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Abstract

This document is the supplementary material for T. Osogami and M. Otsuka, “Re-
stricted Boltzmann machines modeling human choice,” appearing in Advances in
Neural Information Processing Systems 27 (NIPS 2014).

A Details about the RBM choice model

A.1 Training algorithms for restricted Boltzmann machines

The parameters, θ ≡ (T,U, b), of the RBM choice model can be learned by a training algorithm
in such a way that the log-likelihood of given training dataset, D, is maximized. Here, the training
dataset is a collection of observed pairs of a choice set and a selected item, D ≡ {(Xi, Ai)}i.
Existing training algorithms can be classified into discriminative ones, generative ones, or their
hybrid, depending on what log-likelihood is maximized. For the RBM choice model, we find that
the discriminative training algorithm runs faster and tends to learn the parameters more effectively
than generative or hybrid training algorithms.

A discriminative training algorithm [102] updates θ in the direction of the gradient of the log-
likelihood, ∑

(X ,A)∈D

∇θ log p(A|X ). (30)

To compute this gradient, let

gθ(X,X ) ≡
∑
h Pθ((v

X , wX), h)∇θEθ((vX , wX), h)∑
h′ Pθ((vX , wX), h′)

.

We then have

∇θ log p(A|X ) = −gθ(A,X ) +
∑
X∈X

∑
h Pθ((v

X , wX), h) gθ(X,X )∑
X∈X

∑
h Pθ((v

X , wX), h)
. (31)

The gradient (31) can be computed in the time that grows linearly with |X | and |H|.
A generative training algorithm updates θ in the direction of the gradient of the log-likelihood,∑

(X ,A)∈D

∇θ log
∑
h

Pθ((v
X , wA), h). (32)

Exact evaluation of this gradient is often intractable and requires some approximation scheme such
as contrastive divergence [101]. A hybrid training algorithm considers a convex combination of the
gradient in (32) and the gradient in (31). The best training algorithm appears to depend on particular
problems [103].
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In our experiments, we train the RBM choice model with the discriminative training algorithm with
stochastic gradient descent using mini-batches. The training dataset, D, is first divided into mini-
batches of a given size. Then the parameters, θ, are updated as

θ ← θ + η
∑
X∈B
∇θ log p(X|X ) (33)

for each mini-batch, B, where η is the learning rate. The training dataset can be used multiple times
until the values of the parameters converge.

A.2 Extensions of the RBM choice model

Our discussion in Section 2 motivates an extension of the RBM choice model. We now consider the
bias, bhidk , for a hidden unit, k ∈ K. Also, for a visible unit, X ∈ I, in the part representing the
choice set, let bsetX be the bias. For this full RBM choice model, the choice rate of A from X is

λ′(A|X ) = exp(bA) exp
(
bsetX
) ∏
k∈K

(
1 + exp(

(
T kX + UkA + bhidk

))
, (34)

where we define bsetX ≡
∑
X∈X b

set
X .

The factor of exp(bsetX ) in (34) is canceled out when the choice rate is used in the choice probability
(1). This factor can, however, become relevant when we want to model the choice rate itself for
example to study the volume of sales per unit time. Namely, the choice rate can be used as a
parameter of a stochastic process, such as a Poisson process, that generates a sequence of purchases.
Then the choice rate can be interpreted as the expected volume of sales per unit time.

In (34), bhidk cannot be determined in the RBM choice model of selecting exactly one item. For each
k, let

ŨkA ≡ UkA + bhidk ,∀A ∈ I. (35)

We can thus replace the sum, UkA + bhidk with ŨkA for each A, k, which is equivalent to setting
bhidk = 0,∀k. The bias, bhidk , can, however, become relevant when we consider selecting multiple
items. In this case, UkA in (34) becomes

∑
A∈A U

k
A for a set of selected items, A, and then bhidk can

play a role.

B Additional experimental results

B.1 Details of the experimental results of Section 4

Figure 4 shows details of the results from the experiments in Section 4.

