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A Detailed Proof of Theorem 1

In the following, let ρ take range as the set of paths from the root to the leaves in the policy π. The
notation p0[y;S] means the probability that examples in S are assigned labels y, and we also use
p0[(y,y

′); (S, S′)] to refer to the probability that examples in S and S′ are assigned labels y and y′

respectively. Let 1(A) be the indicator function for the event A. In this proof, note that if we fix a
labeling y of X , the path ρ followed from the root to a leaf of the policy tree during the execution
of the policy π is unique (we only consider deterministic policies). The entropy of the distribution
p0[ · ;X] is

−
∑
y

p0[y;X] ln p0[y;X]

= −
∑
y

[
∑
ρ

1(y is consistent with ρ)p0[y;X] ln p0[y;X]]

= −
∑
ρ

[
∑
y

1(y is consistent with ρ)p0[y;X] ln p0[y;X]]

= −
∑
ρ

[
∑
y′

p0[(yρ,y
′); (xρ, X \ xρ)] ln p0[(yρ,y′); (xρ, X \ xρ)]]

= −
∑
ρ

[
∑
y′

p0[(yρ,y
′); (xρ, X \ xρ)][ln p0[yρ;xρ] + ln pρ[y

′;X \ xρ]]

= −
∑
ρ

[
∑
y′

p0[(yρ,y
′); (xρ, X \ xρ)] ln p0[yρ;xρ]]

−
∑
ρ

[
∑
y′

p0[(yρ,y
′); (xρ, X \ xρ)] ln pρ[y′;X \ xρ]]

= −
∑
ρ

p0[yρ;xρ] ln p0[yρ;xρ]−
∑
ρ

[
∑
y′

p0[yρ;xρ]pρ[y
′;X \ xρ] ln pρ[y′;X \ xρ]]

= H(π) +
∑
ρ

p0(yρ;xρ)G(ρ)

= H(π) +G(π).

Thus, the theorem holds.
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B Proof of Theorem 4

To prove Theorem 4, we first reduce probabilistic hypotheses (or mappings) to deterministic (or
noiseless) ones by expanding the hypothesis space. Then, we apply a known result on deterministic
hypotheses to obtain the result for the probabilistic hypotheses.

B.1 An Equivalence between Probabilistic and Deterministic Hypotheses

First, we establish a relationship between probabilistic and deterministic hypotheses. Recall that
h ∈ H is a probabilistic hypothesis, and P[h(x) = y|h] ∈ [0, 1] for all h when h itself is probabilis-
tic. Let T be a set of examples (without the labels) and let yT be the labeling of T . LetD = (T, yT ).
Let p0 be the prior onH. The posterior pD is obtained from p0 using Bayes rule

pD[h] = p0[h|D] =
p0[h]P[h(T ) = yT |h]

p0[h(T ) = yT ]
.

From this noisy model for probabilistic hypothesis h, we construct an equivalent noiseless and deter-
ministic one. We consider a hypothesis space H′ such that H′ = {h′y}y∈Y|X| and h′y(x) = y〈{x}〉
for all x ∈ X . In this definition, for any S ⊆ X , Y |S| is the set of all labelings of S and y〈S〉 is the
projection of y on S, i.e. the labeling of S according to y. Hence, y〈{x}〉 is the label of x according
to y.

In the above definition, H′ is indexed by the labelings of the pool X and each h′y in
H′ is a deterministic hypothesis. Further, we construct a prior p′0 over H′ such that
p′0[h

′
y] = p0[h(X) = y] =

∑
h∈H p0[h]P[h(X) = y|h]. The result is that p′0[h

′
y] is the probability

that the labeling of X is y in the probabilistic model. Given D, the posterior p′D on H′ is obtained
from p′0 by

p′D[h
′
y] =

p′0[h
′
y]1(y〈T 〉 = yT )∑

y∈Y|X| p
′
0[h
′
y]1(y〈T 〉 = yT )

,

where 1(A) is the indicator function for the event A. In essence, we have “moved” uncertainty
associated with the likelihood P[h(T ) = yT |h] into the prior p′0.

