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Abstract

We propose information-directed sampling – a new algorithm for online optimiza-
tion problems in which a decision-maker must balance between exploration and
exploitation while learning from partial feedback. Each action is sampled in a
manner that minimizes the ratio between the square of expected single-period
regret and a measure of information gain: the mutual information between the
optimal action and the next observation.

We establish an expected regret bound for information-directed sampling that ap-
plies across a very general class of models and scales with the entropy of the opti-
mal action distribution. For the widely studied Bernoulli and linear bandit models,
we demonstrate simulation performance surpassing popular approaches, including
upper confidence bound algorithms, Thompson sampling, and knowledge gradi-
ent. Further, we present simple analytic examples illustrating that information-
directed sampling can dramatically outperform upper confidence bound algo-
rithms and Thompson sampling due to the way it measures information gain.

1 Introduction

There has been significant recent interest in extending multi-armed bandit techniques to address
problems with more complex information structures, in which sampling one action can inform the
decision-maker’s assessment of other actions. Effective algorithms must take advantage of the in-
formation structure to learn more efficiently. Recent work has extended popular algorithms for
the classical multi-armed bandit problem, such as upper confidence bound (UCB) algorithms and
Thompson sampling, to address such contexts.

For some cases, such as classical and linear bandit problems, strong performance guarantees have
been established for UCB algorithms (e.g. [4, 8, 9, 13, 21, 23, 29]) and Thompson sampling (e.g. [1,
15, 19, 24]). However, as we will demonstrate through simple analytic examples, these algorithms
can perform very poorly when faced with more complex information structures. The shortcoming
lies in the fact that these algorithms do not adequately assess the information gain from selecting an
action.

In this paper, we propose a new algorithm – information-directed sampling (IDS) – that preserves nu-
merous guarantees of Thompson sampling for problems with simple information structures while of-
fering strong performance in the face of more complex problems that daunt alternatives like Thomp-
son sampling or UCB algorithms. IDS quantifies the amount learned by selecting an action through
an information theoretic measure: the mutual information between the true optimal action and the
next observation. Each action is sampled in a manner that minimizes the ratio between squared
expected single-period regret and this measure of information gain.

As we will show through simple analytic examples, the way in which IDS assesses information gain
allows it to dramatically outperform UCB algorithms and Thompson sampling. Further, we establish
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an expected regret bound for IDS that applies across a very general class of models and scales with
the entropy of the optimal action distribution. We then specialize this bound to several widely
studied problem classes. Finally, we benchmark the performance of IDS through simulations of
the widely studied Bernoulli and linear bandit problems, for which UCB algorithms and Thompson
sampling are known to be very effective. We find that even in these settings, IDS outperforms UCB
algorithms, Thompson sampling, and knowledge gradient.

IDS solves a single-period optimization problem as a proxy to an intractable multi-period problem.
Solution of this single-period problem can itself be computationally demanding, especially in cases
where the number of actions is enormous or mutual information is difficult to evaluate. To carry
out computational experiments, we develop numerical methods for particular classes of online op-
timization problems. More broadly, we feel this work provides a compelling proof of concept and
hope that our development and analysis of IDS facilitate the future design of efficient algorithms
that capture its benefits.

Related literature. Two other papers [17, 30] have used the mutual information between the op-
timal action and the next observation to guide action selection. Both focus on the optimization of
expensive-to-evaluate, black-box functions. Each proposes sampling points so as to maximize the
mutual information between the algorithm’s next observation and the true optimizer. Several fea-
tures distinguish our work. First, these papers focus on pure exploration problems: the objective is
simply to learn about the optimum – not to attain high cumulative reward. Second, and more im-
portantly, they focus only on problems with Gaussian process priors and continuous action spaces.
For such problems, simpler approaches like UCB algorithms, Probability of Improvement, and Ex-
pected Improvement are already extremely effective (See [6]). By contrast, a major motivation of
our work is that a richer information measure is needed in order to address problems with more
complicated information structures. Finally, we provide a variety of general theoretical guarantees
for IDS, whereas Villemonteix et al. [30] and Hennig and Schuler [17] propose their algorithms only
as heuristics. The full-length version of this paper [26] shows our theoretical guarantees extend to
pure exploration problems.

