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Abstract

In this paper, we study the following new variant of prototype learning, called
k-prototype learning problem for 3D rigid structures: Given a set of 3D rigid
structures, find a set of k rigid structures so that each of them is a prototype for
a cluster of the given rigid structures and the total cost (or dissimilarity) is mini-
mized. Prototype learning is a core problem in machine learning and has a wide
range of applications in many areas. Existing results on this problem have mainly
focused on the graph domain. In this paper, we present the first algorithm for learn-
ing multiple prototypes from 3D rigid structures. Our result is based on a number
of new insights to rigid structures alignment, clustering, and prototype reconstruc-
tion, and is practically efficient with quality guarantee. We validate our approach
using two type of data sets, random data and biological data of chromosome terri-
tories. Experiments suggest that our approach can effectively learn prototypes in
both types of data.

1 Introduction

Learning prototype from a set of given or observed objects is a core problem in machine learning,
and has numerous applications in computer vision, pattern recognition, data mining, bioinformatics,
etc. A commonly used approach for this problem is to formulate it as an optimization problem and
determine an object (called pattern or prototype) so as to maximize the total similarity (or minimize
the total difference) with the input objects. Such computed prototypes are often used to classify or
index large-size structural data so that queries can be efficiently answered by only considering those
prototypes. Other important applications of prototype include reconstructing object from partially
observed snapshots and identifying common (or hidden) pattern from a set of data items.

In this paper, we study a new prototype learning problem called k-prototype learning for 3D rigid
structures, where a 3D rigid structure is a set of points in R3 whose pairwise distances remain
invariant under rigid transformation. Since our problem needs to determine k prototypes, it thus can
be viewed as two tightly coupled problems, clustering rigid structures and prototype reconstruction
for each cluster.

Our problem is motivated by an important application in biology for determining the spatial organi-
zation pattern of chromosome territories from a population of cells. Recent research in biology [3]
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has suggested that configuration of chromosome territories could significantly influence the cell
molecular processes, and are closely related to cancer-promoting chromosome translocations. Thus,
finding the spatial organization pattern of chromosome territories is a key step to understanding the
cell molecular processes [6,7,10,25]. Since the set of observed chromosome territories in each cell
can be represented as a 3D rigid structure, the problem can thus be formulated as a k-prototype
learning problem for a set of 3D rigid structures.

Related work: Prototype learning has a long and rich history. Most of the research has focused on
finding prototype in the graph domain. Jiang et al. [18] introduced the median graph concept, which
can be viewed as the prototype of a set of input graphs, and presented a genetic approach to solve
it. Later, Ferrer et al. [14] proposed another efficient method for median graph. Their idea is to first
embed the graphs into some metric space, and obtain the median using a recursive procedure. In the
geometric domain, quite a number of results have concentrated on finding prototypes from a set of
2D shapes [11,20,21,22]. A commonly used strategy in these methods is to first represent each shape
as a graph abstraction and then compute the median of the graph abstractions.

Our prototype learning problem is clearly related to the challenging 3D rigid structure clustering
and alignment problem [1,2,4,5,13,17]. Due to its complex nature, most of the existing approaches
are heuristic algorithms and thus cannot guarantee the quality of solution. There are also some
theoretical results [13] on this problem, but none of them is practical due to their high complexities.

Our contributions and main ideas: 1 Our main objective on this problem is to obtain a practical
solution which has guarantee on the quality of its solution. For this purpose, we first give a formal
definition of the problem and then consider two cases of the problem, 1-prototype learning and
k-prototype learning.

For 1-prototype learning, we first present a practical algorithm for the alignment problem. Our result
is based on a multi-level net technique which finds the proper Euler angles for the rigid transforma-
tion. With this alignment algorithm, we can then reduce the prototype learning problem to a new
problem called chromatic clustering (see Figure 1(b) and 1(c )), and present two approximate solu-
tions for it. Finally, a local improvement algorithm is introduced to iteratively improve the quality
of the obtained prototype.

