
Learning with Fredholm Kernels

Qichao Que Mikhail Belkin Yusu Wang
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{que,mbelkin,yusu}@cse.ohio-state.edu

Abstract

In this paper we propose a framework for supervised and semi-supervised learning
based on reformulating the learning problem as a regularized Fredholm integral
equation. Our approach fits naturally into the kernel framework and can be inter-
preted as constructing new data-dependent kernels, which we call Fredholm ker-
nels. We proceed to discuss the “noise assumption” for semi-supervised learning
and provide both theoretical and experimental evidences that Fredholm kernels
can effectively utilize unlabeled data under the noise assumption. We demonstrate
that methods based on Fredholm learning show very competitive performance in
the standard semi-supervised learning setting.

1 Introduction

Kernel methods and methods based on integral operators have become one of the central areas of
machine learning and learning theory. These methods combine rich mathematical foundations with
strong empirical performance. In this paper we propose a framework for supervised and unsuper-
vised learning as an inverse problem based on solving the integral equation known as the Fredholm
problem of the first kind. We develop a regularization based algorithms for solving these systems
leading to what we call Fredholm kernels.

In the basic setting of supervised learning we are given the data set (xi, yi), where xi ∈ X, yi ∈ R.
We would like to construct a function f : X → R, such that f(xi) ≈ yi and f is “nice enough”
to generalize to new data points. This is typically done by choosing f from a class of functions (a
Reproducing Kernel Hilbert Space (RKHS) corresponding to a positive definite kernel for the kernel
methods) and optimizing a certain loss function, such as the square loss or hinge loss.

In this paper we formulate a new framework for learning based on interpreting the learning problem
as a Fredholm integral equation. This formulation shares some similarities with the usual kernel
learning framework but unlike the standard methods also allows for easy incorporation of unlabeled
data. We also show how to interpret the resulting algorithm as a standard kernel method with a
non-standard data-dependent kernel (somewhat resembling the approach taken in [14]).

We discuss reasons why incorporation of unlabeled data may be desireable, concentrating in partic-
ular on what may be termed “the noise assumption” for semi-supervised learning, which is related
but distinct from manifold and cluster assumption popular in the semi-supervised learning literature.
We provide both theoretical and empirical results showing that the Fredholm formulation allows for
efficient denoising of classifiers.

To summarize, the main contributions of the paper are as follows:

(1) We formulate a new framework based on solving a regularized Fredholm equation. The frame-
work naturally combines labeled and unlabeled data. We show how this framework can be expressed
as a kernel method with a non-standard data-dependent kernel.
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(2) We discuss “the noise assumption” in semi-supervised learning and provide some theoretical ev-
idence that Fredholm kernels are able to improve performance of classifiers under this assumption.
More specifically, we analyze the behavior of several versions of Fredholm kernels, based on com-
bining linear and Gaussian kernels. We demonstrate that for some models of the noise assumption,
Fredholm kernel provides better estimators than the traditional data-independent kernel and thus
unlabeled data provably improves inference.

(3) We show that Fredholm kernels perform well on synthetic examples designed to illustrate the
noise assumption as well as on a number of real-world datasets. We also indicate how random
feature approximations can be used to deal with large datasets.

1.1 Related work

Applications of kernel and integral methods in machine learning have a large and diverse literature
(e.g., [13, 12]). The work most directly related to our approach is [10], where Fredholm integral
equations were introduced to address the problem of density ratio estimation and covariate shift. In
that work the problem of density ratio estimation was expressed as a Fredholm integral equation and
solved using regularization in RKHS. This setting also relates to a line of work on on kernel mean
embedding where data points are embedded in Reproducing Kernel Hilbert Spaces using integral
operators with applications to density ratio estimation and other tasks [15, 4, 5]. A very interesting
recent work [9] explores a shrinkage estimator for estimating means in RKHS, following the Stein-
James estimator originally used for estimating the mean in an Euclidean space. The results obtained
in [9] show how such estimators can reduce variance. There is some similarity between that work
and our theoretical results presented in Section 4 which also shows variance reduction for certain
estimators of the kernel although in a different setting.

Another line of connected work is the class of semi-supervised learning techniques related to man-
ifold regularization [1], where an additional graph Laplacian regularizer is added to take advantage
of the geometric/manifold structure of the data. Our reformulation of Fredholm learning as a ker-
nel, addressing what we called “noise assumptions”, parallels data-dependent kernels for manifold
regularization proposed in [14].

2 Fredholm Kernels

We start by formulating learning framework proposed in this paper.

Suppose we are given l labeled pairs (x1, y1), . . . , (xl, yl) from the data distribution p(x, y) defined
on X × Y and u unlabeled points xl+1, . . . , xl+u from the marginal distribution pX(x) on X . For
simplicity we will assume that the feature space X will a Euclidean space RD, and the label set Y
is either {−1, 1} for binary classification the real line R for regression. Semi-supervised learning
algorithms aim to construct a (predictor) function f : X → Y by incorporating the information of
unlabeled data distribution.

To this end, we introduce the integral operator KpX associated with a kernel function k(x, z). We
note that k(x, z) does not have to be a positive semi-definite kernel.

KpX : L2 → L2 and KpXf(x) =

∫
k(x, z)f(z)pX(z)dz, (1)

where L2 is the space of square-integrable functions. As usual, by the law of large number, the
above operator can be approximated by the unlabeled data from pX as follows,

Kp̂Xf(x) =
1

l + u

l+u∑
i=1

k(x, xi)f(xi). (2)

This approximation provides a natural way of incorporating unlabeled data into algorithms. In our
Fredholm learning framework, we will use functions in KpXH = {KpXf : f ∈ H}, where H is
an appropriate Reproducing Kernel Hilbert Space (RKHS) as classification or regression functions.
Note that unlike RKHS, this space of functions, KpXH, is density dependent.

In particular, this now allows us to formulate the following optimization problem for semi-supervised
classification/regression in a way similar to many supervised learning algorithms:
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The Fredholm learning framework solves the following optimization problem1:

f∗ = arg min
f∈H

1

l

l∑
i=1

((Kp̂Xf)(xi)− yi)2 + λ‖f‖2H, (3)

The final classifier is c(x) = (Kp̂Xf∗) (x), where Kp̂X is the operator defined above. Eqn 3 is a
discretized and regularized version of the Fredholm integral equation KpXf = y, thus giving the
name of Fredholm learning framework.

Even though at first glance this setting looks similar to conventional kernel methods, the extra layer
introduced by Kp̂X makes significant difference, in particular, by allowing the integration of infor-
mation from unlabelled data distribution. In contrast, solutions to kernel method for most kernels,
e.g., linear, polynomial or Gaussian kernels, are completely independent of the unlabeled data. We
note that our approach is closely related to [10] where a Fredholm equation is used to estimated the
density ratio for two probability distributions.

Our Fredholm learning framework is a generalization of the standard kernel framework. In fact, if
the kernel k is the δ-function, then our formulation above is equivalent to the standard Regularized
Least Squares equation f∗ = arg minf∈H

1
l

∑l
i=1(f(xi) − yi)2 + λ‖f‖2H. We could also replace

the L2 loss in Eqn 3 by other loss functions, such as hinge loss, resulting in a SVM-like classifier.

Finally, even though Eqn 3 is an optimization problem in a potentially infinite dimensional function
space H, we have the following lemma that allows us to apply the Representer Theorem to get a
computationally accessible solution.
Lemma 1. Given the definition of Kp̂X in Eqn 2, the solution to Eqn 3 is of the form,

f∗(x) =
1

l + u

l+u∑
j=1

kH(x, xj)vj ,

for some v ∈ Rl+u.

As the proof of the above lemma is similar to that of the standard representer theorem, we put
the proof in the appendix. Using the above Representer Theorem, we could transform Eqn 3 into
quadratic optimization in a finite dimensional space. We can get have a closed form solution for
Eqn 3 as follows:

f∗(x) =
1

l + u

l+u∑
j=1

kH(x, xj)vj , v =
(
KT
l+uKl+uKH + λI

)−1
KT
l+uy, (4)

where (Kl+u)ij = k(xi, xj) for 1 ≤ i ≤ l, 1 ≤ j ≤ l + u, and (KH)ij = kH(xi, xj) for
1 ≤ i, j ≤ l + u. Note that Kl+u is a l × (l + u) matrix.

