
Supplementary Material of Diverse Sequential Subset
Selection for Supervised Video Summarization

Boqing Gong∗
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
boqinggo@usc.edu

Wei-Lun Chao∗
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
weilunc@usc.edu

Kristen Grauman
Department of Computer Science

University of Texas at Austin
Austin, TX 78701

grauman@cs.utexas.edu

Fei Sha
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
feisha@usc.edu

We provide extra details on the following:

• Sec. A: how to use MLE to learn the model parameters of our seqDPP and the gradients
used to maximize the log-likelihood.
• Sec. B: more details about the video preprocessing used in our experiments.

A Learning seqDPP via MLE

We learn the model parameters of our seqDPP through maximum likelihood estimation (MLE) and
search for local optimums of the data log-likelihood by gradient descent. For convenience, we
consider only one training video in the following derivation.

A.1 Maximum likelihood estimation (MLE)

Recall that we have partitioned a long video sequence Y to T disjoint short segments,
⋃T

t=1 Yt =
Y , and defined a variable Yt at each time t. The corresponding oracle summary is therefore also
partitioned to T sets y1, · · · ,yT , where yt ⊆ Yt and yt may be an empty set. We estimate our
model parameters Θ via maximizing the following log-likelihood,

L
(
Θ; {(Yt,yt)}Tt=1

)
, logP (Y1 = y1, · · · , YT = yT ; Θ) (1)

=

T∑
t=1

logP (Yt = yt|Yt−1 = yt−1; Θ) (2)

where we introduce a dummy segment Y0 = y0 = ∅.

A.2 Optimization

We use gradient descent to maximize the log-likelihood L
(
Θ; {(Yt,yt)}Tt=1

)
with respect to Θ.

The following notation is useful to deriving the gradients ∂L
∂Θ ,

J t(Θ;Yt,yt,yt−1) , logP (Yt = yt|Yt−1 = yt−1; Θ) (3)
= log det(Ωyt−1∪yt)− log det(Ωt + It), (4)

∗Equal contribution

1



where the DPP kernel Ωt = Ωt(Θ,Yt,yt−1) is constructed from the data Yt ∪ yt−1 and the model
parameters Θ (cf. Section 3.2 in the main text).

Therefore, we have

∂L
∂Θ

=

T∑
t=1

∂J t

∂Θ
=

T∑
t=1

∑
ij

∂J t

∂Ωtij

∂Ωtij

∂Θ
, (5)

i.e., the gradients with respect to the model parameters are decomposed to two parts through the
chain rule. One part is about the DPP kernel J t

ij , ∂J t

∂Ωtij
and the other is of the DPP kernel about

the model parameters
∂Ωtij

∂Θ . The former remains the same for whatever parameterizations we use
to construct the DPP kernels. It is readily computable,

∂J t

∂Ωt
=
∂ log det(Ωyt−1∪yt

)

∂Ωt
− ∂ log det(Ωt + It)

∂Ωt
=M

(
(Ωyt−1∪yt

)−1
)
− (Ωt + It)

−1 (6)

where the operatorM(·) maps a square submatrix Ay to a matrix B, such that 1) B is the same
size as the orignal matrix A, and 2) the sqaure submatrix By = Ay and all the other entries of B
are zeros.

The latter,
∂Ωtij

∂Θ , depends on the particular forms of parameterizing the DPP kernel Ωt. We provide
the details with respect to the nonlinear hidden representation (cf. Section 3.3 in the main text). For
convenience, we drop the subscript t in what follows.

Recall that in the nonlinear hidden representation,

• zi = tanh(Ufi),

• Ωij = zT
i W

TWzj .

Immediately, we have ∂Ωij

W = W (ziz
T
j + zjz

T
i ), as well as

∂J
∂W

=
∑
ij

∂J
∂Ωij

∂Ωij

W
=
∑
ij

JijW (ziz
T
j + zjz

T
i ) = 2WZJZT , (7)

where Z is the column-wise concatenation of {zi}.
Moreover,

∂Ωij

∂zi
= W TWzj , Mzj , =⇒ ∂Ωij

∂zil
= M lzj , (8)

where M = W TW and M l is the l-th row of M .

Introduce hi = 2fi and the inverse logit function σ(x) = (1 + e−x)−1. Then we have

zi = tanh(Ufi) = 2σ(Uhi)− 1 (9)

∂zil
∂U l

=
∂[2σ(U lhi)− 1]

∂U l
= 2σ(U lhi)[1− σ(U lhi)]h

T
i , silh

T
i , and (10)

∂Ωij

U l
=
∂Ωij

∂zil

∂zil
∂U l

+
∂Ωij

∂zjl

∂zjl
∂U l

= M lzjsilh
T
i + M lzisjlh

T
j (11)

Overall, we have the gradients with respect to U in the following,

∂J
∂U l

=
∑
ij

∂J
∂Ωij

∂Ωij

∂U l
=
∑
ij

Jij(M
lzjsilh

T
i + M lzisjlh

T
j ) = 2M lZJDIAG(s1l, s2l, · · · )HT ,

(12)

where H is the column-wise concatenation of {hi}.

2



B Preprocessing of the video frames

We preprocess the videos from OVP and Youtube datasets as follows. First, we uniformly sample
one frame per second. We then remove the transitional frames which are close to the shot boundaries,
since these are likely dissolving, wiping, or fading frames with confusing content or little informa-
tion. Finally, we remove near-monotone frames by calculating the entropy of the color histogram
of each frame. The resulting ground set is of average size 84 and 128 for the OVP and Youtube
videos, respectively. The Kodak dataset consists of consumer videos that are mainly with a single
shot. Therefore, after uniform sampling (two frames per second considering the Kodak videos are
often short, around 1 minute), no further pruning is applied. On average 50 frames are kept for the
Kodak videos after preprocessing. For seqDPP, we further partition the preprocessed video (ground
sets) into consecutive segments, each of which has n = 10 frames (seqDPP is robust when n varies
from 10 to 20). We select the smallest n so as to have efficient inference for each segment.

3


	Learning seqDPP via MLE
	Maximum likelihood estimation (MLE)
	Optimization

	Preprocessing of the video frames