For k-prototype learning, a key challenge is how to avoid the high complexity associated with clus-
tering 3D rigid structures. Our idea is to map each rigid structure to a point in some metric space
and build a correlation graph to capture their pairwise similarity. We show that the correlation graph
is metric; this means that we can reduce the rigid structure clustering problem to a metric k-median
clustering problem on the correlation graph. Once obtaining the clustering, we can then use the
1-prototype learning algorithm on each cluster to generate the desired prototype. We also provide
techniques to deal with several practical issues, such as the unequal sizes of rigid structures and the
weaker metric property caused by imperfect alignment computation for the correlation graph.

We validate our algorithms by using two types of datasets. The first is randomly generated datasets
and the second is a real biological dataset of chromosome territories. Experiments suggest that our
approach can effectively reduce the cost in prototype learning.

2 Preliminaries
In this section, we introduce several definitions which will be used throughout this paper.

Definition 1 (m-Rigid Structure). Let P = {p1, · · · , pm} be a set of m points in 3D space. P is
an m-rigid structure if the distance between any pair of vertices pi and pj in P remains the same
under any rigid transformation, including translation, rotation, reflection and their combinations,
on P . For any rigid transformation T , the image of P under T is denoted as T (P ).

Definition 2 (Bipartite Matching). Let S1 and S2 be two point-sets in 3D space with |S1| = |S2|,
and G = (U, V,E) be their induced complete bipartite graph, where each vertex in U (or V )
corresponds to a unique point in S1 (or S2), and each edge in E is associated with a weight equal to
the Euclidean distance of the corresponding two points. The bipartite matching of S1 and S2, is the
one-to-one match from S1 to S2 with the minimum total matching weight (denoted as Cost(S1, S2))
in G (see Figure 1(a)).

1 Due to space limit, we put some details and proofs in our full version paper.



Note that the bipartite matching can be computed using some existing algorithms, such as the Hun-
garian algorithm [24].
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Fig. 1: (a) An example of bipartite matching (red edges); (b) 4 point-sets with each in a different
color; (c ) chromatic clustering of point-sets in (b). The three clusters form a chromatic partition.

Definition 3 (Alignment). Let P and Q be two m-rigid structures in 3D space with points
{p1, · · · , pm} and {q1, · · · , qm} respectively. Their alignment is to find a rigid transformation T
for P so as to minimize the cost of the bipartite matching between T (P ) and Q. The minimum
(alignment) cost, minT Cost(T (P ), Q), is denoted by A(P,Q).

Definition 4 (k-Prototype Learning). Let P1, · · ·Pn be n different m-rigid structures in 3D, and
k be a positive integer. k-prototype learning is to determine k m-rigid structures, Q1, · · · , Qk, so
as to minimize the following objective function

n∑
i=1

min
1≤j≤k

A(Pi, Qj). (1)

From Definition 4, we know that the k-prototype learning problem can be viewed as first clustering
the rigid structures into k clusters and then build a prototype for each cluster so as to minimize the
total alignment cost.

3 1-Prototype learning

In this section, we consider the 1-prototype learning problem. We first overview the main steps of
our algorithm and then present the details in each subsection. Our algorithm is an iterative procedure.
In each iteration, it constructs a new prototype using the one from previous iteration, and reduces
the objective value. A final prototype is obtained once the objective value becomes stable.

Algorithm: 1-prototype learning

1. Randomly select a rigid structure from the input {P1, · · · , Pn} as the initial prototype Q.
2. Repeatedly perform the following steps until the objective value becomes stable.

(a) For each Pi, find the rigid transformation (approximately) realizing A(Pi, Q).
(b) Based on the new configuration (i.e., after the corresponding rigid transformation) of

each Pi, construct an updated prototype Q which minimizes the objective value.

Since both of 2(a) and 2(b) reduce the cost, the objective value would always decrease. In the next
two subsections, we discuss our ideas for Step 2(a) (alignment) and Step 2(b) (prototype reconstruc-
tion), respectively. Note that the above algorithm is different with generalized procrustes analysis
(GPA) [15], since the points from each Pi are not required to be pre-labeled in our algorithm, while
for GPA every input point should have an individual index. This is also the main difficulty for this
prototype learning problem.

