

(
φ

(
πj

πi
∆i
T +

πj

πah

)
+ min{1, ηj/8}

)
+ ∆i

T

=

((φ

φ− 1
+ 2
)πah

πi
+ φ

∑
j≤imax;j 6=i π

j

πi
+ 1

)
∆i
T

+

 φ

φ− 1
+ 2 + φ

∑
j≤imax;j 6=i π

j

πah +
∑

j≤imax;j 6=i

min{1, ηj/8}

 . (21)

By definition ∆i
T accumulates δit only in rounds t where LLR plays ηi. Since δit ≥ 0 (see

Lemma C.1) we can extend the sum to all trials:

∆i
T ≤ ∆ηi

T . (22)

For the sums over πj , we have

φ

∑
j≤imax;j 6=i π

j

πi
+ 1 ≤ φ

∑
j≤imax

πj

πi
≤ φ

πi
and φ

∑
j≤imax;j 6=i π

j

πah ≤ φ

πah . (23)

We proceed to bound the sum
∑
j min{1, ηj/8}, which is at most a constant by the definition of the

grid (8). For j = 1 the minimum is 1 since η1 =∞, and for j ≥ 2 we bound the minimum by ηj/8,
which leads to ∑

j

min{1, ηj/8} ≤ 1 +
1

8

∞∑
j=2

α2−j = 1 +
α

8(α− 1)
. (24)

Plugging (22), (23) and (24) into (21) for i = 1 and using π1 = π∞
(
see (12)

)
, we obtain the second

inequality of the lemma.

Now let η ∈ [ηah
t∗ , 1] be arbitrary. Then i ≡ i(η) is active at time t∗ and η ≤ ηi ≤ αη, so that by

Lemma 3.3 we have

∆ηi

T ≤ αe
(α−1)(lnK+η)∆η

T ≤ αe
(α−1)(lnK+1)∆η

T . (25)

17

Plugging (22), (23), (24) and (25) into (21) for i = i(η) establishes the first inequality of the lemma.

Lemma 3.1 combined with (16b) results in

RT ≤
(φ

φ− 1
+ 2
)

∆ah
T + φ

∑imax
j=1 π

j

πah ∆ah
T +

∑
j≤imax

min{1, ηj/8},

and the third inequality of the theorem follows by
∑imax
i=1 π

i ≤ 1 and (24).

Finally, suppose that η < ηah
t∗ . Then, since t∗ is the last round in which AdaHedge was used and

δah
t∗ ≤ 1 by Lemma C.1,

∆ah
T = ∆ah

t∗−1 + δah
t∗ ≤ ∆ah

t∗−1 + 1 =
lnK

ηah
t∗

+ 1 ≤ lnK

η
+ 1,

which proves the last inequality of the lemma.

C.7 Proof of Theorem 3.5

We continue from Lemma 3.4, and start by bounding 1/πi(η) from above. To this end, we first
observe that

i(η) ≤ 2 + logα(1/η) = 2 +
ln(1/η)

ln(1 + 1/ log2K)
≤ 2 +

(
log2K + 1

)
ln(1/η),

where the second inequality follows from ln(1 + x) ≥ x/(1 + x). Next we lower bound the heavy-
tailed prior ρ. We bound its defining integral (13) by the width times the lowest integrand to find

ρ(i) ≥ 1

lnK
(

i
lnK + e

)
ln2
(

i
lnK + e

) .
Hence by the definition of the grid-point weights (12)

1− π∞

πi(η)
≤ (i(η)− 1 + e lnK) ln2

(
i(η)− 1

lnK
+ e

)
≤
(
(log2K + 1) ln(1/η) + e lnK + 1

)
ln2

(
1 + (log2K + 1) ln(1/η)

lnK
+ e

)
.

The first factor is at most

(log2K + 1) ln(1/η) + e lnK + 1 ≤ (log2K + 1) ln(7/η),

and we use that K ≥ 2, so that

1 + (log2K + 1) ln(1/η)

lnK
+ e ≤

(
1

ln 2
+

1

lnK

)
ln(1/η) +

1

lnK
+ e

≤
(

1

ln 2
+

1

ln 2

)
ln(1/η) +

1

ln 2
+ e ≤ 2 log2(5/η).

Thus
1

πi(η)
≤ log2K + 1

1− π∞
ln(7/η) ln2 (2 log2(5/η)) . (26)

Next, we use the definition of α (9) and K ≥ 2 to bound

αe(α−1)(lnK+1) = (1 + 1/ log2K)eln 2+1/ log2K ≤ 4e. (27)

The first inequality of the theorem now follows by applying Lemma 2.1, plugging (26), (27) and
(7) into Lemma 3.4, and evaluating α

α−1 = log2K + 1. The second inequality follows directly by
plugging in (7). And, finally, the third inequality follows by combining the last two inequalities of
Lemma 3.4.

18

C.8 Proof of Theorem 3.6

Let V ah
T =

∑
s∈Aah

T
vt be the sum of variances vt over all times t ≤ T that LLR plays AdaHedge.

By the same argument as in the proofs of Lemma 5 and Theorem 6 in [5]

∆ah
T ≤

√
V ah
T lnK +

(
2
3 lnK + 1

)
. (28)

Plugging this bound into the third inequality of Lemma 3.4, bounding V ah
T ≤ VT and evaluating

α
α−1 = log2K + 1 and φ = 1 +

√
πah, we obtain the first inequality of the theorem. The second

inequality follows from the first by the same argument as in the proof of Corollary 3 of [7].

19

	Introduction
	The Learning the Learning Rate Algorithm
	The Hedge Setting
	LLR's Choice of Learning Rate
	Choosing the LLR Parameters
	Run time and storage

	Analysis of the LLR algorithm
	Discussion
	Simulation Study
	Interpretation
	Data Generating Process

	For Binary Losses, LLR Is Also Competitive with All [1,].
	Proofs
	Lemma C.1: Basic Properties of the Mix Loss
	Bernstein Sandwich
	Proof of Lemma 3.3, restated as Lemma C.7
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6