The knowledge gradient (KG) algorithm uses a different measure of information to guide action
selection: the algorithm computes the impact of a single observation on the quality of the decision
made by a greedy algorithm, which simply selects the action with highest posterior expected reward.
This measure has been thoroughly studied (see e.g. [22, 27]). KG seems natural since it explicitly
seeks information that improves decision quality. Computational studies suggest that for problems
with Gaussian priors, Gaussian rewards, and relatively short time horizons, KG performs very well.
However, even in some simple settings, KG may not converge to optimality. In fact, it may select a
suboptimal action in every period, even as the time horizon tends to infinity.

Our work also connects to a much larger literature on Bayesian experimental design (see [10] for a
review). Recent work has demonstrated the effectiveness of greedy or myopic policies that always
maximize the information gain the next sample. Jedynak et al. [18] consider problem settings in
which this greedy policy is optimal. Another recent line of work [14] shows that information gain
based objectives sometimes satisfy a decreasing returns property known as adaptive sub-modularity,
implying the greedy policy is competitive with the optimal policy. Our algorithm also only considers
only the information gain due to the next sample, even though the goal is to acquire information over
many periods. Our results establish that the manner in which IDS encourages information gain leads
to an effective algorithm, even for the different objective of maximizing cumulative reward.

2 Problem formulation

We consider a general probabilistic, or Bayesian, formulation in which uncertain quantities are mod-
eled as random variables. The decision–maker sequentially chooses actions (At)t∈N from the finite
action set A and observes the corresponding outcomes (Yt(At))t∈N

. There is a random outcome

Yt(a) ∈ Y associated with each a ∈ A and time t ∈ N. Let Yt ≡ (Yt(a))a∈A be the vector of

outcomes at time t ∈ N. The “true outcome distribution” p∗ is a distribution over Y |A| that is itself
randomly drawn from the family of distributions P . We assume that, conditioned on p∗, (Yt)t∈N is
an iid sequence with each element Yt distributed according to p∗. Let p∗a be the marginal distribution
corresponding to Yt(a).
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The agent associates a reward R(y) with each outcome y ∈ Y , where the reward function R : Y →
R is fixed and known. We assume R(y)−R(y) ≤ 1 for any y, y ∈ Y . Uncertainty about p∗ induces

uncertainty about the true optimal action, which we denote by A∗ ∈ argmax
a∈A

E
y∼p∗

a

[R(y)]. The T

period regret is the random variable,

Regret(T ) :=
T
∑

t=1

[R(Yt(A
∗))−R(Yt(At))] , (1)

which measures the cumulative difference between the reward earned by an algorithm that always
chooses the optimal action, and actual accumulated reward up to time T . In this paper we study
expected regret E [Regret(T )] where the expectation is taken over the randomness in the actions
At and the outcomes Yt, and over the prior distribution over p∗. This measure of performance is
sometimes called Bayesian regret or Bayes risk.

Randomized policies. We define all random variables with respect to a probability space (Ω,F ,P).
Fix the filtration (Ft)t∈N

where Ft−1 ⊂ F is the sigma–algebra generated by the history of ob-

servations (A1, Y1(A1), ..., At−1, Yt−1(At−1)). Actions are chosen based on the history of past
observations, and possibly some external source of randomness1. It’s useful to think of the actions
as being chosen by a randomized policy π, which is an Ft–predictable sequence (πt)t∈N

. An ac-

tion is chosen at time t by randomizing according to πt(·) = P(At = ·|Ft−1), which specifies a
probability distribution over A. We denote the set of probability distributions over A by D(A).
We explicitly display the dependence of regret on the policy π, letting E [Regret(T, π)] denote the
expected value of (1) when the actions (A1, .., AT ) are chosen according to π.