3.1 Alignment

To determine the alignment of two rigid structures, one way is to use our recent theoretical algorithm
for point-set matching [13]. For any pair of point-sets P and Q in Rd space with m points each,
our algorithm outputs, in O( 1

εd2
m2d+2 log2d(m)) time, a rigid transformation T for P so that the

bipartite matching cost between T (P ) and Q is a (1 + ε)-approximation of the optimal alignment
cost between P and Q, where ε > 0 is a small constant. Applying this algorithm to our 3D rigid
structures, the running time becomes O( 1

ε9m
8 log6(m)). The algorithm is based on following key



idea. First, we show that there exist 3 “critical” points, called base, in each of P and Q, which
control the matching cost. Although the base cannot be explicitly identified, it is possible to obtain
it implicitly by considering all 3-tuples of the points in P and Q. The algorithm then builds an ε-net
around each base point to determine an approximate rigid transformation. Clearly, this theoretical
algorithm is efficient only when m is small. For large m, we use the following relaxation.

First, we change the edge weight in Definition 2 from Euclidean distance to squared Euclidean
distance. The following lemma shows some nice property of such a change.

Lemma 1. Let P = {p1, · · · , pm} and Q = {q1, · · · , qm} be two m-rigid structures in 3D space,
and T be the rigid transformation realizing the minimum bipartite matching cost (where the edge
weight is replaced by the squared Euclidean distance of the corresponding points in Definition 2).
Then, the mean points of T (P ) and Q coincide with each other.

Lemma 1 tells us that to align two rigid structures, we can first translate them to share one common
mean point, and then consider only the rotation in 3D space. (Note that we can ignore reflection in
the rigid transformation, as it can be captured by computing the alignment twice, one for the original
rigid structure, and the other for its mirror image.) Using Euler angles and 3D rotation matrix, we
can easily have the following fact.
Fact 1 Give any rotation matrix A in 3D, there are 3 angles φ, θ, ψ ∈ (−π, π], and three matrices,
A1, A2 and A3 such that A = A1 ∗A2 ∗A3, where

A1 =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 , A2 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 and A3 =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 .
From the above Fact 1, we know that the main issue for aligning two rigid structures P and Q is
to find three proper angles φ, θ, ψ to minimize the cost. Clearly, this is a non-convex optimization
problem. Thus, we cannot use existing convex optimization methods to obtain an efficient solution.
One way to solve this problem is to build a dense enough ε-net (or grid) in the domain [−π, π]3 of
φ, θ, ψ, and evaluate each grid point to find the best possible solution. Clearly, this will be rather
inefficient when the number of grid points is huge. To obtain a practically efficient solution, our
strategy is to generalize the idea of building a dense net to recursively building a sparse net, which is
called multi-level net. At each level, we partition the current searching domain into a set of smaller
regions, which can be viewed as a sparse net, and evaluate some representative point in each of the
smaller region to determine its likelihood of containing the optimal point. The recursion will only
continue at the most likely N smaller regions (for some well selected parameter N ≥ 1 in practice).
In this way, we can save a great deal of time for searching the optimal point in those unlikely regions.
Below is the main steps of our approach.

1. Let S be the current searching space, which is initialized as [−π, π]3, and t,N be two input
parameters. Recursively perform the following steps until the best objective value in two
consecutive recursive steps roughly remains the same.
(a) Uniformly partition S into t disjoint sub-regions S = S1 ∪ · · · ∪ St.
(b) Randomly select a representative point si ∈ Si, and compute the alignment cost under

the rotational matrix corresponding to si via Hungarian algorithm.
(c) Choose the top N points with the minimum objective values from {s1, · · · , st}. Let
{st1 , · · · , stN } be the chosen points.

(d) Update S =
⋃N
i=1 Sti .