We now prove that the above two models are in fact equivalent in the sense that
pD[h(S) = yS ] = p′D[h

′(S) = yS ] for any S ⊆ X \ T and yS ∈ Y |S|. This means that both
models always give the same probability for the event h(S) = yS . To prove this result, we need the
following lemma about p0[D] = p0[h(T ) = yT ].

Lemma 1. We have p0[h(T ) = yT ] =
∑

y∈Y|X|
p′0[h

′
y]1(y〈T 〉 = yT ).

Proof. For a probabilistic hypothesis h, p0[h(T ) = yT ] =
∑
h∈H p0[h]P[h(T ) = yT |h]. Expand-

ing P[h(T ) = yT |h] by summing over all possible labelings of the remaining unlabeled examples in
X \ T , we have

p0[h(T ) = yT ] =
∑
h∈H

p0[h]
∑

y∈Y|X|
P[h(X) = y|h]1(y〈T 〉 = yT )

=
∑

y∈Y|X|
1(y〈T 〉 = yT )

∑
h∈H

p0[h]P[h(X) = y|h]

=
∑

y∈Y|X|
1(y〈T 〉 = yT ) p

′
0[h
′
y].

Using Lemma 1, we can prove the following equivalence.

Lemma 2. Let pD and p′D be the posteriors of the probabilistic and deterministic models respec-
tively after observing the labeled examples D = (T, yT ). For any S ⊆ X \ T and yS ∈ Y |S|, we
have pD[h(S) = yS ] = p′D[h

′(S) = yS ].
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Proof. For the probabilistic hypotheses, we have

pD[h(S) = yS ] =
∑
h∈H

pD[h]P[h(S) = yS |h] =
∑
h∈H

p0[h]P[h(T ) = yT |h]
p0[h(T ) = yT ]

P[h(S) = yS |h].

Expanding P[h(T ) = yT |h]P[h(S) = yS |h] by summing over all possible labelings of the remain-
ing unlabeled examples in X \ (T ∪ S), we have

pD[h(S) = yS ] =
∑
h∈H

p0[h]

p0[h(T ) = yT ]

∑
y∈Y|X|

P[h(X) = y|h]1(y〈T 〉 = yT )1(y〈S〉 = yS)

=
∑

y∈Y|X|

1(y〈T 〉 = yT )1(y〈S〉 = yS)

p0[h(T ) = yT ]

∑
h∈H

p0[h]P[h(X) = y|h]

=
∑

y∈Y|X|

1(y〈T 〉 = yT )1(y〈S〉 = yS)

p0[h(T ) = yT ]
p′0[h

′
y].

The last equality is from the definition of p′0[h
′
y]. From Lemma 1 and the definition of p′D[h

′
y]:

p′0[h
′
y]1(y〈T 〉 = yT )

p0[h(T ) = yT ]
=

p′0[h
′
y]1(y〈T 〉 = yT )∑

y∈Y|X| p
′
0[h
′
y]1(y〈T 〉 = yT )

= p′D[h
′
y].

Thus, pD[h(S) = yS ] =
∑

y∈Y|X| p
′
D[h
′
y]1(y〈S〉 = yS) = p′D[h

′(S) = yS ].

B.2 Near-optimality of the Noiseless Model

We now focus on the space H′ of deterministic hypotheses. We will make use of the notations for
the noiseless model in [1]. In this model, for a set of unlabeled examples S ⊆ X and a hypothesis
h ∈ H′, we can define the version space V (S, h) as the set of all hypotheses inH′ that are consistent
with h on S. Formally, V (S, h) = {h′ ∈ H′ : h′(S) = h(S)}. The probability of the version space
V (S, h) with respect to the prior p′0 is

p′0[V (S, h)] =
∑

h′∈V (S,h)

p′0[h
′] = Ph′∼p′0 [h

′(S) = h(S) |h].