Fredholm kernels: a convenient reformulation. Interestingly, this Fredholm learning problem
actually induces a new data-dependent kernel, which we will refer to as Fredholm kernel2. To show
this connection, first observe the following identity, which can be easily verified:
Claim 2. Matrix Inversion Identity(

KT
l+uKl+uKH + λI

)−1
KT
l+u = KT

l+u

(
Kl+uKHK

T
l+u + λI

)−1
.

Define KF = Kl+uKHK
T
l+u to be the l × l kernel matrix associated with a new kernel defined by

k̂F (x, z) =
1

(l + u)2

l+u∑
i,j=1

k(x, xi)kH(xi, xj)k(z, xj), (5)

and we consider the unlabeled data are fixed for computing this new kernel. Using this new kernel
k̂F , the final classifying function c∗ defined using the solution given in Eqn 4 can be rewritten as:

c∗(x) =
1

l + u

l+u∑
i=1

k(x, xi)f
∗(xi) =

l∑
s=1

k̂F (x, xs)αs, α = (KF + λI)
−1
y.

1We will be using the square loss to simplify the exposition. Other loss functions can also be used in Eqn 3.
2We note that the term “Fredholm Kernel” has also been used before in a different context, see page 103, [6]

and [16] in the studies of Fredholm operator. But our usage and the previous one represent different object.

3



Because of Eqn 5 we will sometimes refer to the kernels kH and k as the “inner” and “outer” kernels
respectively.

It can be observed that this learning algorithm can be considered as a case of the standard kernel
method, but using a new data dependent kernel k̂F , which we will call the Fredholm kernel, since it
is induced from the Fredholm problem formulated in Eqn 3. And the following proposition shows
that this definition gives a positive semi-definite kernel.

Proposition 3. The Fredholm kernel defined in Eqn 5 is positive semi-definite if kH is a positive
semi-definite kernel.

The proof is given in the appendix. The “outer” kernel k does not have to be either positive definite
or even symmetric. When using Gaussian kernel for k, discrete approximation in Eqn 5 might be
unstable when the kernel width is small, so we also introduce the normalized Fredholm kernel,

k̂NF (x, z) =
1

(l + u)2

l+u∑
i,j=1

k(x, xi)∑
n k(x, xn)

kH(xi, xj)
k(z, xj)∑
n k(z, xn)

. (6)

It is easy to check that the resulting Fredholm kernel k̂NF is still symmetric and positive semi-definite.

Using Hinge Loss Other than L2 loss we use above, hinge loss can also be used for our Fredholm
learning framework. In this section, we explain how Fredholm kernel could be derived when using
hinge loss. Plugging the hinge loss into Eqn 3, we have

f∗ = arg min
f∈H

1

l

l∑
i=1

max(0, 1− yi · (Kp̂Xf)(xi)) + λ‖f‖2H. (7)

Like the Representer Theorem, we proved in Lemma 1, the solution function f is always of the form

f(x) =

l+u∑
i=1

vikH(x, xi).

Thus, ‖f‖2H = vTKHv, where KH is the kernel matrix.

And we only consider the evaluation of f at the data points, let f = [f(x1), . . . , f(xl+u)] = KHv.
Now we can vectorize (Kp̂Xf)(xi) as well, by letting ki = [ 1

l+uk(xi, x1), . . . , 1
l+uk(xi, xl+u)].

Thus Kp̂Xf(xi) = 1
l+u

∑l+u
j=1 k(xi, xj)f(xj) = kTi f = kTi KHv.

And the optimization problem using hinge loss in Eqn 7 is equivalent to the following problem with
slack variables ξi,

min
f∈H

1

2
vTKHv + C

∑
i

ξi

s.t. yi · (kTi KHv) ≥ 1− ξi
ξi ≥ 0 for i = 1, . . . , l

To solve the above problem, we introduce the Lagrangian multiplier,

L(v, ξ, α, γ) =
1

2
vTKHv + C

∑
i

ξi −
∑
i

αi(yi · (kiKHv)− 1 + ξi)−
∑
i

γiξi

By the KKT condition in the theory of convex optimization, we have

v =
∑
i

αiyiki, αi = C − γi

Using this, we have the dual problem of the original problem in Eqn 7,

max
α

∑
i

αi −
1

2

∑
i,j

αiαjyiyjk
T
i KHkj

s.t. 0 ≤ αi ≤ C.

It is equivalent to using Fredholm kernel for regular support vector machine, because kTi KHkj =
kF (xi, xj) according to the definition of Fredholm kernel in Eqn 5.
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3 The Noise Assumption and Semi-supervised Learning

In order for unlabeled data to be useful in classification tasks, it is necessary for the marginal distri-
bution of the features to contain information about the conditional distribution of the labels. Several
ways in which such information can be encoded have been proposed, including the “cluster assump-
tion” [2] and the “manifold assumption” [1]. The cluster assumption states that a cluster (or a high
density area) contains only (or mostly) points belonging to the same class. That is, if x1 and x2

belong to the same cluster, the corresponding labels y1, y2 should be the same. The manifold as-
sumption assumes that the regression function is smooth with respect to the underlying manifold
structure of the data, which can be interpreted as saying that the geodesic distance should be used
instead of the ambient distance for optimal classification. The success of algorithms based on these
ideas indicates that these assumptions do capture certain characteristics of real data. Still, better
understanding of data distribution may still lead to progress in data analysis.

The noise assumption. Now we propose to formulate a new assumption, the “noise assumption”,
which is that in the neighborhood of every point, the directions with low variance (of the feature
distribution) are uninformative with respect to the class labels, and can be regarded as noise. While
being intuitive, as far as we know, it has not been explicitly formulated in the context of semi-
supervised learning algorithms, nor applied to theoretical analysis.

Figure 1: Left: only labelled points, and Right:
with unlabelled points.

Note that even if the noise variance is small
along a single direction, it could still sig-
nificantly decrease the performance of su-
pervised learning algorithms if the noise are
high-dimensional. These accumulated non-
informative variations increase the difficulty of
learning a good classifier in particular when the
amount of labeled data is small. The Figure 1
on right illustrates the issue of noise with two
labeled points. The seemingly optimal classifi-
cation boundary (the red line) differs from the correct one (in black) due to the noisy variation along
the vertical axis for the two labeled points. Intuitively unlabeled data shown in the right panel of
Figure 1 can be helpful in this setting as low variance directions can be estimated locally such that
algorithms could suppress the influences of the noisy variation when learning a classifier.

Connection to cluster and manifold assumptions. The noise assumption is compatible with the
manifold assumption within the “manifold+noise” model. Specifically, we can assume that the
functions of interest vary along the manifold and are constant in the orthogonal direction. Alterna-
tively, we can think of directions with high variance as “signal/manifold” and directions with low
variance as “noise”. We note that the noise assumption does not require the data to conform to
a low-dimensional manifold in the strict mathematical sense of the word. The noise assumption
is orthogonal to the cluster assumption. For example, Figure 1 illustrates a situation where data
has no clusters but the noise assumption applies. For more examples and experimental results see
Section 5.1.

4 Theoretical Results for Fredhom Kernels

Non-informative variation in data could degrade the performance of traditional supervised learning
algorithms. We will now show that Fredholm kernels can be used to replace traditional kernels
to inject them with “noise-suppression” power with the help of unlabelled data. In this section
we will present two views to illustrate how such noise supression can be achieved. Specifically, in
Section 4.1) we show that under certain setup linear Fredholm kernel supresses principal components
with small variance. In Section 4.2) we prove that under certain conditions Fredholm kernels are
able to provide good approximations to the “true” kernel on the hidden underlying space.

To make our arguments more clear, in what follows, we assume that there is infinite amount of
unlabelled data; that is, we know the marginal distribution of data exactly. We will then consider the
following continuous versions of the un-normalized and normalized Fredholm kernels as in Eqn 5
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and 6:

kUF (x, z) =

∫ ∫
k(x, u)kH(u, v)k(z, v)p(u)p(v)dudv (8)

and

kNF (x, z) =

∫ ∫
k(x, u)∫

k(x,w)p(w)dw
kH(u, v)

k(z, v)∫
k(z, w)p(w)dw

p(u)p(v)dudv. (9)

Note, in the above equations and in what follows, we sometimes write p instead of pX for the
marginal distribution when its choice is clear from context. We will typically use kF to denote
appropriate normalized or unnormalized kernels depending on the context.