2. Output the rotation which yields the minimum objective value.

Why not use other alignment algorithms? There are several existing alignment algorithms for 3D
rigid structures, and each suffers from its own limitations. For example, the Iterative Closest Point
algorithm [4] is one of the most popular algorithms for alignment. However, it does not generate the
one-to-one match between the rigid structures. Instead, every point in one rigid structure is matched
to its nearest neighbor in the other rigid structure. This means that some point could match multiple
points in the other rigid structure. Obviously, this type of matching cannot meet our requirement,
especially in the biological application where chromosome territory is expected to match only one



chromosome. Similar problem also occurs in some other alignment algorithms [1,5,17]. Arun et
al. [2] presented an algebraic approach to find the best alignment between two 3D point-sets. Al-
though their solution is a one-to-one match, it requires that the correspondence between the two
point-sets is known in advance, which is certainly not the case in our model. Branch-and-bound
(BB) approach [16] needs to grow a searching tree in the parameter space, and for each node it re-
quires estimating the upper and lower bounds of the objective value in the corresponding sub-region.
But for our alignment problem, it is challenging to obtain such accurate estimations.

3.2 Prototype reconstruction

In this section, we discuss how to build a prototype from a set of 3D rigid structures. We first fix
the position of each Pi, and then construct a new prototype Q to minimize the objective function in
Definition 4. Our main idea is to introduce a new type of clustering problem called Chromatic Clus-
tering which was firstly introduced by Ding and Xu [12], and reduce our prototype reconstruction
problem to it. We start with two definitions.
Definition 5 (Chromatic Partition). Let G = {G1, · · · , Gn} be a set of n point-sets with each Gi
consisting of m points in the space. A chromatic partition of G is a partition of the n×m points into
m sets, U1, · · · , Um, such that each Uj contains exactly one point from each Gi.
Definition 6 (Chromatic Clustering). Let G = {G1, · · · , Gn} be a set of n point-sets with each
Gi consisting of m points in the space. The chromatic clustering of G is to find m median points
{q1, · · · , qm} in the space and a chromatic partition U1, · · · , Um of G such that

∑m
j=1

∑
p∈Uj

||p−
qj || is minimized, where || · || denotes the Euclidean distance.

From Definition 6, we know that chromatic clustering is quite similar to k-median clustering in
Euclidean space; the only difference is that it has the chromatic requirement, i.e., the obtained k
clusters should be a chromatic partition (see Figure 1(b) and 1(c )).

Reduction to chromatic clustering. Since the position of each Pi is fixed (note that with a slight
abuse of notation, we still usePi to denote its image T (Pi) under the rigid transformation T obtained
in Section 3.1), we can view each Pi as a point-set Gi, and the new prototype Q as the k median
points {q1, · · · , qm} in Definition 6. Further, if a point p ∈ Pi is matched to qj , then it is part of Uj .
Since we compute the one-to-one match, Uj contains exactly one point from each Pi, which implies
that {U1, · · · , Um} is a chromatic partition on G. Let pij be the one in Pi ∩ Uj . Then the objective
function in Definition 4 becomes

n∑
i=1

m∑
j=1

||pij − qj || =
m∑

j=1

n∑
i=1

||pij − qj || =
m∑

j=1

∑
p∈Uj

||p− qj ||, (2)

which is exactly the objective function in Definition 6. Thus, we have the following theorem.

Theorem 1. Step 2(b) in the algorithm of 1-prototype learning is equivalent to solving a chromatic
clustering problem.

Next, we give two constant approximation algorithms for the chromatic clustering problem; one is
randomized, and the other is deterministic.
Theorem 2. Let G = {G1, · · · , Gn} be an instance of chromatic clustering with eachGi consisting
of m points in the space.

1. If Gl is randomly selected from G as the m median points, then with probability at least
1/2, Gl yields a 3-approximation for chromatic clustering on G.

2. If enumerating all point-sets in G as themmedian points, there exists oneGi0 , which yields
a 2-approximation for chromatic clustering on G.