B.2 Experimental results with artificial dataset

Consider the probability distribution shown in Figure 5 (a). Here, we have five items: I ≡
{A,B,C,D, S}. The choice probabilities are designed to represent the typical choice phenom-
ena for the representative choice sets shown in Figure 1. The similarity effect can be seen by
comparing the choice probabilities for {A,B} and those for {A,B, S}. Namely, S is similar to
A and steals the market share only from A: p(A|{A,B}) = 0.6, p(A|{A,B, S}) = 0.3, and
p(B|{A,B}) = p(B|{A,B, S}) = 0.4. Likewise, the attraction effect can be seen with {A,B}
and {A,B,D}. The compromise effect can be seen with {A,C}, {B,C}, and {A,B,C}.
We generate a dataset based on the probability distribution shown in Figure 5 (a). Specifically, for
each of the six choice set, we generate 10 samples of selected items. Our dataset, D, thus consists
of 60 pairs of the choice set, X , and the selected item, X . To reduce the variance in the results of
experiments, the 10 samples are deterministically generated, so that the fraction of each selected
item equals the corresponding probability in Figure 5 (a). For example, for X = {A,B}, we select
X = A in six samples and X = B in four samples.

Given D, we train the RBM choice model by the use of discriminative training algorithm with
stochastic gradient descent with a mini-batch of size 1 and learning rate of η = 0.01. Specifically,
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Figure 4: Detailed view of Figure 3 (b). The left figure shows the average KL divergence for the
training dataset, and the right figure shows the average KL divergence for the test dataset, where the
average is over five iterations (with random initialization of parameters) for each test case (choice
set). A red lines show the average KL divergence for the choice set with a car, and a blue line show
that without a car. Although the legend in each figure shows only the ones with red or the ones with
blue for readability, each figure shows the results for both with and without a car.
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(d) Target distribution
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(b) MLM
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(c) RBM-1
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(d) RBM-2
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(e) RBM-3
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(f) RBM-4

Figure 5: The choice probabilities given by the MLM (b) and the RBM-n (d)-(f) that are trained
based on the target distribution (a). Each bar represents the choice probabilities of the items from
the choice set that is indicated below the bar.

the values of the parameters are updated according to (33) for each of the 60 pairs of (X , X) in
D in the uniformly random order. This update with the 60 pairs is repeated 5,000 times to obtain
the quality of the results to be presented. The initial values of the biases are set b = 0. The initial
values of the elements of T and U are selected independently from the uniform distribution over
(−0.1, 0.1).
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We vary |K|, the number of hidden units, and examine how well we can recover the target distribu-
tion in Figure 5 (a) by training the parameters of the RBM choice model from the samples generated
from the target distribution. Here, we refer to the RBM choice model with |K| = n as RBM-n.
When |K| = 0, the RBM choice model is reduced to the MLM. RBM-0 is thus called MLM.

The MLM is incapable of representing the typical choice phenomena, which can be seen in Fig-
ure 5 (b). For example, the target distribution exhibits the similarity effect (13). Specifically,
we have ψ(sim)

A,B,S,X = 2 for X ≡ {A,B}, because p(A|X ) = 0.6, p(A|X ∪ {S}) = 0.3, and

p(B|X ) = p(B|X ∪ {S}) = 0.4. However, the trained MLM has ψ(sim)
A,B,S,X = 1 for X ≡ {A,B},

because
p(A|X )
p(B|X )

=
p(A|X ∪ {S})
p(B|X ∪ {S})

≈ 1.86, (36)

where p(A|X ) ≈ 0.65, p(B|X ) ≈ 0.35, p(A|X ∪ {S}) ≈ 0.455, and p(B|X ∪ {S}) ≈ 0.455.
Also, we can observe the attraction effect (20) in the target distribution, while the inequality in
(20) is reversed in the trained MLM. Furthermore, (23) holds in the target distribution (i.e., the
compromise effect), while the inequalities in (23) become equalities in the trained MLM.

A hidden unit greatly enhances the capability of the RBM choice model. Figure 5 (c) shows that the
trained RBM-1 represents the typical choice phenomena. In the trained RBM-1, we can observe the
similarity effect (13), the attraction effect (20), and the compromise effect (23). In fact, the trained
RBM-1 quantitatively well approximates the target distribution. Only significant error can be seen
in p(·|{B,C}) and p(·|{A,B,C}).
Taking a closer look, we can observe small error bars in Figure 5 (b)-(f). An error bar shows the
sample standard deviation of the results from 10 runs, where the initial values of the parameters,
T,U , are re-sampled independently in each run. The small error bars suggest the limitation of the
RBM-1 model, rather than the training algorithm, in exactly matching the target distribution.