4.1 Linear Fredholm kernels and inner products

For this section, we consider the unormalized Fredholm kernel, that is kF = kUF . If the “outer”
kernel k(u, v) is linear, i.e. k(u, v) = uT v, the resulting Fredholm kernel can be viewed as an inner
product. Specifically, the un-normalized Fredholm kernel from Eqn 8 can be rewitten as

kF (x, z) =

∫ ∫
(xTu)(zT v)kH(u, v)p(u)p(v)dudv = xTΣF z,where

ΣF =

∫ ∫
uvT kH(u, v)p(u)p(v)dudv =

∫ ∫
ukH(u, v)vT p(u)p(v)dudv. (10)

Thus kF (x, z) is simply an inner product which depends on both the data distribution p(x) and
the “inner” kernel kH. This inner product re-weights the standard norm in feature space based on
variances along the principal directions of the matrix ΣF . We will show that for the model when
data is sampled from a normal distribution this kernel can be viewed as a “soft thresholding” PCA,
suppressing the directions with low variance.

More strictly, we have the following

Theorem 4. Let kH(x, z) = exp
(
−‖x−z‖

2

2t

)
and assume the marginal distribution pX for data is

a single multi-variate normal distribution, N(µ, diag(σ2
1 , . . . , σ

2
d)). We have

ΣF =

(
D∏
d=1

√
t

2σ2
d + t

)(
µµT + diag

(
σ4

1

2σ2
1 + t

, . . . ,
σ4
D

2σ2
D + t

))
.

Assuming that the data is mean-subtracted, i.e. µ = 0, we see that xTΣF z re-scales the projections
along the principal components when computing the inner product; that is, the rescaling factor for

the ith principal direction is
√

σ4
i

2σ2
i +t

.

Note that this rescaling factor σ4
i

2σ2
i +t
≈ 0 when σ2

i � t. On the other hand when σ2
i � t, we

have that σ4
i

2σ2
i +t
≈ σ2

i

2 . Hence t can be considered as a soft threshold that eliminates the effects of
principal components with small variances. When t is small the rescaling factors are approximately
proportional to diag(σ2

1 , σ
2
2 , . . . , σ

2
D), in which case ΣF is is porportional to the covariance matrix

of the data XXT .

4.2 Kernel Approximation With Noise

We have seen that one special case of Fredholm kernel could achieve the effect of principal compo-
nents re-scaling by using linear kernel as the “outer” kernel k. In this section we give a more general
interpretation of noise suppression by the Fredholm kernel.

First, we give a simple senario to provide some intuition behind the definition of Fred-
holm kernle. Consider a standard supervised learning setting which uses the solution f∗ =

arg minf∈H
1
l

∑l
i=1(f(xi)− yi)2 + λ‖f‖2H as the classifier. Let ktarget

H denote the ideal kernel that
we intend to use on the clean data, which we call the target kernel from now on. Now suppose what
we have are two noisy labeled points xe and ze for “true” data x̄ and z̄, i.e. xe = x̄+εx, ze = z̄+εz .
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The evaluation of ktarget
H (xe, ze) can be quite different from the

true signal ktarget
H (x̄, z̄), leading to a suboptimal final classifier

(the red line in Figure 1 (a)). On the other hand, now con-
sider the Fredholm kernel from Eqn 8 (or similarly from Eqn 9):
kF (xe, ze) =

∫ ∫
k(xe, u)p(u) · kH(u, v) · k(ze, v)p(v)dudv,

and set the outer kernel k to be the Gaussian kernel, and the in-
ner kernel kH to be the same as target kernel ktarget

H . We can think
of kF (xe, ze) as an averaging of kH(u, v) over all possible pairs
of data u, v, weighted by k(xe, u)p(u) and k(ze, v)p(v) respec-
tively. Specifically, points that are close to xe (resp. ze) with
high density will receive larger weights. Hence the weighted
averages will be biased towards x̄ and z̄ respectively (which pre-
sumably lie in high density regions around xe and ze). The value of kF (xe, ze) tends to provide a
more accurate estimate of kH(x̄, z̄). See the right figure for an illustration where the arrows indicate
points with stronger influences in the computation of kF (xe, ze) than kH(xe, ze). As a result, the
classifier obtained using the Fredholm kernel will also be more resilient to noise and closer to the
optimum.

The Fredholm learning framework is rather flexible in terms of the choices of kernels k and kH.
In the remainder of this section, we will consider a few specific scenarios and provide quantitative
analysis to show the noise-resilliency of the Fredholm kernel. In particular, for Section 4.2.1 and
4.2.2, we will assume the following setup for data.

Problem setup. Assume that we have a ground-truth distribution over the subspace spanned by the
first d dimension of the Euclidean space RD. We will assume that this ground-truth distribution is
a single Gaussian N(0, λ2Id). Now imagine that this ground-truth distribution is corrupted with
Gaussian noise along the orthogonal subspace of dimension D − d. That is, for any observed point
xe, it could be decomposed into x̄+ εx, where the signal x̄ is drawn from N(0, λ2Id), and the noise
εx is drawn from N(0, σ2ID−d) over the orthogonal space. Thus any observed point, labelled or
unlabelled, is sampled from pX = N(0, diag(λ2Id, σ

2ID−d), with the first d dimensions as signals
and the rest corrupted by noises.

We will show that Fredholm kernel provides a better approximation to the “original” kernel given
both labeled and unlabeled data than directly computing the kernel evaluation at noisy labeled points.

We choose this simple setting so as to be able to state the theoretical results in a clean manner. Even
though this is just a Gaussian distribution over a linear subspace with noise this framework can be
generalized since local neighborhoods of a Riemannian manifold can be approximated by linear
spaces.

Note. In this section, we use the normalized Fredholm kernel given in Eqn 9 for simplicity, that
is kF = kNF for now on. Un-normalized Fredholm kernel displays similar behavior, however, the
theoretical bounds are more complicated.

4.2.1 Linear Kernel

First we consider the case where the target kernel ktarget
H (u, v) is the linear kernel, ktarget

H (u, v) = uT v.
We will set kH in Fredholm kernel to also be linear, and k to be the Gaussian kernel k(u, v) =

e−
‖u−v‖2

2t We will compare kF (xe, ze) with the target kernel on the two observed points, that is,
with ktarget

H (xe, ze). The goal is to estimate ktarget
H (x̄, z̄). We will see that (1) both kF (xe, ze) and

(appropriately scaled) kH(xe, ze) are unbiased estimators of ktarget
H (x̄, z̄), however (2) the variance

of kF (xe, ze) is smaller than that of ktarget
H (xe, ze), making it a more precise estimator.

Theorem 5. Suppose the probability distribution for the data is pX = N(0, diag(λ2Id, σ
2ID−d)).

For Fredholm kernel defined in Eqn 9, we have

Exe,ze(ktarget
H (xe, ze)) = Exe,ze

((
t+ λ2

λ2

)2

kF (xe, ze)

)
= x̄T z̄

Moreover, when λ > σ, Varxe,ze

((
t+λ2

λ2

)2

kF (xe, ze)

)
< Varxe,ze(ktarget

H (xe, ze)).
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Remark: Note that we have a normalization constant for the Fredholm kernel to make it an unbiased
estimator of x̄T z̄. In practice, choosing normalization is subsumed in selecting the regularization
parameter for kernel methods.

We will give a sketch of the proof, complete details can be found in the appendix.

First, we have the following lemma regarding the estimator ktarget
H (xe, ze).

Lemma 6. Given two samples xe ∼ N(x̄, diag([0d, σ
2ID−d])), ze ∼ N(z̄, diag([0d, σ

2ID−d])),
let kH(xe, ze) = xTe ze. We have:

Exe,ze(ktarget
H (xe, ze)) = x̄T z̄ and Varxe,ze(ktarget

H (xe, ze)) = (D − d)σ4.