Proof. We consider the randomized algorithm first. Let {q1, · · · , qm} be the m median points in
the optimal solution, and U1, · · · , Um be the corresponding chromatic partition. Let pij = Gi ∩ Uj .
Since the objective value is the sum of the total cost from all point-sets {G1, · · · , Gn}, by Markov
inequality, the contribution fromGl should be no more than 2 times the average cost with probability
at least 1/2, i.e.,

m∑
j=1

||plj − qj || ≤ 2
1

n

n∑
i=1

m∑
j=1

||pij − qj ||. (3)



From (3) and triangle inequality, if replacing each qj by plj , the objective value becomes
n∑

i=1

m∑
j=1

||pij − plj || ≤
n∑

i=1

m∑
j=1

(||pij − qj ||+ ||qj − plj ||) (4)

=

n∑
i=1

m∑
j=1

||pij − qj ||+ n×
m∑

j=1

||qj − plj || ≤ 3

n∑
i=1

m∑
j=1

||pij − qj ||, (5)

where (4) follows from triangle inequality, and (5) follows from (3). Thus, the first part of the
theorem is true. The analysis for the deterministic algorithm is similar. The only difference is that
there must exist one point-set Gi0 whose contribution to the total cost is no more than the average
cost. Thus the constant in the right-hand side of (3) becomes 1 rather than 2, and consequently the
final approximation ratio in (5) turns to 2. Note that the desired Gi0 can be found by enumerating
all point-sets, and selecting the one having the smallest objective value. ut
Remark 1. Comparing the two approximation algorithms, we can see a tradeoff between the approx-
imation ratio and the running time. The randomized algorithm has a larger approximation ratio, but a
linear dependence on n in its running time. The deterministic algorithm has a smaller approximation
ratio, but a quadratic dependence on n.

Local improvement. After finding a constant approximation, it is necessary to conduct some local
improvement. An easy-to-implement method is the follows. Let Q̃ = {q̃1, · · · , q̃m} be the initial
constant approximation solution. Compute the bipartite matching between Q̃ and each Gi. This
yields a chromatic partition {Ũ1, · · · , Ũm} on G, where each Ũj consists of all the points matched
to q̃j . By Definition 6, we know that qj should be the geometric median point of Uj in order to make
the objective value as low as possible. Thus, we can use the well known Weiszfelds algorithm [23] to
compute the geometric median point for each Ũj , and update q̃j to be the corresponding geometric
median point. We can iteratively perform the following two steps, (1) computing the chromatic
partition and (2) generating the geometric median points, until the objective value becomes stable.

4 k-Prototype learning

In this section, we generalize the ideas for 1-prototype learning to k-prototype learning for some
k > 1. As mentioned in Section 1, our idea is to build a correlation graph. We first introduce the
following lemma.

Lemma 2. The alignment cost in Definition 3 satisfies the triangle inequality.

Correlation graph. We denote the correlation graph on the given m-rigid structures {P1, · · · , Pn}
as Γ , which contains n vertices {v1, · · · , vn}. Each vi represents the rigid structure Pi, and the edge
connecting vi and vj has the weight equal toA(Pi, Pj). From Lemma 2, we know that Γ is a metric
graph. Thus, we have the following key theorem.

Theorem 3. Any λ-approximation solution for metric k-median clustering on Γ yields a 2λ-
approximation solution for the k-prototype learning problem on {P1, · · · , Pn}, where λ ≥ 1.

Proof. Let {Q1, · · · , Qk} be the k rigid structures yielded in an optimal solution of the k-prototype
learning, and {C1, · · · , Ck} be the corresponding k optimal clusters. For each 1 ≤ j ≤ k, the cost of
Cj is

∑
Pi∈Cj

A(Pi, Qj). There exists one rigid structure Pij ∈ Cj such that

A(Pij , Qj) ≤
1

|Cj |
∑

Pi∈Cj

A(Pi, Qj). (6)

If we replace Qj by Pij , the cost of Cj becomes∑
Pi∈Cj

A(Pi, Pij ) ≤
∑

Pi∈Cj

(A(Pi, Qj) +A(Qj , Pij )) ≤ 2
∑

Pi∈Cj

A(Pi, Qj), (7)

where the first inequality follows from the triangle inequality (by Lemma 2), and the second in-
equality follows from (6). Then, (7) directly implies that

k∑
j=1

∑
Pi∈Cj

A(Pi, Pij ) ≤ 2

k∑
j=1

∑
Pi∈Cj

A(Pi, Qj), (8)



(8) is similar to the deterministic solution in Theorem 2; the only difference is that the point-sets
here need to be aligned through rigid transformation, while in Theorem 2, the point-sets are fixed.