Let f(S, h) = 1 − p′0[V (S, h)] be the version space reduction function. It is known that in the
noiseless model, the version space reduction function f(S, h) is adaptive monotone submodular [1].
Thus, the greedy adaptive policy selecting x∗ = argmaxx Eh∼p′D [f(S∪{x}, h)−f(S, h)], where S
is the previously selected set and p′D is the current posterior of the noiseless model, is near-optimal.
This property is stated in Theorem A below and is a direct consequence of Theorem 5.2 in [1].
Theorem A. For any k ≥ 1, in the noiseless model, let π be the greedy adaptive policy that
selects k examples by the criterion x∗ = argmaxx Eh∼p′D [f(S ∪ {x}, h)− f(S, h)], where S is the
previously selected set and p′D is the posterior after observing the labels of S. Let π∗ be the adaptive
policy that selects the optimal k examples in terms of the version space reduction objective. We have

Eh′y∼p′0 [f(xρπ,y , h
′
y)] > (1− 1

e
)Eh′y∼p′0 [f(xρπ∗,y , h

′
y)],

where Eh′y∼p′0 [ · ] is with respect to the distribution p′0[h
′
y] and xρπ,y is the set of unlabeled examples

selected by π (along the path ρπ,y) assuming the true labeling of X is y.

Note that once we assume the true labeling of X to be a fixed y, the policy π follows exactly one
path from the root to a leave in the policy tree of π. This path is denoted by ρπ,y in Theorem A.
Using Theorem A and Lemma 2, we can now prove Theorem 4.

B.3 Proof of Theorem 4

For any algorithm π, we have

Eh′y∼p′0 [f(xρπ,y , h
′
y)] =

∑
y

p′0[h
′
y]
(
1− p′0[V (xρπ,y , h

′
y)]
)

=
∑
y

p′0[h
′
y]
(
1− p′0[h′(xρπ,y) = y〈xρπ,y 〉]

)
.
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By definition of p′0[h
′
y], we have p′0[h

′
y] = p0[h(X) = y] = p0[y;X]. From Lemma 2,

p′0[h
′(xρπ,y) = y〈xρπ,y 〉] = p0[h(xρπ,y) = y〈xρπ,y 〉]. Thus,

Eh′y∼p′0 [f(xρπ,y , h
′
y)] =

∑
y

p0[y;X]
(
1− p0[h(xρπ,y) = y〈xρπ,y 〉]

)
=
∑
ρ

∑
y:ρπ,y=ρ

p0[y;X]
(
1− p0[h(xρπ,y) = y〈xρπ,y 〉]

)
=
∑
ρ

(1− p0[h(xρ) = yρ])
∑

y:ρπ,y=ρ

p0[y;X]

=
∑
ρ

(1− pπ0 [ρ]) pπ0 [ρ]

= V (π).

Hence, the inequality in Theorem A is equivalent to V (π) > (1− 1/e)V (π∗).

Thus, to prove Theorem 4, what remains is to prove that the example x∗ selected by πmaxGEC using
Equation (3) satisfies x∗ = argmaxx Eh∼p′D [f(S ∪ {x}, h)− f(S, h)].
In the deterministic (noiseless) case, for any x ∈ X , consider

Eh′∼p′D [p′0[V (S ∪ {x}, h′)]] =
∑

h′∈H′:p′D[h′]>0

p′D[h
′] p′0[V (S ∪ {x}, h′)]

=
∑
y∈Y

∑
h′∈H′:p′D[h′]>0∧h′(x)=y

p′D[h
′] p′0[V (S ∪ {x}, h′)].

For all h′ satisfying p′D[h
′] > 0, we have p′D[h

′] =
p′0[h

′]∑
h′:p′D[h′]>0 p

′
0[h
′]

.

Thus, if h′ also satisfies h′(x) = y, we have

p′0[V (S ∪ {x}, h′)] =
∑

h′:p′D[h′]>0∧h′(x)=y

p′0[h
′]

=
∑

h′:p′D[h′]>0∧h′(x)=y

p′D[h′] ∑
h′:p′D[h′]>0

p′0[h
′]

 .