Further notation. We set αt(a) = P (A∗ = a|Ft−1) to be the posterior distribution of A∗.
For a probability distribution P over a finite set X , the Shannon entropy of P is defined as
H(P ) = −∑

x∈X P (x) log (P (x)) . For two probability measures P and Q over a common mea-
surable space, if P is absolutely continuous with respect to Q, the Kullback-Leibler divergence
between P and Q is

DKL(P ||Q) =

∫

Y

log

(

dP

dQ

)

dP (2)

where dP
dQ

is the Radon–Nikodym derivative of P with respect to Q. The mutual information under

the posterior distribution between random variables X1 : Ω→ X1, and X2 : Ω→ X2, denoted by

It(X1;X2) := DKL (P ((X1, X2) ∈ ·|Ft−1) || P (X1 ∈ ·|Ft−1)P (X2 ∈ ·|Ft−1)) , (3)

is the Kullback-Leibler divergence between the joint posterior distribution of X1 and X2 and the
product of the marginal distributions. Note that It(X1;X2) is a random variable because of its
dependence on the conditional probability measure P (·|Ft−1).

To simplify notation, we define the information gain from an action a to be gt(a) := It(A
∗;Yt(a)).

As shown for example in Lemma 5.5.6 of Gray [16], this is equal to the expected reduction in
entropy of the posterior distribution of A∗ due to observing Yt(a):

gt(a) = E [H(αt)−H(αt+1)|Ft−1, At = a] , (4)

which plays a crucial role in our results. Let ∆t(a) := E [Rt(Yt(A
∗))−R(Yt(a))|Ft−1] denote the

expected instantaneous regret of action a at time t. We overload the notation gt(·) and ∆t(·). For
π ∈ D(A), define gt(π) =

∑

a∈A π(a)gt(a) and ∆t(π) =
∑

a∈A π(a)∆t(a).

3 Information-directed sampling

IDS explicitly balances between having low expected regret in the current period and acquiring new
information about which action is optimal. It does this by maximizing over all action sampling
distributions π ∈ D(A) the ratio between the square of expected regret ∆t(π)

2 and information

1Formally, At is measurable with respect to the sigma–algebra generated by (Ft−1, ξt) where (ǫt)t∈N

are random variables representing this external source of randomness, and are jointly independent of p∗ and
(Yt)t∈N
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gain gt(π) about the optimal action A∗. In particular, the policy πIDS =
(

πIDS
1 , πIDS

2 , ...
)

is defined
by:

πIDS
t ∈ argmin

π∈D(A)

{

Ψt (π) :=
∆t(π)

2

gt(π)

}

. (5)

We call Ψt(π) the information ratio of a sampling distribution π and Ψ∗
t = minπ Ψt(π) = Ψt(π

IDS
t )

the minimal information ratio. Each roughly measures the “cost” per bit of information acquired.

Optimization problem. Suppose that there are K = |A| actions, and that the posterior expected
regret and information gain are stored in the vectors ∆ ∈ R

K
+ and g ∈ R

K
+ . Assume g 6= 0, so that

the optimal action is not known with certainty. The optimization problem (5) can be written as

minimize Ψ(π) :=
(

πT∆
)2

/πT g subject to πT e = 1, π ≥ 0. (6)

The following result shows this is a convex optimization problem, and surprisingly, has an optimal
solution with only two non-zero components. Therefore, while IDS is a randomized policy, it ran-
domizes over at most two actions. Algorithm 1, presented in the supplementary material, solves (6)
by looping over all pairs of actions, and solving a one dimensional convex optimization problem.

Proposition 1. The function Ψ : π 7→
(

πT∆
)2

/πT g is convex on
{

π ∈ R
K |πT g > 0

}

. Moreover,

there is an optimal solution π∗ to (6) with |{i : π∗
i > 0}| ≤ 2.

4 Regret bounds

This section establishes regret bounds for IDS that scale with the entropy of the optimal action
distribution. The next proposition shows that bounds on a policy’s information ratio imply bounds
on expected regret. We then provide several bounds on the information ratio of IDS.

Proposition 2. Fix a deterministic λ ∈ R and a policy π = (π1, π2, ...) such that Ψt(πt) ≤ λ

almost surely for each t ∈ {1, .., T}. Then, E [Regret (π, T )] ≤
√

λH(α1)T .

Bounds on the information ratio. We establish upper bounds on the minimal information ratio
Ψ∗

t = Ψ∗
t (π

IDS
t ) in several important settings. These bound show that, in any period, the algorithm’s

expected regret can only be large if it’s expected to acquire a lot of information about which action
is optimal. It effectively balances between exploration and exploitation in every period.

