
A Optimizing the objective

Algorithm 1 gives a summary of our optimization procedure. We begin by sampling a set of patches
from the positive dataset, and initialize our wj vectors as the features for these patches. We initialize
bj to 0. For simplicity of notation in this section, we append bj to wj and append a −1 to each
feature vector x. We can then “mine” through a set of images for patches where w>j x > 0 for
some j. In practice, it greatly improves computational efficiency to have a separate round of mining
initially on a small set of negative images, where we only update bj to satisfy the constraint of (6).

After a round of mining on a single chunk of the data (including positives and negatives), we set the
α’s according to the procedure described in section 3. We must then optimize the following:

npos∑
i=1

αi,j max(w>j x
+
i , 0)− λ

m∑
j=1

‖[wj ]1:d‖2 s.t.
nneg∑
i=1

max(w>j x
−
i , 0) ≤ β (9)

Here, d is the data dimensionality, and [·]1:d selects the first d components of the vector such that
the bias term is excluded. Note that we can replace the = with a ≤ in the constraint because it does
not affect the solution: a decrease in b will always increase the objective, and hence the inequality
constraint will always be tight at the solution. With this modification, it is straightforward to show
that the constraint defines a convex set. At first glance, Expression (9) seems quite difficult to
optimize, as we are maximizing a non-concave function. It is unlikely that a convex relaxation will
be useful either, because different elements correspond to different local maxima of the objective.
In practice, however, we can approximately optimize (9) directly, and do so efficiently. First, note
that locally the function is a simple quadratic on an affine subspace, as long as wj remains in a
neighborhood where the sign of w>j x does not change for any x. Hence, we perform a form of
projected gradient descent; pseudocode is given in the optimize function of Algorithm 1. We
first compute the gradient of (9) and then find its projection ∇ onto the current affine subspace, i.e.,
the space defined by:

∇>
nneg∑
i=1

x−i I(w>j x
−
i > 0) = 0 (10)

where I is the indicator function. This means that small updates in the direction ∇ will not result
in constraint violations. Next, we perform a line search on w + t∇, where t is the step size that we
search over:

t∗ = arg max
t

npos∑
i=1

αi,j(wj + t∇)>x+i ∗ I(w>j x
+
i ≥ 0)− λ‖[wj + t∇]1:d‖2 (11)

This is a simple quadratic that can be solved analytically. If the maximum t∗ of the line search does
not cause w>j x to change for any x, then we accept this maximum, set wj = wj + t∗∇, and iterate.
Otherwise, we set t equal to a pre-determined fixed constant, and update. If the step causes w>j x

−
i

to change sign for some x−i , however, then we will no longer satisfy the constraint in (9). Ideally, we
would orthogonally project wj onto the constraint set, but finding the correct orthogonal projection
is computationally expensive. Hence, we approximate the projection operator with gradient descent
(with respect to wj) on the expression:∣∣∣∣∣

nneg∑
i=1

max(w>j x
−
i , 0)− β

∣∣∣∣∣ (12)

This procedure is shown in the satisfyConstrains function of Algorithm 1. This function
is piecewise linear, so gradient descent can be performed very efficiently. If the path of gradient
descent is a straight line (i.e. for no x does w>x change sign) then this will be a proper projection,
but otherwise it is an approximation. In practice we run the optimization on a fixed computational
budget for each element, since in practice we find that learning more elements is more useful than
optimizing individual elements more exactly.

10



Algorithm 1: Discriminative Mode Seeking Pseudocode
Data: I+, I−: positive and negative image sets
Initialize W = [w1, ..., wm] as random patches from positive images, with the last (bias) row 0
Initialize B = [b1, ..., bm] by running W on a subset of I− and finding b’s that satisfy 3
Set the last row of W equal to B.
Distribute I+ and I− evenly into l sets, I1, ..., IL
for l← 1 to L do

Mine for patches x in Il for which any of W>x > 0
for j ← 1 to m do

X ← the set of x for which w>j x > 0
[wj ]← optimize(wj , X)

end
end

Function optimize(w,X)
X+, X− ← Positive and negative examples from X, respectively;
while not converged and not timed out do
5←

∑
x∈X+,w>x>0 x− 2 ∗ λ‖[w]1:d‖x ; // Gradient of objective

Π←
∑

x∈X−,w>x>0 x; // Gradient of constraint

5← (Π∇>Π)/‖Π‖2; // Project 5 to be orthogonal to Π
w ← w + t ∗ 5; // take a step of size t (see text)
w ← satisfyConstraints(w,X−);

end
return w;

Function satisfyConstraints(w,X−)
while constraint is not satisfied do

Π← sum of x ∈ X− where w>x > 0; // Gradient of constraint
δ ← min δ such that the sign of (w − δ ∗Π)>x changes for some x ∈ X−;
if some δ0 < δ makes (w − δ0 ∗Π) satisfy the constraint then

δ ← δ0;
end
w ← w − δ ∗Π;

end
return w;

11