Figure 5 (d) shows that the trained RBM-2 better approximates the target distribution than the trained
RBM-1. The error is now negligible for any choice set. This means that two hidden units suffice
to represent all of the three typical choice phenomena. Recall that our theorems only suggest that
one hidden unit is sufficient to represent each of the typical choice phenomena. In practice, each
hidden unit contributes to representing multiple typical choice phenomena, and each typical choice
phenomenon is represented by the superposition of the effects from multiple hidden units.

Adding further hidden units does not hurt the quality of the trained RBMs. The running time of
the training algorithm is slightly increased with the additional hidden units. For example, MLM
requires about 90 seconds for training, while RBM-4 requires about 120 seconds.

C Proofs

Proof of Theorem 1. For B 6= A, we let U k̂B → −∞ to obtain

λ̂(B|Y) = λ(B|Y)
(
1 + exp

(
T k̂Y + U k̂B

))
(37)

→ λ(B|Y) (38)

for any Y . This establishes the second part of (18).

To prove the first part of (18), let T k̂X = 0,∀X 6= S. Because S 6∈ X , we have

λ̂(A|X ∪ {S}) = λ(A|X ∪ {S})
(
1 + exp

(
T k̂S + U k̂A

))
(39)

λ̂(A|X ) = λ(A|X )
(
1 + exp

(
U k̂A

))
. (40)

These two expressions give us

λ̂(A|X ∪ {S})
λ̂(A|X )

=
1 + exp

(
T k̂S + U k̂j

)
1 + exp

(
U k̂A

) λ(A|X ∪ {S})
λ(A|X )

. (41)
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Because the right-hand side of (41) is monotonically increasing with T k̂S , it can take an arbitrary
large value by letting T k̂S →∞. Thus, we have

lim
T k̂
S→∞

λ̂(A|X ∪ {S})
λ̂(A|X )

=∞. (42)

The corresponding lower limit is given by letting T k̂S → −∞:

lim
T k̂
S→−∞

λ̂(A|X ∪ {S})
λ̂(A|X )

=
1

1 + exp(U k̂A)

λ(A|X ∪ {S})
λ(A|X )

. (43)

Because (41) is continuous with T k̂S , the left-hand side of (41) can take any value between the lower
limit (43) and the upper limit (42). The lower limit (43) can be made arbitrarily close to 0 by letting
U k̂A →∞. This establishes the first part of (18).

Proof of Theorem 2. As we have seen in the proof of Theorem 1, we can obtain (38) for any Y by
letting U k̂B → −∞ for B 6= A. This establishes the second part of (22).

To prove the first part of (22), let T k̂X = 0,∀X 6= D. Then we have

λ̂(A|X ) = λ(A|X )
(
1 + exp

(
U k̂A

))
(44)

λ̂(A|X ∪ {D}) = λ(A|X ∪ {D})
(
1 + exp

(
T k̂D + U k̂A

))
. (45)

Thus, by (17) and D 6∈ X , we obtain

ψ̂
(att)
A,D,X ≡

p̂(A|X ∪ {D})
p̂(A|X )

(46)

→

λ(A|X ∪ {D})
(
1 + exp

(
T k̂D + U k̂A

))
∑
j∈X∪{D} λ(j|X ∪ {D}) + λ(A|X ∪ {D}) exp(T k̂D + U k̂A)

λ(A|X )
(
1 + exp

(
U k̂A

))
∑
i∈X λ(i|X ) + λ(A|X ) exp(U k̂A)

(47)

=

∑
i∈X λ(i|X )
λ(A|X )

+ exp(U k̂A)

1 + exp(U k̂A)

1 + exp(T k̂D + U k̂A)∑
j∈X∪{D} λ(j|X ∪ {D})
λ(A|X ∪ {D})

+ exp
(
T k̂D + U k̂A

) (48)

=

1

p(A|X )
+ exp

(
U k̂A

)
1 + exp

(
U k̂A

) 1 + exp
(
T k̂D + U k̂A

)
1

p(A|X ∪ {D})
+ exp

(
T k̂D + U k̂A

) (49)

in the limit of U k̂B → −∞,∀B 6= A.