The proofs of these bounds essentially follow from a very recent analysis of Thompson sampling,
and the implied regret bounds are the same as those established for Thompson sampling. In par-
ticular, since Ψ∗

t ≤ Ψt(π
TS) where πTS is the Thompson sampling policy, it is enough to bound

Ψt(π
TS). Several such bounds were provided by Russo and Van Roy [25].2 While the analysis is

similar in the cases considered here, IDS outperforms Thompson sampling in simulation, and, as we
will highlight in the next section, is sometimes provably much more informationally efficient.

We briefly describe each of these bounds below and then provide a more complete discussion for
linear bandit problems. For each of the other cases, more formal propositions, their proofs, and a
discussion of lower bounds can be found in the supplementary material or the full version of this
paper [26].

Finite action space: With no additional assumption, we show Ψ∗
t ≤ |A|/2.

Linear bandit: Each action is associated with a d dimensional feature vector, and the mean reward
generated by an action is the inner product between its known feature vector and some
unknown parameter vector. We show Ψ∗

t ≤ d/2.

Full information: Upon choosing an action, the agent observes the reward she would have received
had she chosen any other action. We show Ψ∗

t ≤ 1/2.

Combinatorial action sets: At time t, project i ∈ {1, .., d} yields a random reward θt,i, and the
reward from selecting a subset of projects a ∈ A ⊂ {a′ ⊂ {0, 1, ..., d} : |a′| ≤ m} is
m−1

∑

i∈A θt,i. The outcome of each selected project (θt,i : i ∈ a) is observed, which is

sometimes called “semi–bandit” feedback [3]. We show Ψ∗
t ≤ d/2m2.

2Ψt(π
TS) is exactly equal to the term Γ2

t that is bounded in [25].
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Linear optimization under bandit feedback. The stochastic linear bandit problem has been widely
studied (e.g. [13, 23]) and is one of the most important examples of a multi-armed bandit problem
with “correlated arms.” In this setting, each action is associated with a finite dimensional feature
vector, and the mean reward generated by an action is the inner product between its known feature
vector and some unknown parameter vector. The next result bounds Ψ∗

t for such problems.

Proposition 3. If A ⊂ R
d and for each p ∈ P there exists θp ∈ R

d such that for all a ∈ A
E

y∼pa

[R(y)] = aT θp, then for all t ∈ N, Ψ∗
t ≤ d/2 almost surely.

This result shows that E
[

Regret(T, πIDS)
]

≤
√

1
2H(α1)dT ≤

√

1
2 log(|A|)dT for linear bandit

problems. Dani et al. [12] show this bound is order optimal, in the sense that for any time horizon T
and dimension d if the actions set is A = {0, 1}d, there exists a prior distribution over p∗ such that

infπ E [Regret(T, π)] ≥ c0
√

log(|A|)dT where c0 is a constant the is independent of d and T . The
bound here improves upon this worst case bound since H(α1) can be much smaller than log(|A|).

5 Beyond UCB and Thompson sampling

Upper confidence bound algorithms (UCB) and Thompson sampling are two of the most popular
approaches to balancing between exploration and exploitation. In some cases, these algorithms are
empirically effective, and have strong theoretical guarantees. But we will show that, because they
don’t quantify the information provided by sampling actions, they can be grossly suboptimal in other
cases. We demonstrate this through two examples - each designed to be simple and transparent. To
set the stage for our discussion, we now introduce UCB algorithms and Thompson sampling.

Thompson sampling. The Thompson sampling algorithm simply samples actions according to
the posterior probability they are optimal. In particular, actions are chosen randomly at time t
according to the sampling distribution πTS

t = αt. By definition, this means that for each a ∈ A,
P(At = a|Ft−1) = P(A∗ = a|Ft−1) = αt(a). This algorithm is sometimes called probability
matching because the action selection distribution is matched to the posterior distribution of the
optimal action. Note that Thompson sampling draws actions only from the support of the posterior
distribution of A∗. That is, it never selects an action a if P (A∗ = a) = 0. Put differently, this
implies that it only selects actions that are optimal under some p ∈ P .