Now, consider the correlation graph Γ . If we select {vi1 , · · · , vik} as the k medians, the objective
value of the k-median clustering is the same as the left-hand side of (8). Let {vi′1 , · · · , vi′k} be the k
median vertices of the λ-approximation solution on Γ . Then, we have

n∑
i=1

min
1≤j≤k

A(Pi, Pi′j
) ≤ λ

n∑
i=1

min
1≤j≤k

A(Pi, Pij ) ≤ 2λ

k∑
j=1

∑
Pi∈Cj

A(Pi, Qj), (9)

where the second inequality follows from (8). Thus the theorem is true. ut
Based on Theorem 3, we have the following algorithm for k-prototype learning.

Algorithm: k-prototype learning

1. Build the correlation graph Γ , and run the algorithm proposed in [9] to obtain a
6 2
3 -approximation for the metric k-median clustering on Γ , and consequently a 13 1

3 -
approximation for k-prototype learning.

2. For each obtained cluster, run the 1-prototype learning algorithm presented in Section 3.

Remark 2. Note that there are several algorithms for metric k-median clustering with better approx-
imation ratio (than 6 2

3 ), such as the ones in [19]. But they are all theoretical algorithms and have
difficult to be applied in practice. We choose the linear programming rounding based algorithm by
Charikar et al. [9] partially due to its simplicity to be implemented for practical purpose.

The exact correlation graph is not available. From the methods presented in Section 3.1, we
know that only approximate alignments can be obtained. This means that the exact correlation graph
Γ is not available. As a consequence, the approximate correlation graph may not be metric (due
to possible violation of the triangle inequality). This seems to cause the above algorithm to yield
solution with no quality guarantee. Fortunately, as pointed in [9], the LP-rounding method still
yields a provably good approximation solution, as long as a weaker version of the triangle inequality
is satisfied (i.e., for any three vertices va, vb and vc in Γ , their edge weights satisfy the inequality
w(vavb) ≤ δ(w(vavc) + w(vbvc)) for some constant δ > 1, where w(vavb) is the weight of the
edge connecting va and vb).

Theorem 4. For a given set of rigid structures, if a (1+ ε)-approximation of the alignment between
any pair of rigid structures can be computed, then the algorithm for metric k-median clustering
in [9] yields a 2( 233 (1 + ε)− 1)(1 + ε)-approximation for the k-prototype learning problem.

What if the rigid structures have unequal sizes? In some scenario, the rigid structures may not
have the same number of points, and consequently the one-to-one match between rigid structures in
Definition 2 is not available. To resolve this issue, we can use the weight normalization strategy and
adopt Earth Mover’s Distance (EMD) [8]. Generally speaking, for any rigid structure Pi containing
m′ points for some m′ 6= m, we assign each point with a weight equal to m

m′ , and compute the
alignment cost based on EMD, rather than the bipartite matching cost. With this modification, both
the 1- and k-prototype learning algorithms still work.

5 Exepriments

To evaluate the performance of our proposed approach, we implement our algorithms on a Linux
workstation (with 2.4GHz CPU and 4GB memory). We consider two types of data, the sets of
randomly generated 3D rigid structures and a real biological data set which is used to determine the
organization pattern (among a population of cells) of chromosome territories inside the cell nucleus.

Random data. For random data, we test a number of data sets with different size. For each data
set, we first randomly generate k different rigid structures, {Q1, · · · , Qk}. Then around each point
of Qj , j = 1, · · · , k, we generate a set of points following Gaussian distribution, with variance
δ. We randomly select one point from each of the m Gaussian distributions (around the m points
of Qj) to form an m-rigid structure, and transform it by a random rigid transformation. Thus, we
build a cluster (denoted by Cj) of m-rigid structures around each Qj , and Qj can be viewed as its
prototype (i.e., the ground truth).

⋃k
j=1 Cj forms an instance of the k-prototype learning problem.