Hence,

Eh′∼p′D [p′0[V (S ∪ {x}, h′)]]

=
∑
y∈Y

∑
h′:p′D[h′]>0∧h′(x)=y

p′D[h′] ∑
h′:p′D[h′]>0∧h′(x)=y

p′D[h′] ∑
h′:p′D[h′]>0

p′0[h
′]


=

 ∑
h′:p′D[h′]>0

p′0[h
′]

∑
y∈Y

∑
h′:p′D[h′]>0∧h′(x)=y

p′D[h′] ∑
h′:p′D[h′]>0∧h′(x)=y

p′D[h
′]


=

 ∑
h′:p′D[h′]>0

p′0[h
′]


∑
y∈Y

 ∑
h′:p′D[h′]>0∧h′(x)=y

p′D[h
′]

2


=

 ∑
h′:p′D[h′]>0

p′0[h
′]

∑
y∈Y

(p′D[h
′(x) = y])2

 .
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Thus,

argmax
x

1−
∑
y∈Y

(p′D[h
′(x) = y])2

 = argmin
x

∑
y∈Y

(p′D[h
′(x) = y])2

= argmin
x

Eh′∼p′D [p′0[V (S ∪ {x}, h′)]]

= argmax
x

Eh′∼p′D [f(S ∪ {x}, h′)]

= argmax
x

Eh′∼p′D [f(S ∪ {x}, h′)− f(S, h′)] .

Furthermore, by Lemma 2, the example x∗ selected by Equation (3) satisfies

x∗ = argmax
x

1−
∑
y∈Y

(pD[h(x) = y])2

 = argmax
x

1−
∑
y∈Y

(p′D[h
′(x) = y])2

 .

Thus, x∗ = argmaxx Eh′∼p′D [f(S ∪ {x}, h′)− f(S, h′)] and Theorem 4 holds.

C Proof of Theorem 5

We use the same notations as in Section 3.1 in the main paper. In each iteration of Algorithm 1, the
example x∗ selected for the current batch by Equation (4) satisfies

x∗ = argmax
x

εpg(S ∪ {x}) = argmax
x

{
εpg(S ∪ {x})− εpg(S)

}
,

where p is the current posterior in the probabilistic model. From Theorem 3, the batch S selected in
each iteration of Algorithm 1 is near optimal, i.e, it satisfies εpg(S) > (1− 1/e)maxS′:|S′|=s ε

p
g(S
′).

To prove the near-optimality for the whole batch algorithm, we can employ the same noiseless model
H′ as in Section B.1. From Lemma 2, εpg(S) = 1 −

∑
yS
p[yS ;S]

2 = 1 −
∑
yS
p′[yS ;S]

2, where
p′ is the corresponding posterior in the noiseless model and the summations are over all possible
labelings yS of S. The following proposition states that 1−

∑
yS
p′[yS ;S]

2 is equal to the expected
version space reduction in the noiseless model.
Proposition 1. For any S ⊆ X , in the noiseless model,

Eh′∼p′ [1− p′[V (S, h′)]] = 1−
∑
yS

p′[yS ;S]
2.

Proof. In the noiseless model, we have Eh′y∼p′ [1−p
′[V (S, h′y)]] = Ey∼p′ [1−p′[V (S, h′y)]], where

the second expectation is with respect to p′[y;X] = p′[h′y]. Furthermore,

Ey∼p′ [1− p′[V (S, h′y)]] = Ey∼p′ [1− p′[y〈S〉;S]] = EyS∼p′ [1− p′[yS ;S]],
where EyS∼p′ [ · ] is the expectation with respect to the distribution p′[ · ;S]. Hence,

Eh′y∼p′ [1− p
′[V (S, h′y)]] = EyS∼p′ [1− p′[yS ;S]] = 1−

∑
yS

p′[yS ;S]
2.

Thus, εpg(S) is equivalent to the expected version space reduction in the noiseless model with de-
terministic hypotheses. So, in the noiseless model, Algorithm 1 is equivalent to the BatchGreedy
algorithm proposed in [2]. According to the results in [2], the version space reduction after observ-
ing the labeling of each batch is monotone adaptive submodular. Furthermore, from Theorem 3,
the average version space reduction after selecting each batch is near-optimal, i.e, each iteration of
Algorithm 1 is an e/(e− 1)-approximate greedy step [1].