UCB algorithms. UCB algorithms select actions through two steps. First, for each action a ∈ A
an upper confidence bound Bt(a) is constructed. Then, an action At ∈ argmaxa∈A Bt(a) with
maximal upper confidence bound is chosen. Roughly, Bt(a) represents the greatest mean reward
value that is statistically plausible. In particular, Bt(a) is typically constructed so that Bt(a) →
E

y∼p∗

a

[R(y)] as data about action a accumulates, but with high probability E
y∼p∗

a

[R(y)] ≤ Bt(a).

Like Thompson sampling, many UCB algorithms only select actions that are optimal under some
p ∈ P . Consider an algorithm that constructs at each time t a confidence set Pt ⊂ P containing
the set of distributions that are statistically plausible given observed data. (e.g. [13]). Upper con-
fidence bounds are then set to be the highest expected reward attainable under one of the plausible
distributions:

Bt(a) = max
p∈P

E
y∼pa

[R(y)] .

Any action At ∈ argmaxa Bt(a) must be optimal under one of the outcome distributions p ∈ Pt.
An alternative method involves choosing Bt(a) to be a particular quantile of the posterior dis-
tribution of the action’s mean reward under p∗ [20]. In each of the examples we construct,
such an algorithm chooses actions from the support of A∗ unless the quantiles are so low that
maxa∈A Bt(a) < E [R(Yt(A

∗))].

5.1 Example: sparse linear bandits

Consider a linear bandit problem where A ⊂ R
d and the reward from an action a ∈ A is aT θ∗.

The true parameter θ∗ is known to be drawn uniformly at random from the set of 1–sparse vectors
Θ = {θ ∈ {0, 1}d : ‖θ‖0 = 1}. For simplicity, assume d = 2m for some m ∈ N. The action
set is taken to be the set of vectors in {0, 1}d normalized to be a unit vector in the L1 norm: A =
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{

x
‖x‖1

: x ∈ {0, 1}d, x 6= 0
}

. We will show that the expected number of time steps for Thompson

sampling (or a UCB algorithm) to identify the optimal action grows linearly with d, whereas IDS
requires only log2(d) time steps.

When an action a is selected and y = aT θ∗ ∈ {0, 1/‖a‖0} is observed, each θ ∈ Θ with aT θ 6= y
is ruled out. Let Θt denote the parameters in Θ that are consistent with the observations up to time
t and let It = {i ∈ {1, ..., d} : θi = 1, θ ∈ Θt} be the set of possible positive components.

For this problem, A∗ = θ∗. That is, if θ∗ were known, the optimal action would be to choose the
action θ∗. Thompson sampling and UCB algorithms only choose actions from the support of A∗

and therefore will only sample actions a ∈ A that have only a single positive component. Unless
that is also the positive component of θ∗, the algorithm will observe a reward of zero and rule out
only one possible value for θ∗. The algorithm may require d samples to identify the optimal action.

Consider an application of IDS to this problem. It essentially performs binary search: it selects
a ∈ A with ai > 0 for half of the components i ∈ It and ai = 0 for the other half as well as for any
i /∈ It. After just log2(d) time steps the true support of θ∗ is identified.

To see why this is the case, first note that all parameters in Θt are equally likely and hence the
expected reward of an action a is 1

|It|

∑

i∈It
ai. Since ai ≥ 0 and

∑

i ai = 1 for each a ∈ A, every

action whose positive components are in It yields the highest possible expected reward of 1/|It|.
Therefore, binary search minimizes expected regret in period t for this problem. At the same time,
binary search is assured to rule out half of the parameter vectors in Θt at each time t. This is the
largest possible expected reduction, and also leads to the largest possible information gain about A∗.
Since binary search both minimizes expected regret in period t and uniquely maximizes expected
information gain in period t, it is the sampling strategy followed by IDS.