We run the algorithm of k-prototype learning in Section 4, and denote the resulting k rigid structures
by {Q′

1, · · · , Q′
k}. To evaluate the performance, we compute the following two values. Firstly, we

compute the bipartite matching cost, t1, between {Q1, · · · , Qk} and {Q′
1, · · · , Q′

k}, i.e., build the
bipartite graph between {Q1, · · · , Qk} and {Q′

1, · · · , Q′
k}, and for each pair Qi and Q′

j , connect
an edge with a weight equal to the alignment cost A(Qi, Q′

j). Secondly, we compute the average
alignment cost (denoted by cj) between the rigid structures in Cj andQj for 1 ≤ j ≤ k, and compute
the sum t2 =

∑k
j=1 cj . Finally, we use the ratio t1/t2 to show the performance. The ratio indicates

how much cost (i.e., t1) has been reduced by our prototype learning algorithm, comparing to the
cost (i.e., t2) of the input rigid structures. We choose k = 1, 2, 3, 4, 5; for each k, vary m from 10
to 20, and the size of each Cj from 100 to 300. Also, for each Cj , we vary the Gaussian variance
from 10% to 30% of the average spread norm of Qj , where if we assume Qj contains m points
{q1, · · · , qm}, and o = 1

m

∑m
l=1 ql, then the average spread norm is defined as 1

m

∑m
l=1 ||ql − o||.

For each k, we generate 10 datasets, and plot the average experimental results in Figure 2(a). The
experiment suggests that our generated prototypes are much closer (at least 40% for each k) to the
ground truth than the input rigid structures.
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Fig. 2: (a) Experimental results for random data; (b)A 2D slice of the 3D microscopic image of 8
pairs of chromosome territories; (c ) Average alignment cost for biological data set.

Biological data. For real data, we use a biological data set consisting of 91 microscopic nucleus
images of WI-38 lung fibroblasts cells. Each image includes 8 pairs of chromosome territories (see
Fig. 2(b)). The objective of this experiment is to determine whether there exists any spatial pattern
among the population of cells governing the organization of the chromosomes inside the 3D cell
nucleus so as to provide new evidence to resolve a longstanding conjecture in cell biology which says
that each chromosome territory has a preferable position inside the cell nucleus. For this purpose,
we calculate the gravity center of each chromosome territory and use it as the representative of
the chromosome. In this way, each cell is converted into a rigid structure of 16 points. Since there
is no ground truth for the biological data, we directly use the average alignment cost between our
generated solutions and the input rigid structures to evaluate the performance. We run our algorithms
for k = 1, 2, 3, 4, and plot the cost in Fig. 2(c ). Our preliminary experiments indicate that there is a
significant reduction on the average cost from k = 1 to k = 2, and the cost does not change too much
for k = 2, 3, 4. We also analyze how chromosomes change their clusters when increase k from 2 to
4. We denote the clusters for k = 2 as {C2

1 , C
2
2}, and the clusters for k = 4 as {C4

1 , C
4
2 , C

4
3 , C

4
4}.

For each 1 ≤ j ≤ 4, we use
|C4

j∩C
2
1 |

|C2
1 |

and
|C4

j∩C
2
2 |

|C2
2 |

to represent the preservation of C4
j from C2

1 and
C2

2 respectively. The following table 1 shows the preservation (denoted by Pre) with C2
1 and C2

2 . It
shows that C4

4 preserved C2
2 well, meanwhile, the union of {C4

1 , C
4
2 , C

4
3} preserved C2

1 well. This
seems to suggest that all the cells are aggregated around two clusters.

Table 1: The preservations
Pre C4

1 C4
2 C4

3 C4
4

C2
1 26.53% 18.37% 46.94% 8.16%

C2
2 0% 0% 5.56% 94.44%

6 Conclusion
In this paper, we study a new prototype learning problem, called k-prototype learning, for 3D rigid
structures, and present a practical optimization model for it. As the base case, we consider the 1-
prototype learning problem, and reduce it to the chromatic clustering problem. Then we extend
1-prototype learning algorithm to k-prototype learning to achieve a quality guaranteed approximate
solution. Finally, we implement our algorithms on both random and biological data sets. Experi-
ments suggest that our algorithms can effectively learn prototypes from both types of data.
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