Now we consider the Fredholm kernel with the help of unlabelled points from the distribution p =
N(0, diag(λ2Id, σ

2ID−d)). Substituting kH(u, v) by the linear kernel uT v in Eqn 9, we have:

kF (xe, ze) =

∫ ∫
k(xe, u)∫

k(xe, w)p(w)dw

k(ze, v)∫
k(ze, w)p(w)dw

uT vp(u)p(v)dudv

=

(∫
k(xe, u)up(u)du∫
k(xe, w)p(w)dw

)T (∫
k(ze, v)vp(v)dv∫
k(ze, w)p(w)dw

)
(11)

where recall k(u, v) = exp
(
−‖u−v‖

2

2t

)
. Note

∫
k(xe,u)up(u)du∫
k(xe,w)p(w)dw

(resp.
∫ k(ze,v)vp(v)dv∫

k(ze,w)p(w)dw
) is the

weighted mean of the unlabeled data, with the weight function being the normalized Gaussian kernel
centered at xe (resp. ze). Hence by Eqn 11, kF (xe, ze) is the linear kernel between these two means
(instead of the linear kernel for xe and ze). Thus it is not too surprising that kF (xe, ze) should
be more stable than the straightforward approximation kH(xe, ze). Indeed, we have the following
lemma (proof in appendix).
Lemma 7. Given two samples xe ∼ N(x̄, diag([0d, σ

2ID−d])), ze ∼ N(z̄, diag([0d, σ
2ID−d])),

let kH(xe, ze) = xTe ze and p = N(0, diag(λ2Id, σ
2ID−d)). Let kF be as defined in Eqn 11. We

have:

Exe,ze

((
t+ λ2

λ2

)2

kF (xe, ze)

)
= x̄T z̄

and

Varxe,ze

((
t+ λ2

λ2

)2

kF (xe, ze)

)
= (D − d)

(
σ2(t+ λ2)

λ2(t+ σ2)

)4

σ4

With Lemma 6 and 7, we can now compare the variances. Since σ2(t+λ2)
λ2(t+σ2) < 1 when λ2 > σ2,

Theorem 5 follows.

Thus we can see the Fredholm kernel provides an approximation of the “true” linear kernel, but with
smaller variance than the linear kernel on noisy data.

4.2.2 Gaussian Kernel

We now consider the case where the target kernel is the Gaussian kernel: ktarget
H (u, v) =

exp
(
−‖u−v‖

2

2r

)
. To approximate this kernel, we will set both k and kH to be Gaussian kernels.

To simplify the presentation of results, we assume that k and kH have the same kernel width t. The
resulting Fredholm kernel turns out to also be a Gaussian kernel, whose kernel width depends on the
choice of t.

Our main result is the following. Again, similar to the case of linear kernel, the Fredholm estimator
kF (xe, ze) and the vanilla one ktarget

H (xe, ze) are both unbiased estimator for the target ktarget
H (x̄, z̄)

upto a constant; but kF (xe, ze) has a smaller variance.
Theorem 8. Suppose the probability distribution for the unlabeled data pX =

N(0, diag(λ2Id, σ
2ID−d)). Given the target kernel ktarget

H (u, v) = exp
(
−‖u−v‖

2

2r

)
with ker-

nel width r > 0, we can choose t, given by the equation t(t+λ2)(t+3λ2)
λ4 = r, and two scaling

constants c1, c2, such that
Exe,ze(c−1

1 ktarget
H (xe, ze)) = Exe,ze(c−1

2 kF (xe, ze)) = ktarget
H (x̄, z̄).
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and when λ2 > σ2, we have Varxe,ze(c−1
1 ktarget
H (xe, ze)) > Varxe,ze(c−1

2 kF (xe, ze)).

Remark. In practice, when applying kernel methods for real world applications, optimal kernel
width r is usually unknown and chosen by cross-validation or other methods. Similarly, for our
Fredholm kernel, one can also use cross-validation to choose the optimal t for kF .

The proof of Theorem 8 is more complicated than in the linear case, and can be found in the ap-
pendix.

5 Experiments

In this section, we will demonstrate our Fredholm kernel empirically using both synthetic examples
and data sets of text categorization and handwriting recognition. In section 5.1, we will use several
examples to illustrate the effect of reducing variances using Fredholm kernel and how noise assump-
tion is distinguished from the conventional assumptions in semi-supervised learning, such as cluster
assumption and manifold assumption. In section 5.2, we show how classifiers based on Fredholm
kernel perform on real world data sets like hand-written digits recognition and text categorization
problems, compared with other semi-supervised algorithms.

First recall the Fredholm kernel we defined in previous section.

k̂F (x, z) =
1

(l + u)2

l+u∑
i,j=1

k(x, xi)kH(xi, xj)k(z, xj).

And using linear and Gaussian kernel for k or kH, we can define three instances of the Fredholm
kernel as follows.

(1) FredLin1: k(x, z) = xT z and kH(x, z) = exp
(
−‖x−z‖

2

2r

)
.

(2) FredLin2: k(x, z) = exp
(
−‖x−z‖

2

2r

)
and kH(x, z) = xT z.

(3) FredGauss: k(x, z) = kH(x, z) = exp
(
−‖x−z‖

2

2r

)
.

For the kernels in (2) and (3) that use the Gaussian kernel as outside kernel k, intuitively we can also
define their normalized version using the following definition,

k̂F,n(x, z) =
1

(l + u)2

l+u∑
i,j=1

k(x, xi)∑
n k(x, xn)

kH(xi, xj)
k(z, xj)∑
n k(z, xn)

.

The resulting kernels are denoted by FredLin2(N) and FredGauss(N) respectively.

5.1 Synthetic Examples

Using specially designed toy examples, we could empirically verify the behavior of Fredholm kernel
characterized by theoretical results in last section.

5.1.1 Principal Component Regression

As we have pointed out in Theorem 4, Fredholm kernel and the associated Fredholm inner prod-
uct space could stress the principal components with larger variances while suppressing the ones
with smaller variances. Instead of hard cutting-off in many PCA-based methods, it provides a soft
thresholding algorithm for feature selection. To demonstrate our methods, we consider the principal
component regression problem [8], which assumes that the regressor X and response Y have the
following relationship:

Y = αXu1,

wher u1 is the first principal component. In this experiments, the data distribution is a Gaussian
distribution N(0, diag([10, 1, . . . , 1])). Note that the axes themselves are the principal components.
We will compare our method with linear regression using (1) all the dimensions; and (2) first k
principal components, while Fredholm kernel does not need to do any hard thresholding. Figure 2
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shows the error of regression using Fredholm linear kernel or the projections to the first k principal
components. In the experiments, we uses 2000 unlabeled data for Fredholm kernel and PCA. The
horizontal axis indicates different numbers of training points we used for training the regression.
It can be observed that Fredholm kernel performs better than regression using the first k principal
components, unless the right number of principal components is chosen correctly, which is a non-
trivial problem in practice.
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Figure 2: The error of regression using Fredholm linear kernel or the projections to the first k
principal components.

5.1.2 Noise and cluster assumptions

Semi-supervised learning algorithms have shown better performance on various classification prob-
lems than the supervised learning algorithms. For example, [7] showed TSVM achieved the state
of art performance on the problem of text categorization, and manifold regularization also showed
good performance on various applications [1].

As we pointed out before, Fredholm kernel could deal with the noise assumption, which is dis-
tinct from the commonly used cluster assumption in many semi-supervised learning algorithms.
To demonstrate our point, we use two toy examples that obviously violate the cluster assumption,
shown in Figure 3. Each example is based on 1-dimensional manifold(s), and corrupted with addi-
tional Gaussian noise in R100. We assign the label to each point as we indicate in the figure by color.
For each class, we will give a few labeled points, and large amount of unlabeled points from the
marginal data distribution pX . Since the data points are sampled around the underlying manifold,
they served as two concrete examples of noise assumption, one for linear separable and the other for
the non-linear separable case.

In our experiments, we compare Fredholm kernel based classifier with Regularizaed Least Square
Classifier (RLSC), and two widely used semi-supervised methods, the transductive support vector
machine (TSVM) and LapRLSC. Since the examples violate the cluster assumption, the two existing
semi-supervised learning algorithms, TSVM and LapRLSC, should not gain much from the unla-
beled data. For TSVM, we use the primal TSVM proposed in [3], since they claim primal TSVM
usually performs better than the original algorithm in [7]; and we will use the implementation of
LapRLSC given in [1]. For the linear separable case, linear classifiers are trained using these meth-
ods, while for the circular case, we will leverage Gaussian kernel to obtain a non-linear classifier.
Similarly, we use the two linear Fredholm kernels introduced in Section 4.1 and 4.2.1, denoted by
FredLlin1 and FredLin2, for the first toy example; and we use the double-Gaussian Fredholm kernel
for the second circular toy example. Different numbers of labeled points are given for each class,
together with another 2000 unlabeled points. To choose the optimal parameters for each method,
we pick the parameters based on their performance on the validation set, while the final classifi-
cation error is computed on the held-out testing data set. The classification error is presented in
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Figure 3: Two toy examples used to demonstrate the noise assumption.