5.2 Example: recommending products to a customer of unknown type

Consider the problem of repeatedly recommending an assortment of products to a customer. The
customer has unknown type c∗ ∈ C where |C| = n. Each product is geared toward customers of
a particular type, and the assortment a ∈ A = Cm of m products offered is characterized by the
vector of product types a = (c1, .., cm). We model customer responses through a random utility
model in which customers are apriori more likely to derive high value from a product geared toward
their type. When offered an assortment of products a, the customer associates with the ith product

utility U
(t)
ci (a) = β1{ai=c} + W

(t)
ci , where W t

ci follows an extreme–value distribution and β ∈ R

is a known constant. This is a standard multinomial logit discrete choice model. The probability a
customer of type c chooses product i is given by exp{β1{ai=c}}/

∑m

j=1 exp{β1{aj=c}}. When an

assortment a is offered at time t, the customer makes a choice It = argmaxi U
(t)
ci (a) and leaves

a review U
(t)
cIt

(a) indicating the utility derived from the product, both of which are observed by the

recommendation system. The system’s reward is the normalized utility of the customer ( 1
β
)U

(t)
cIt

(a).

If the type c∗ of the customer were known, then the optimal recommendation would be A∗ =
(c∗, c∗, ..., c∗), which consists only of products targeted at the customer’s type. Therefore, both
Thompson sampling and UCB algorithms would only offer assortments consisting of a single type
of product. Because of this, each type of algorithm requires order n samples to learn the customer’s
true type. IDS will instead offer a diverse assortment of products to the customer, allowing it to
learn much more quickly.

To make the presentation more transparent, suppose that c∗ is drawn uniformly at random from C
and consider the behavior of each type of algorithm in the limiting case where β → ∞. In this
regime, the probability a customer chooses a product of type c∗ if it available tends to 1, and the

review U
(t)
cIt

(a) tends to 1{aIt = c∗}, an indicator for whether the chosen product had type c∗.
The initial assortment offered by IDS will consist of m different and previously untested product
types. Such an assortment maximizes both the algorithm’s expected reward in the next period and
the algorithm’s information gain, since it has the highest probability of containing a product of type
c∗. The customer’s response almost perfectly indicates whether one of those items was of type c∗.
The algorithm continues offering assortments containing m unique, untested, product types until a
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review near U
(t)
cIt

(a) ≈ 1 is received. With extremely high probability, this takes at most ⌈n/m⌉
time periods. By diversifying the m products in the assortment, the algorithm learns m times faster.

6 Computational experiments

Section 5 showed that, for some complicated information structures, popular approaches like UCB
algorithms and Thompson sampling are provably outperformed by IDS. Our computational experi-
ments focus instead on simpler settings where these algorithms are extremely effective. We find that
even for these widely studied settings, IDS displays performance exceeding state of the art. For each
experiment, the algorithm used to implement IDS is presented in Appendix C.

Mean-based IDS. Some of our numerical experiments use an approximate form of IDS that is
suitable for some problems with bandit feedback, satisfies our regret bounds for such problems, and
can sometimes facilitate design of more efficient numerical methods. More details can be found in
the appendix, or in the full version of this paper [26].

Beta-Bernoulli experiment. Our first experiment involves a multi-armed bandit problem with in-
dependent arms. The action ai ∈ {a1, ..., aK} yields in each time period a reward that is 1 with
probability θi and 0 otherwise. The θi are drawn independently from Beta(1, 1), which is the uni-
form distribution. Figure 1a presents the results of 1000 independent trials of an experiment with 10
arms and a time horizon of 1000. We compare IDS to six other algorithms, and find that it has the
lowest average regret of 18.16. Our results indicate that the the variation of IDS πIDSME presented
in Section 6 has extremely similar performance to standard IDS for this problem.
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(b) Asymptotic performance

In this experiment, the famous UCB1 algorithm of Auer et al. [4] had average regret 131.3, which is
dramatically larger than that of IDS. For this reason UCB1 is omitted from Figure 1a. The confidence
bounds of UCB1 are constructed to facilitate theoretical analysis. For practical performance Auer
et al. [4] proposed using a heuristic algorithm called UCB-Tuned. The MOSS algorithm of Audibert
and Bubeck [2] is similar to UCB1 and UCB–Tuned, but uses slightly different confidence bounds.
It is known to satisfy regret bounds for this problem that are minimax optimal up to a constant factor.

In previous numerical experiments [11, 19, 20, 28], Thompson sampling and Bayes UCB exhibited
state-of-the-art performance for this problem. Unsurprisingly, they are the closest competitors to
IDS. The Bayes UCB algorithm, studied in Kaufmann et al. [20], uses upper confidence bounds at
time step t that are the 1− 1

t
quantile of the posterior distribution of each action3.