For any k ≥ 1, let πmaxGEC
b be the policy selecting k batches using the batch maxGEC policy and π∗b

be the batch policy selecting the optimal k batches with respect to the policy Gibbs error objective.
From Theorem 5.2 in [1],

Eh′y∼p′0 [1− p
′
0[V (x

ρπ
maxGEC
b

,y , h
′
y)]] ≥ (1− e−(e−1)/e)Eh′y∼p′0 [1− p

′
0[V (x

ρπ
∗
b
,y , h′y)]],
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where p′0 is the prior of the noiseless model and xρπb,y is the set of all examples selected by the
batch algorithm πb after k iterations (k s examples in total), assuming the true labeling of the pool
X is y.

From Section B.3, Eh′y∼p′0 [1 − p′0[V (xρπb,y , h
′
y)]] = V (πb) for any policy πb. Thus, we obtain

Theorem 5.

D Derivation for the Approximation of Gibbs Error in Bayesian CRFs

We have:

∑
~y

(pD[~y; ~x])
2 ≈

∑
~y

 1

N

N∑
j=1

Pλj [~y|~x]

2

=
1

N2

∑
~y

 N∑
j=1

exp
(∑m

i=1 λ
j
iFi(~y, ~x)

)
Zλj (~x)

2

=
1

N2

N∑
j=1

N∑
t=1

1

Zλj (~x)Zλt(~x)

∑
~y

exp

(
m∑
i=1

λjiFi(~y, ~x)

)
exp

(
m∑
i=1

λtiFi(~y, ~x)

)

=
1

N2

N∑
j=1

N∑
t=1

1

Zλj (~x)Zλt(~x)

∑
~y

exp

(
m∑
i=1

(λji + λti)Fi(~y, ~x)

)

=
1

N2

N∑
j=1

N∑
t=1

Zλj+λt(~x)

Zλj (~x)Zλt(~x)
.

Thus, εpDg (~x) = 1−
∑
~y

(pD[~y; ~x])
2 ≈ 1− 1

N2

N∑
j=1

N∑
t=1

Zλj+λt(~x)

Zλj (~x)Zλt(~x)
.

E Experimental Results for Text Classification using Bayesian Transductive
Naive Bayes with Batch Sizes s = 20, 30

Table 1: AUC of different learning algorithms with batch size s = 20.

Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.62 91.52 91.70 84.85 91.28 93.37
talk.politics.guns/talk.politics.mideast 84.23 92.52 92.56 80.61 85.89 86.93

comp.sys.mac.hardware/comp.windows.x 73.96 91.71 89.98 74.79 85.83 88.06
rec.motorcycles/rec.sport.baseball 93.65 95.95 95.93 92.04 89.25 93.11

sci.crypt/sci.electronics 61.10 86.19 85.97 61.28 82.80 86.93
sci.space/soc.religion.christian 92.44 95.77 95.77 89.67 91.04 93.48

soc.religion.christian/talk.politics.guns 91.11 94.56 94.56 85.41 90.09 93.12
Average 83.44 92.60 92.35 81.23 88.02 90.71
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Table 2: AUC of different learning algorithms with batch size s = 30.

Task TPass maxGEC LC NPass LogPass LogFisher

alt.atheism/comp.graphics 87.72 92.22 92.22 85.27 91.05 92.88
talk.politics.guns/talk.politics.mideast 85.13 92.20 92.17 81.00 85.63 86.35

comp.sys.mac.hardware/comp.windows.x 72.81 88.58 88.53 74.53 85.75 87.52
rec.motorcycles/rec.sport.baseball 94.03 96.21 96.22 92.09 89.03 92.22

sci.crypt/sci.electronics 61.71 86.12 85.25 61.62 82.74 86.31
sci.space/soc.religion.christian 91.09 95.86 95.86 88.76 90.88 92.82

soc.religion.christian/talk.politics.guns 91.00 95.54 95.54 85.19 89.65 91.89
Average 83.36 92.39 92.26 81.21 87.82 90.00
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