Table 1 and 2, in which Fredholm kernels show clear improvement over other methods for synthetic
examples in term of classification error.

Number
of Labeled

Methods
RLSC TSVM LapRLSC FredLin1 FredLin2(N)

8 10.0(± 3.9) 5.2(± 2.2) 10.0(± 3.5) 3.7(± 2.6) 4.5(± 2.1)
16 9.1(± 1.9) 5.1(± 1.1) 9.1(± 2.2) 2.9(± 2.0) 3.6(± 1.9)
32 5.8(± 3.2) 4.5(± 0.8) 6.0(± 3.2) 2.3(± 2.3) 2.6(± 2.2)

Table 1: The prediction error of the different classifiers on the linear toy example.

Number
of Labeled

Methods
RLSC TSVM LapRLSC FredGauss(N)

16 17.4(± 5.0) 32.2(± 5.2) 17.0(± 4.6) 7.1(± 2.4)
32 16.5(± 7.1) 29.9(± 9.3) 18.0(± 6.8) 6.0(± 1.6)
64 8.7(± 1.7) 20.3(± 4.2) 9.7(± 2.0) 5.5(± 0.7)

Table 2: The prediction error of the different classifiers on the circular toy example.

5.2 Real-world Data Sets

Unlike toy examples, it is usually very difficult to verify whether certain assumption is satisfied
or not in real problems. In this section, we will try to demonstrate the performance of Fredholm
kernel on several real-world data sets and compare it with the baseline algorithms we used for toy
examples. We organize the experiments by the kernel used for the classifiers. For example, in text
categorization problem, linear kernel over the tfidf feature space usually gives great performance;
and for handwriting digits recognition, Gaussian kernel usually performs better than using linear
kernel. In the following experiments, we will apply several instances of Fredholm kernel to different
data sets including text categorization and the handwritten digits recognition problem.

5.2.1 Linear Kernel

In this section, we will consider the problem of text categorization, which is a classic example for
many semi-supervised learning problems. It labels each article or webpage by its topic. Recently,
sentiment analysis has been another trending problem in text mining. It tries to categorize each short
text, such as tweets or movie review, into positive or negative. And this problem is more subtle than
the traditional text categorization, since sentiment is usually very tricky to detect and the text for this
problem is usually shorter. In this experiment, we use the following 4 data sets from the literature:
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(1) 20 news group: it has 11269 documents with 20 classes, and we select the first 10 categories for
our experiment.

(2) Webkb: the original data set contains 7746 documents with 7 unbalanced classes, and we pick
the two largest classes with 1511 and 1079 instances respectively.

(3) IMDB movie review: it has 1000 positive reviews and 1000 negative reviews of movie on
IMDB.com.

(4) Twitter sentiment data set from Sem-Eval 2013: it contains 5173 tweets, with positive, neural
and negative sentiment, and we combine neural and negative classes to make a relatively balanced
binary classification problem.

For each data set, we extract tfidf from every document as the feature. Given the high dimension-
ality of tfidf feature in most cases, using linear kernel usually gives a great performance for text
categorization problem.

For each data sets, we will use Fredholm kernels (1) and (2), which have a similar behavior with
linear kernel, but perform much better. We will use the the purely supervised RLSC, and semi-
superivsed Transductive SVM as baseline methods for comparison. Note that we use the implemen-
tation in [3] for TSVM, since they claim to achieve comparable performance while having a more
simple algorithm using primal optimization.

To adapt the original data sets for the purpose of semi-supervised learning, we randomly pick-up a
few points as labeled ones for each class, and use the rest of the data set as unlabeled points. And this
splitting will be repeated for 10 times to estimate an average performance. Due to limited number of
labeled points does not allow cross-validation, we pick the optimal parameter on testing data for all
methods. The regularization parameter needs to be chosen for all methods, while we need to choose
an extra kernel width for Fredholm kernel.

To measure the performance, we use the prediction error, the percentage of data gotten classified
incorrectly. The experiments are given in Table 3. To further explore the influence of number of
labeled points for each methods, we vary the amount of labeled points from 10 per class to 80 per
class on Webkb data sets. And the performance for each methods is shown in Table 4.

Data Set
Methods

RLSC TSVM FredLin1 FredLin2 FredLin2(N)
Webkb 16.9(± 1.4) 12.7(± 0.8) 13.0(± 1.3) 12.0(± 1.6) 12.0(± 1.6)
20news 22.2(± 1.0) 21.0(± 0.9) 20.5 (± 0.7) 20.5 (±0.7) 20.5(± 0.7)
IMDB 30.0(± 2.0) 20.2(± 2.6) 19.9(± 2.3) 21.7(± 2.9) 21.7(± 2.7)
Twitter 38.7(± 1.1) 37.6(± 1.4) 37.4(± 1.2) 37.4(± 1.2) 37.5(± 1.2)

Table 3: The error of various methods on the text data sets. 20 labeled data per class are given with
rest of the data set as unlabeled points.

Number
of Labeled

Methods
RLSC TSVM FredLin1 FredLin2 FredLin2(N)

10 20.7(± 2.4) 13.5(± 0.5) 14.8(± 2.4) 14.6(± 2.4) 14.6(± 2.3)
20 16.9(± 1.4) 12.7(± 0.8) 13.0(± 1.3) 12.0(± 1.6) 12.0(± 1.6)
80 10.9(± 1.4) 9.7(± 1.0) 8.1(± 1.0) 7.9(± 0.9) 7.9(± 0.9)

Table 4: The prediction error on Webkb, with different number of labeled points, varying from 10
per class to 80 per class.

5.2.2 Gaussian Kernel

As we shown in Section 4.2.2, Fredholm kernel could also provide a more stable estimator for
Gaussian kernel, when the Gaussian kernel is used for both k and kH. To demonstrate this effect,
we try to solve the problem of handwriting digits recognition. We choose this problem since it is non-
linear separable and Gaussian kernel tends to give better performance than linear kernel empirically.
The experiment uses subsets of two handwriting digits data sets MNIST and USPS: (1) the one from
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Data Set
Methods

KRLSC LapRLSC FredGauss FredGauss(N)
USPST 11.8(± 1.4) 10.2 (±0.5) 12.4(± 1.8) 10.8(± 1.1)
MNIST 14.3(± 1.2) 8.6(± 1.2) 12.2(±1.0) 13.0(± 0.9)

Table 5: The prediction error of nonlinear classifiers on the handwriting digits recognition data sets.
20 labeled data per class are given with rest of the data set as unlabeled points.

MNIST contains 10k digits in total with balanced examples for each class, and the one for USPS
is the original testing set containing about 2k images. The pixel values are normalized to [0, 1] as
features.

For comparison, we also build classifiers using kernel RLSC and another semi-supervised algorithm,
manifold regularization, which is known to perform very well on handwriting digits recognition
when using Gaussian kernel. The results are presented in Table 5.

In Table 6, we show that as we add additional Gaussian noise to MNIST data, Fredholm kernels start
to show significant improvement.

Number
of Labeled

Methods
KRLSC LapRLSC FredGauss FredGauss(N)

10 34.1(± 2.1) 35.6 (±3.5) 27.9(± 1.6) 29.0(± 1.5)
20 27.2(± 1.1) 27.3 (±1.8) 21.9(± 1.2) 22.9(± 1.2)
40 20.0(± 0.7) 20.3 (±0.8) 17.3(± 0.5) 18.4(± 0.4)
80 15.6(± 0.4) 15.6 (±0.5) 14.8(± 0.6) 15.4(± 0.5)

Table 6: The prediction error of nonlinear classifiers on MNIST corrupted with Gaussian noise with
standard deviation 0.3 with different numbers of labeled points, from 10 to 80.

Note that we do not present the result for TSVM for this experiment, since an explicit feature map
needs to constructed for the primal optimization. Such feature map is usually only an approximation,
which might downgrade its performance.