The knowledge gradient (KG) policy of Ryzhov et al. [27], uses the one–step value of information
to incentivize exploration. However, for this problem, KG does not explore sufficiently to identify
the optimal arm in this problem, and therefore its expected regret grows linearly with time. It should
be noted that KG is particularly poorly suited to problems with discrete observations and long time
horizons. It can perform very well in other types of experiments.

Asymptotic optimality. That IDS outperforms Bayes UCB and Thompson sampling in our last
experiment is is particularly surprising, as each of these algorithms is known, in a sense we will

3Their theoretical guarantees require choosing a somewhat higher quantile, but the authors suggest choosing
this quantile, and use it in their own numerical experiments.
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soon formalize, to be asymptotically optimal for these problems. We now present simulation results
over a much longer time horizon that suggest IDS scales in the same asymptotically optimal way.

The seminal work of Lai and Robbins [21] provides the following asymptotic frequentist lower
bound on regret of any policy π. When applied with an independent uniform prior over θ, both
Bayes UCB and Thompson sampling are known to attain this frequentist lower bound [19, 20]:

lim inf
T→∞

E [Regret(T, π)|θ]
log T

≥
∑

a 6=A∗

(θA∗ − θa)

DKL(θA∗ || θa)
:= c(θ)

Our next numerical experiment fixes a problem with three actions and with θ = (.3, .2, .1). We com-
pare algorithms over a 10,000 time periods. Due to the computational expense of this experiment,
we only ran 200 independent trials. Each algorithm uses a uniform prior over θ. Our results, along
with the asymptotic lower bound of c(θ) log(T ), are presented in Figure 1b.

Linear bandit problems. Our final numerical experiment treats a linear ban-
dit problem. Each action a ∈ R

5 is defined by a 5 dimensional feature vector.
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Figure 1: Regret in linear–Gaussian model.

The reward of action a at time t is aT θ + ǫt
where θ ∼ N(0, 10I) is drawn from a mul-
tivariate Gaussian prior distribution, and ǫt ∼
N(0, 1) is independent Gaussian noise. In each
period, only the reward of the selected action is
observed. In our experiment, the action set A
contains 30 actions, each with features drawn
uniformly at random from [−1/

√
5, 1/

√
5].

The results displayed in Figure 1 are averaged
over 1000 independent trials.

We compare the regret of five algorithms. Three
of these - GP-UCB, Thompson sampling , and
IDS - satisfy strong regret bounds for this prob-
lem4. Both GP-UCB and Thompson sampling
are significantly outperformed by IDS. Bayes
UCB [20] and a version of GP-UCB that was
tuned to minimize its average regret, are each
competitive with IDS. These algorithms are heuristics, in the sense that their confidence bounds
differ significantly from those of linear UCB algorithms known to satisfy theoretical guarantees.

7 Conclusion

This paper has proposed information-directed sampling – a new algorithm for balancing between
exploration and exploitation. We establish a general regret bound for the algorithm, and specialize
this bound to several widely studied classes of online optimization problems. We show the way
in which IDS assesses information gain allows it to dramatically outperform UCB algorithms and
Thompson sampling in some settings. Finally, for two simple and widely studied classes of multi-
armed bandit problems we demonstrate state of art performance in simulation experiments. In these
ways, we feel this work provides a compelling proof of concept.

Many important open questions remain, however. IDS solves a single-period optimization problem
as a proxy to an intractable multi-period problem. Solution of this single-period problem can itself be
computationally demanding, especially in cases where the number of actions is enormous or mutual
information is difficult to evaluate. An important direction for future research concerns the devel-
opment of computationally elegant procedures to implement IDS in important cases. Even when
the algorithm cannot be directly implemented, however, one may hope to develop simple algorithms
that capture its main benefits. Proposition 2 shows that any algorithm with small information ratio
satisfies strong regret bounds. Thompson sampling is a very tractable algorithm that, we conjecture,
sometimes has nearly minimal information ratio. Perhaps simple schemes with small information
ratio could be developed for other important problem classes, like the sparse linear bandit problem.

4Regret analysis of GP-UCB can be found in [29] and for Thompson sampling can be found in [1, 24, 25]
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