Because 0 ≤ p(A|X ∪{D}) ≤ 1, the right-hand side of (49) is non-decreasing with T k̂D (this can be
easily verified by taking the derivative with respect to T k̂D). The lower limit of ψ̂(att)

A,D,X is given by

lim
T k̂
D→−∞

ψ̂
(att)
A,D,X =

1
p(A|X ) + exp

(
U k̂A

)
1 + exp(U k̂A)

p(A|X ∪ {D}). (50)

The corresponding upper limit is given by

lim
T k̂
D→∞

ψ̂
(att)
A,D,X =

1
p(A|X ) + exp

(
U k̂A

)
1 + exp(U k̂A)

. (51)
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Because 0 ≤ p(A|X ) ≤ 1, the right-hand sides of (50) and (51) are non-increasing with U k̂A. The
lower limit of ψ̂(att)

A,D,X is thus given by

lim
U k̂

A→∞
lim

T k̂
D→−∞

ψ̂
(att)
A,D,X = p(A|X ∪ {D}). (52)

The corresponding upper limit is given by

lim
U k̂

A→−∞
lim

T k̂
D→∞

ψ̂
(att)
A,D,X =

1

p(A|X )
. (53)

These establishes the condition of the first part of (22) and completes the proof.

Proof of Theorem 3. As we have seen in the proof of Theorem 1, we can obtain (38) for any Y by
letting U k̂X → −∞,∀X 6= C. This establishes the second part of (29).

To prove the first part of (29), let T k̂X = 0,∀X 6∈ {A,B}, T k̂X = 2M for X ∈ {A,B}, and
U k̂C = −3M , where M is a constant that we will vary in the following. With these settings of T and
U , we have

λ̂(C|X ) = λ(C|X ) (1 + exp(M)) (54)

λ̂(C|X \ {X}) = λ(C|X \ {X}) (1 + exp(−M)) (55)

for X = A,B, because A,B,C ∈ X .

Let φ̂A,B,C,X be defined analogously to φA,B,C,X but with λ̂. Then we have

φ̂A,B,C,X =

λ̂(C|X )∑
X∈{A,C} λ̂(X|X )

λ̂(C|X \ {B})∑
X∈{A,C} λ̂(X|X \ {B})

(56)

=

λ(C|X )(1 + exp(M))∑
X∈{A,C} λ(X|X ) + λ(C|X ) exp(M)

λ(C|X \ {B})(1 + exp(−M))∑
X∈{A,C} λ(X|X \ {B}) + λ(C|X \ {B}) exp(−M)

(57)

=
1 + exp(M)

1 + exp(−M)

1

qAC(C|X \ {B})
+ exp(−M)

1

qAC(C|X )
+ exp(M)

(58)

=
qAC(C|X )

qAC(C|X \ {B})
exp(M) + qAC(C|X \ {B})
1 + qAC(C|X ) exp(M)

(59)

Taking the derivative with respect to M , we find that

∂φ̂A,B,C,X
∂M

=
qAC(C|X ) exp(M)

qAC(C|X \ {B})
1− qAC(C|X \ {B}) qAC(C|X )

(1 + qAC(C|X ) exp(M))
2 (60)

≥ 0. (61)

Hence, φ̂A,B,C,X is non-decreasing with M . The lower limit of φ̂A,B,C,X is given by

lim
M→−∞

φ̂A,B,C,X = qAC(C|X ). (62)

The corresponding upper limit is given by

lim
M→∞

φ̂A,B,C,X =
1

qAC(C|X \ {B})
. (63)
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Because φ̂A,B,C,X is continuous with M , φ̂A,B,C,X can take an arbitrary value in(
qAC(C|X ),

1

qAC(C|X \ {B})

)
. (64)

Exchanging the role of A and B in (59), we can see that

φ̂B,A,C,X =
qBC(C|X )

qBC(C|X \ {A})
exp(M) + qBC(C|X \ {A})
1 + qBC(C|X ) exp(M)

(65)

is non-decreasing with M and can take arbitrary value in(
qBC(C|X ),

1

qBC(C|X \ {A})

)
. (66)

Because both of φ̂A,B,C,X and φ̂B,A,C,X are non-decreasing with M , the minimum of these quanti-
ties (i.e., ψ̂A,B,C,X ) is also non-decreasing withM and, by (64) and (66), can take an arbitrary value
in (q, 1/q). This establishes the theorem.
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