5.3 Efficient Implementation Using Random Features

Even though kernel method has achieved significant success over the last decade, it usually suffers
from the issue of scaling-up, due to the memory consumption quadratic to the size of the training
data. It has inspired a line of research to solve this issue. For example, the random Fourier feature
was proposed in [11]. This provides a way to efficiently approximate the several popular kernels,
only requiring linear size of memory. Key idea of random Fourier features comes from the fact that
every positive semi-definite kernel is the Fourier transform of a probability distribution by Bochner’s
theorem,

k(x− y) =

∫
Rd

p(ω)eiω
′(x−y)dω = Eω(ξω(x)ξω(y)∗),

where ξω(x) = eiω
′x. For certain kinds of kernels, a set of samples, (ω1, . . . , ωD) could be drawn

from p(ω), such that the expectation Eω could be estimated using a finite sum. Thus letting

zω(x) =

√
1

D
[cos(w′1x), . . . , cos(w′Dx), sin(w′1x), . . . , sin(w′Dx)],

we will have 1
D zω(x)′zω(y) ≈ k(x, y). Taking the example of Gaussian kernel k(x, y) =

exp(−‖x−y‖
2

2t ), the distribution p(ω) = exp
(
− t‖ω‖

2

2d

)
.

Our Fredholm kernel could also leverage this technique to process the large scale data. Suppose the
inside kernel kH in the definition of Fredholm kernel is Gaussian kernel with kernel width t. Using
the random Fourier feature, we will have a random feature map z to approximate the kernel kH, such
that 1

D zω(u)′zω(v) ≈ kH(u, v). Plug this approximation into the definition of Fredholm kernel in
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Eqn 5, we have

k̂F (x, z) ≈ 1

(l + u)2

l+u∑
i,j=1

k(x, xi)

(
1

D
zω(xi)

′zω(xj)

)
k(z, xj)

=
1

D

(
1

(l + u)

l+u∑
i=1

k(x, xi)zω(xi)

)T  1

(l + u)

l+u∑
j=1

k(z, xj)zω(xj)


Thus, let

zF (x) =
1

l + u

l+u∑
i=1

k(x, xi)zω(xi),

we will have k̂F (x, z) ≈ 1
D zF (x)′zF (z). Using the approximation, we do not need to store the

whole kernel matrix KH of size (l + u) × (l + u). In this way, the memory usage will be reduced
significantly. And it makes large scale learning using Fredholm kernel more feasible.
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A Proofs

A.1 Lemma 1: The Representer’s Theorem For Fredholm Learning

Proof. Define the empirical loss function for the learning problem,

L(f) =
1

l

l∑
i=1

((Kp̂Xf)(xi)− yi)2 + λ‖f‖2H.

First let HX be the sub-space of H, spanned by kernel functions centered at the data points,
kH(x, xi) for i = 1, . . . , l + u. For the optimal solution of Eqn 3, we can have the orthogonal
decomposition,

f∗(x) = fX + f⊥,

where fX ∈ HX and f⊥ is its orthogonal complement. By its definition, f⊥(xi) =
〈f⊥, kH(x, xi)〉H = 0 for i = 1, . . . , l + u. Thus, the first term in the loss function L(f) can
be expanded as

1

l

l∑
i=1

((Kp̂Xf∗)(xi)− yi)2 =
1

l

l∑
i=1

(
1

l + u
kH(xi, xj)f

∗(xj)− yi
)2

=
1

l

l∑
i=1

 1

l + u

l+u∑
j=1

kH(xi, xj)(fX(xj) + f⊥(xj))− yi

2

=
1

l

l∑
i=1

 1

l + u

l+u∑
j=1

kH(xi, xj)fX(xj)− yi

2

=
1

l

l∑
i=1

((Kp̂XfX)(xi)− yi)2

So the orthogonal complement of fX does not matter at all for the empirical risk function.

For the regularization norm, we can use the pythagorean theorem in functional space.

‖f∗‖2H = ‖fX‖2H + ‖f⊥‖2H,
thus, ‖fX‖2H ≤ ‖f∗‖H. Combine the results above, we have

L(fX) =
1

l

l∑
i=1

((Kp̂XfX)(xi)− yi)2 + λ‖fX‖2H

≤1

l

l∑
i=1

((Kp̂XfX)(xi)− yi)2 + λ
(
‖fX‖2H + ‖f⊥‖2H

)
≤ L(f∗).

By the definition of f∗, we have fX = f∗.

A.2 Proposition 3: Positive Semi-definiteness Of Fredholm Kernel

Proof. For any given z1, . . . , zp, we have the p× p Fredholm kernel matrix with

(KF )mn =
1

(l + u)2

∑
i,j

k(zm, xi)kH(xi, xj)k(zn, xj).

Given a p× 1 vector α, we have

αTKFα =
∑
m,n

αmαn
1

(l + u)2

∑
i,j

k(zm, xi)kH(xi, xj)k(zn, xj)

=
1

(l + u)2

∑
i,j

(∑
m

αmk(zm, xi)

)(∑
n

αnk(zn, xj)

)
kH(xi, xj) ≥ 0
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due to the positive semi-definiteness of kH.

A similar argument can establish the same claim for the normalized version of Fredholm kernel in
Eq 6.

A.3 Proof for Theorem 4

Proof. Recall that ΣF =
∫ ∫

uvT kH(u, v)p(u)p(v)dudv. Now substituting the distribution p for
unlabeled data and kH as specified in the theorem, we have:

ΣF =

∫ ∫
uvT kH(u, v)p(u)p(v)dudv

=
1

(2π)D
∏
d σ

2
d

∫ ∫
uvT

∏
d

exp

(
− (ud − vd)2

2t

)
exp

(
− (ud − µd)2

2σ2
d

)
exp

(
− (vd − µd)2

2σ2
d

)
dudv

ΣF is a matrix, and we compute its entries separatedly. First, for the diagonal entries of ΣF , we
have for any i ∈ [1, D],

(ΣF )ii =
1

(2π)d
∏
j σ

2
j

∫
uivi

∏
j

exp

(
− (uj − vj)2

2t

)
exp

(
− (uj − µj)2

2σ2
j

)
exp

(
− (vj − µj)2

2σ2
j

)
dudv

=
1

(2π)d
∏
j σ

2
j

∫
uivi

∏
j

exp

− (uj −
σ2
j vj+tµj

t+σ2
j

)2

2
tσ2

j

t+σ2
j

 exp

− (vj − µj)2

2
σ2
j (t+σ2

j )

t+2σ2
j

 dudv

=
1

(2π)
d
2

∏
j

1

σ2
j

(
tσ2
j

t+ σ2
j

) 1
2 ∫ (

σ2
i v

2
i + tµivi
t+ σ2

i

)∏
j

exp

− (vj − µj)2

2
σ2
j (t+σ2

j )

t+2σ2
j

 dv

=
∏
j

1

σ2
j

(
tσ2
j

t+ σ2
j

σ2
j (t+ σ2

j )

t+ 2σ2
j

) 1
2

σ2
i

(
µ2
i +

σ2
i (t+σ2

i )

t+2σ2
i

)
+ tµ2

i

t+ σ2
i


=
∏
j

√
t

t+ 2σ2
j

(
µ2
i +

σ4
i

t+ 2σ2
i

)
.

For the off-diagonal entries, (ΣF )ij , 1 ≤ i 6= j ≤ D, similar computation gives us the following

(ΣF )ij =
1

(2π)D
∏
d σ

2
d

∫ ∫
uivj

∏
d

exp

(
− (ud − vd)2

2t

)
exp

(
− (ud − µd)2

2σ2
d

)
exp

(
− (vd − µd)2

2σ2
d

)
dudv

=
∏
d

√
t

t+ 2σ2
d

µiµj .

Put the above results together, we have the theorem.

A.4 Proof For Lemma 7

First, we need the following result and we include its proof for completeness.

Lemma 9. Given a random variable Z = XTY , where X,Y are two independent random vector,
we have

E(Z) = E(X)TE(Y )

and

V ar(Z) =

D∑
i=1

(E(Xi)
2V ar(Yi) + E(Yi)

2V ar(Xi) + V ar(Xi)V ar(Yi))
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Proof. For expected value, we have

E(Z) = E(XTY ) = E

(
D∑
i=1

XiYi

)
=

D∑
i=1

E(XiYi) =

D∑
i=1

E(Xi)E(Yi) = E(X)TE(Y ).

To compute variance, we first compute the second moment of Z,

E(Z2) =E

( D∑
i=1

XiYi

)2
 = E

 D∑
i,j=1

XiXjYiYj


=
∑
i 6=j

E(Xi)E(Xj)E(Yi)E(Yj) +
∑
i=j

E(X2
i )E(Y 2

i )

=
∑
i 6=j

E(Xi)E(Xj)E(Yi)E(Yj) +

D∑
i=1

(E(Xi)
2 + V ar(Xi))(E(Yi)

2 + V ar(Yi))

=(E(X)TE(Y ))2 +

D∑
i=1

(E(Xi)
2V ar(Yi) + E(Yi)

2V ar(Xi) + V ar(Xi)V ar(Yi))

Thus, the variance of Z is

V ar(Z) =

D∑
i=1

(E(Xi)
2V ar(Yi) + E(Yi)

2V ar(Xi) + V ar(Xi)V ar(Yi))

Now we can give the proof for Lemma 7.

Proof. By the assumption we have that the distribution p for unlabelled points is a Gaussian distri-
bution N(0, diag([λ2Id, σ

2ID−d])). Our goal is to compute the following kF (xe, ze).

kF (xe, ze) =

∫ ∫
k(xe, u)∫

k(xe, w)p(w)dw

k(ze, v)∫
k(ze, w)p(w)dw

(uT v)p(u)p(v)dudv

=

(∫
k(xe, u)up(u)du∫
k(xe, w)p(w)dw

)T ( ∫
k(ze, v)vp(v)dv∫
k(ze, w)p(w)dw

)
:= (mx)T (mz).

Note that we define mx,mz to simplify the notations. And since mx,mz are in the same form,
we will only compute mx, the formula for mz can be derived by the same computation. First, the
denominator can be expended as∫

k(xe, w)p(w)dw

=
1

(2π)D/2(λ2)d/2(σ2)(D−d)/2

∫ D∏
i=1

exp

(
− ((xe)i − wi)2

2t

) d∏
i=1

exp

(
− w2

i

2λ2

) D∏
i=d+1

exp

(
− w2

i

2σ2

)
du

=
1

(2π)D/2(λ2)d/2(σ2)(D−d)/2

∫ d∏
i=1

exp

− (wi − λ2(xe)i
t+λ2 )2

2 tλ2

t+λ2

 exp

(
− (xe)

2
i

2(t+ λ2)

)
D∏

i=d+1

exp

− (wi − σ2(xe)i
t+σ2 )2

2 tσ2

t+σ2

 exp

(
− (xe)

2
i

2(t+ σ2)

)
du

=

(
t

t+ λ2

)d/2(
t

t+ σ2

)(D−d)/2 d∏
i=1

exp

(
− (xe)

2
i

2(t+ λ2)

) D∏
i=d+1

exp

(
− (xe)

2
i

2(t+ σ2)

)
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mx =

1
(2π)D/2(λ2)d/2(σ2)(D−d)/2∫

k(xe, w)p(w)dw

∫
uk(xe, u)

d∏
i=1

exp

(
− u2

i

2λ2

) D∏
i=d+1

exp

(
− u2

i

2σ2

)
du

=

1
(2π)D/2(λ2)d/2(σ2)(D−d)/2∫

k(xe, w)p(w)dw

∫
u

D∏
i=1

exp

(
− ((xe)i − ui)2

2t

) d∏
i=1

exp

(
− u2

i

2λ2

) D∏
i=d+1

exp

(
− u2

i

2σ2

)
du

=

1
(2π)D/2(λ2)d/2(σ2)(D−d)/2∫

k(xe, w)p(w)dw

∫
u

d∏
i=1

exp

− (ui − λ2(xe)i
t+λ2 )2

2 tλ2

t+λ2

 exp

(
− (xe)

2
i

2(t+ λ2)

)
D∏

i=d+1

exp

− (ui − σ2(xe)i
t+σ2 )2

2 tσ2

t+σ2

 exp

(
− (xe)

2
i

2(t+ σ2)

)
du

=[
λ2(xe)1

t+ λ2
, . . . ,

λ2(xe)d
t+ λ2

,
σ2(xe)d+1

t+ σ2
, . . . ,

σ2(xe)D
t+ σ2

]

=
λ2

t+ λ2
x̄+

σ2

t+ σ2
(xe − x̄).

The last equation is because xe only has noises in the last D − d coordinates, thus it has the same
first d coordinates with x̄ up to a rescaling factor. Note that xe− x̄ is the noise term. If t is significant
large than the variance σ2 for noise, then this noise term will be suppressed significantly. To apply
Lemma 9, we need to compute the expected value and variance of mx. It is easy to see:

E(mx) =
λ2

t+ λ2
x̄.

Since xe − x̄ accounts for the randomness of mx, and since xe ∼ N(x̄, diag([0d, σ
2ID−d])), it

follows that V ar((mx)i) = 0 for i ≤ d. For d < i ≤ D, we have

V ar((mx)i) =

(
σ2

t+ σ2

)2

σ2.

Applying Lemma 9, we have

E(mT
xmz) =

(
λ2

t+ λ2

)2

x̄T z̄,

and

V ar(mT
xmz) = (D − d)

(
σ2

t+ σ2

)4

σ4.

(The derivation of the variance above uses the fact that x̄ and z̄ are located on the subspace of RD

spanned by the first d axes.) Thus, by multiplying kF by the normalizing term
(
t+λ2

λ2

)2

, we prove
the theorem.

A.5 Proof for Theorem 8

To prove this theorem, we first characterize the approximation ktarget
H (xe, ze) using kernel ktarget

H , in
term of its mean and variance, by the following lemma.
Lemma 10. Given x̄, z̄, and two noise samples xe ∼ N(x̄, diag([0d, σ

2ID−d])), ze ∼

N(z̄, diag([0d, σ
2ID−d])). Let ktarget

H (xe, ze) = exp
(
−‖xe−ze‖2

2r

)
and c1 =

(
r

r+2σ2

)(D−d)/2

,
we have

Exe,ze(c−1
1 ktarget
H (xe, ze)) = exp

(
−‖x̄− z̄‖

2

2r

)
,

and

Varxe,ze(c−1
1 ktarget
H (xe, ze)) =

((
(r + 2σ2)2

r(r + 4σ2)

)(D−d)/2

− 1

)
exp

(
−‖x̄− z̄‖

2

r

)
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Proof. First of all, let us compute the expectation of ktarget
H (xe, ze). Note that the first d coordinates

of xe, ze are deterministic in our setting.

Exe,ze(ktarget
H (xe, ze))

=

∫
ktarget
H (xe, ze)p(xe)p(ze)dxedze

=
1

(2πσ2)D−d

d∏
i=1

exp

(
− ((x̄)i − (z̄)i)

2

2r

)
×

∫ D∏
i=d+1

exp

(
− ((xe)i − (ze)i)

2

2r

)
exp

(
− (xe)

2
i

2σ2

)
exp

(
− (ze)

2
i

2σ2

)
dxedze

=
1

(2πσ2)D−d
exp

(
−‖x̄− z̄‖

2

2r

)
×

∫ D∏
i=d+1

exp

−
(

(xe)i − σ2(ze)i
r+σ2

)2

2 rσ2

r+σ2

 exp

(
− (ze)

2
i

2σ
2(r+σ2)
r+2σ2

)
dxedze

=
1

(σ2)D−d

(
rσ2

r + σ2

σ2(r + σ2)

r + 2σ2

)D−d
2

exp

(
−‖x̄− z̄‖

2

2r

)
=

(
r

r + 2σ2

)D−d
2

exp

(
−‖x̄− z̄‖

2

2r

)
.

Thus, let c1 =
(

r
r+2σ2

)D−d
2

, we have Exe,ze(c−1
1 ktarget
H (xe, ze)) = exp

(
−‖x̄−z̄‖

2

2r

)
.

Similarly, we will get the second moment.

Exe,ze(ktarget
H (xe, ze)

2) =

(
r

r + 4σ2

)D−d
2

exp

(
−‖x̄− z̄‖

2

r

)
.

Using Varxe,ze(c−1
1 ktarget
H (xe, ze)) = c−2

1

(
Exe,ze(ktarget

H (xe, ze)
2)− Exe,ze(ktarget

H (xe, ze))
2
)
, we

have the result for variance.

Now consider the behavior of the Fredholm kernel. Under our specific setting, we know the distri-
bution pX , the integral in the definition of Fredholm kernel in Eq 9 could be computed explicitly.
To keep our point clear, we omit the constant coefficient,

kF (xe, ze) ∝ exp

(
− ‖x̄− z̄‖2

2 t(t+3λ2)(t+λ2)
λ4

)
exp

(
−‖(xe − x̄)− (ze − z̄)‖2

2 t(t+3σ2)(t+σ2)
σ4

)

= exp

(
− ‖x0 − z0‖2

2 t(t+3λ2)(t+λ2)
λ4

)
where x0 = x̄ + η(xe − x̄), z0 = z̄ + η(ze − z̄), and η = σ4(st+sλ2+2tλ2)(t+λ2)

λ4(st+sσ2+2tσ2)(t+σ2) . Since σ2 is
the variance for noise, σ2 < λ2, and thus η < 1. It can be observed that the resulting Fredholm
kernel is still a Gaussian kernel. By selecting t properly, the kernel width could match the original
kernel, while the center of new kernel, x0, z0, becomes closer to x, z than the original center xe, ze.
Intuitively, this Fredholm kernel gives a more stable elstimator for ktarget

H .

To formulate this idea strictly, we have the following lemma.
Lemma 11. Given x̄, z̄, and two noise sample xe ∼ N(x̄, diag([0d, σ

2ID−d])), ze ∼
N(z̄, diag([0d, σ

2ID−d])). Suppose distribution of unlabeled data is N(0, diag([λ2Id, σ
2ID−d])).

Letting c2 =
(

t(t+σ2)2

t3+4t2σ2+3tσ4+2σ6

)(D−d)/2 (
t(t+λ2)
t(t+3λ2)

)d/2
, we have

Exe,ze(c−1
2 kF (xe, ze)) = exp

(
− ‖x̄− z̄‖2

2 t(t+λ
2)(t+3λ2)
λ4

)
,
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and

Varxe,ze(c−1
2 kF (xe, ze)) =((

(t3 + 4t2σ2 + 3tσ4 + 2σ6)2

t(t+ σ2)(t+ 3σ2)(t3 + 4t2σ2 + 3tσ4 + 4σ6)

)(D−d)/2

− 1

)
exp

(
− ‖x̄− z̄‖2

(t+λ2)(t2+3tλ2)
λ4

)

We can see that the difference between Fredholm kernel and the original kernel ktarget
H is the kernel

width. Thus we can choose t and s properly in Fredholm kernel such that the kernel width matches
the one in ktarget

H before comparing the variances.

Now we can give the proof for Theorem 8.

Proof. First, by setting r = (t+λ2)(st+sλ2+2tλ2)
λ4 , we make the two approximations have the same

expected value. Thus, it suffices to compare the variances of the adjusted approximations. With the
r plugged into the variance in Proposition 10, it suffices to show that

( (t+λ2)(st+sλ2+2tλ2)
λ4 + 2σ2)2

(t+λ2)(st+sλ2+2tλ2)
λ4 ( (t+λ2)(st+sλ2+2tλ2)

λ4 + 4σ2)
>

(st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6)2

(t+ σ2)(st+ sσ2 + 2tσ2)(st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 4σ6)

=
( (t+σ2)(st+sσ2+2tσ2)

σ4 + 2σ2)2

(t+σ2)(st+sσ2+2tσ2)
σ4 ( (t+σ2)(st+sσ2+2tσ2)

σ4 + 4σ2)

Since we have (t+σ2)(st+sσ2+2tσ2)
σ4 > (t+λ2)(st+sλ2+2tλ2)

λ4 and the function r+2σ2

r(r+4σ2) is decreasing
w.r.t. r, we have the inequality.

A.5.1 Proof For Lemma 11

Here, we will prove the general case that uses different kernel widths for k and kH. Then one can
simply set them to be the same to get Lemma 11.

Here’s the new Lemma we will prove.

Lemma 12. Given x̄, z̄, and two noise sample xe ∼ N(x̄, diag([0d, σ
2ID−d])), ze ∼

N(z̄, diag([0d, σ
2ID−d])). Suppose distribution of unlabeled data is N(0, diag([λ2Id, σ

2ID−d])).
Thus, we have

Exe,ze(kF (xe, ze)) =

(
s(t+ σ2)2

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6

)(D−d)/2(
s(t+ λ2)

st+ sλ2 + 2tλ2

)d/2
exp

(
− ‖x̄− z̄‖2

2 (t+λ2)(st+sλ2+2tλ2)
λ4

)
.

Let c2 =
(

s(t+σ2)2

st2+2stσ2+2t2σ2+sσ4+2tσ4+2σ6

)(D−d)/2 (
s(t+λ2)

st+sλ2+2tλ2

)d/2
. We have

Varxe,ze(c−1
2 kF (xe, ze)) =((

(st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6)2

(t+ σ2)(st+ sσ2 + 2tσ2)(st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 4σ6)

)(D−d)/2

− 1

)

exp

(
− ‖x̄− z̄‖2

(t+λ2)(st+sλ2+2tλ2)
λ4

)
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Proof. Again, since we know the exact distribution of the unlabeled data, we can compute the close
formula of kF (xe, ze).

kF (xe, ze) =

∫ ∫
k(xe, u)∫

k(xe, w)p(w)dw

k(ze, v)∫
k(ze, w)p(w)dw

kH(u, v)p(u)p(v)dudv

=

(
s(t+ λ2)

st+ sλ2 + 2tλ2

)d/2(
s(t+ σ2)

st+ sσ2 + 2tσ2

)(D−d)/2

×

exp

(
− ‖x̄− z̄‖2

2 (st+sλ2+2tλ2)(t+λ2)
λ4

)
exp

(
−‖(xe − x̄)− (ze − z̄)‖2

2 (st+sσ2+2tσ2)(t+σ2)
σ4

)
Based on this computation, we need to compute expected value and variance of kF . Note that the
randomness of kF (xe, ze) comes from the term xe − x̄ and ze − z̄, we take out the random variable
from the above formula, and denote it

Z = exp

(
−‖(xe − x̄)− (ze − z̄)‖2

2 (st+sσ2+2tσ2)(t+σ2)
σ4

)
.

Recall that the distributions for xe and ze areN(x̄, diag([0, σ2ID−d])) andN(z̄, diag([0, σ2ID−d]))
respectively. For expected value, we have

Exe,ze(Z) =

∫
exp

(
−‖(xe − x̄)− (ze − z̄)‖2

2 (st+sσ2+2tσ2)(t+σ2)
σ4

)
p(xe)p(ze)dxedze

=

(
(t+ σ2)(st+ sσ2 + 2tσ2)

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6

)(D−d)/2

And for the second moment, we have

Exe,ze(Z2) =

∫
exp

(
−‖(xe − x̄)− (ze − z̄)‖2

(st+sσ2+2tσ2)(t+σ2)
σ4

)
p(xe)p(ze)dxedze

=

(
(t+ σ2)(st+ sσ2 + 2tσ2)

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 4σ6

)(D−d)/2

Thus,

V ar(Z) = E(Z2)− E(Z)2 =(
(t+ σ2)(st+ sσ2 + 2tσ2)

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 4σ6

)(D−d)/2

−
(

(t+ σ2)(st+ sσ2 + 2tσ2)

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6

)(D−d)

Now we multiply Z by the constant term, we have

Exe,ze(kF (xe, ze)) =

(
s(t+ σ2)2

st2 + 2stσ2 + 2t2σ2 + sσ4 + 2tσ4 + 2σ6

)(D−d)/2(
s(t+ λ2)

st+ sλ2 + 2tλ2

)d/2
exp

(
− ‖x̄− z̄‖2

2 (t+λ2)(st+sλ2+2tλ2)
λ4

)
.

And let c2 =
(

s(t+σ2)2

st2+2stσ2+2t2σ2+sσ4+2tσ4+2σ6

)(d−l)/2 (
s(t+λ2)

st+sλ2+2tλ2

)l/2
, we will have the results

for the variance by scaling the variance of Z by the constant term.
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