Supplementary Materials for:

Generalized Method-of-Moments for
Rank Aggregation

A proof

Theorem 1. For any breaking G and any data D, there exists 7 € {2 such that Pg(D) -7 = 0.

Proof. For any G and D, (I + Pg(D)/m)T is a row stochastic matrix, which means that the
corresponding Markov chain has a stationary distribution 7. It follows that Ps(D) - ¥ = 0 and
v e Q. O

Theorem 2. Among the following three conditions, 1 and 2 are equivalent for any breaking G and
any data D. Moreover, conditions 1 and 2 are equivalent to condition 3 if and only if G is connected.

1. (I + Pg(D)/m)T is irreducible.
2. |GMMg(D)| = 1.
3. GMM¢(D) # 0.

Proof. We first prove that 1 and 2 are equivalent.

1 = 2: By Proposition 1.14 in [10], we have that if (I + Pg(D)/m)7 is irreducible, then (I +
Pg(D)/m)T has a unique positive stationary distribution, which means that (GMMg (D)| = 1.

2 = 1: suppose on the contrary that (I + Pg(D)/m)T is not irreducible. There are two cases.

Case 1: there exists an inessential state. Then, for any stationary distribution, the inessential state
must have 0 probability (Proposition 1.25 in [10]). This means that GMM¢ (D) = ().

Case 2: there is no inessential state. In this case all essential communicating classes do not commu-
nicate. Therefore, any convex combination of their respective stationary distributions is an overall
stationary distribution. This means that (GMM¢(D)| = cc.

We next prove that 1 and 3 are equivalent for any D if and only if G is connected. Notice that the
only possibility for 1 and 3 to be not equivalent is Case 2 above.

The “if” part: if G is connected, then Case 2 is not possible.

The “only if” part: if G is not connected, without loss of generality let {1,...,m} = M; UM, such
that My N Me = 0. Wlo.g. let My = {1,...,m'}and My = {m' +1,...,m}. Let D = {[R; >
Rs]}, where R; is any ranking over {ci,..., ¢y} and Ro is any ranking over {¢,/11,...,Cm}-
Therefore, there is a positive stationary probability for M; and a positive stationary probability for
Ms. Any convex combination of these two stationary probabilities is a positive stationary probability
for Po(D). O

Theorem 3. A breaking G is consistent if and only if Eq5-[g(d,7*)] = 0, which is equivalent to
the following equalities:
Pr(c; = cjl{ci,c;} € G) Vi

for any i # j R
or any 2 7& 7 Pr(Cj - Ci|{civcj} S G) Vi v

Proof. We first prove the following lemma.

Lemma 1. For any breaking G, ¥* € Q, Eg)5-[P(d)] - 7 = 0 has a unique solution in Q.

Proof sketch: It is not hard to verify that I + E5-[P(d)]/m is a column stochastic matrix whose
entries are all strictly positive. So the stationary distribution 7’ of the Markov Chain with transition
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matrix (I + Egz-[P(d)]/m)” is unique and strictly positive. It follows that ¥ € €2 is the solution
to EdW" [P(d)] . ’? =0. O
For the “if” part, we apply Theorem 2.2 in [7]. By Lemma 1 and the premise of the theorem,

Condition 1 is satisfied. To show that GG is consistent, it suffice to prove that GMM satisfies
Assumption 2.1 to 2.6 and the three premises in the statement of Theorem 2.2 in [7]. We slightly

abuse the notation by adding one component to g¢: the (m + 1)th component is Tx~—1.
Assumption 2.1: D is stationary and ergodic. This holds because in PL, data in D are generated
iid.

Assumption 2.2: €2 is a separable metric space. Since R™ is separable and €2 is an open subset of
R™, €2 is also separable.

Assumption 2.3: gg(+,7) is Borel measurable for each ¥ € Q and g¢(d, ) is continuous on €2 for
each d. Since the domain of g¢(-,¥) discrete, g (+,) is continues, which means that g (-,7) is
Borel measurable. We note that g (d, -) is linear, which means that it is continuous.

Assumption 2.4: Ey 5+ [gc(d,¥)] exists and is finite for all ¥ € €, and Ey5-[gg(d,7*)] = 0. The
former is because Egj5+[g9c(d, 7)] is linear in ¥ and €2 is bounded. The latter is the assumption.

Assumption 2.5: The sequence WV converges almost surely to a positive semi-definite matrix. This
holds since W,, = I for all ¢.

Assumption 2.6 is satisfied by the definition of GMMg.

Premise (1): Since R™*! is locally compact and 2 is an open subset of R™+!,  is also locally
compact.

E[Pg(d
Premise (2) and (3). Since { [ %( )] } is full rank, following the discussion after Theorem 2.2

in [7], we have that (2) and (3) must be satisfied as well.

For the “only if”” part, we need to show that there exists a neighborhood A/ of 4* such that for any
5 € N, there exists n* such that for any n > n*, go(D,7) # 0 with high probability. We note
that as n — oo, Pg(D) — Epg(q), which means that Pg(D) - ¥ # 0 with high probability for a
sufficiently small neighborhood of 7* and sufficient large dataset.

We next show that Eg5-[g(d,7*)] = 0 is equivalent to Equation (3). By Lemma 1, ¥* is the only
nonzero solution to Fg5+[g(d, )] = 0. Also ¥* is the only solution to Equation (3). This means
that they are equivalent. O

Theorem 4. Let G1, G, be a pair of consistent breakings.

1. If Gy NGy = 0, then G; U G4, is also consistent.
2. If G; € Ga, then G2 \ G is also consistent.

Proof. We first prove 1. By Theorem 3, for ¢ = j we have:

PI‘(CZ‘ - Cj|{Ci,Cj} c Gl) Y
Pr(c; > cil{ci,c;} €G1) v
Pr(c; = cjl{ci,c;} € G2) v
PI‘(Cj - ci|{ci,cj} S GQ) N %

Then we have:
PI‘(Ci - Cj|{Ci,Cj} S Gl UGQ) _ PI‘(Ci - cj|{ci,cj} S Gl)PI‘(Gl) -‘rPI"(Ci - cj\{ci,cj} S GQ) PI"(GQ) . l
Pr(c; > cil{ci,c;} € G1 UGa) B Pr(c; > ¢;l{ci, ¢;} € G1) Pr(G1) + Pr(c; > cil{ci,¢;} € G2) Pr(Ga) o V;

Where Pr(G) = Pr({¢;, ¢;} € G) is the probability that {¢;, ¢;} € G. This shows the consistency
of G1 U G5. The proof of 2 is similar. O

Proposition 1. For any k > 1, the position-k breaking G*% is consistent.
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Proof. Define T}, the set of top k alternatives in a ranking. And 7 (k) is the kth ranked alternative.
Then we have:

Pr(c; = cjl{ci,c;} € Gx)  Pr(m(k) = cilci,cj & Th1) >or, , Pr(m(k) = ¢i|To—1) Pr(Th-1lei, ¢j & Ti—1)

Pr(cj - Ci|{Ci,Cj} € Gk) - PI’(’/T(I{) = Cj|Ci7Cj ¢ kal) - ZTk71 P]."(ﬂ'(k) = Cj|Tk,1) PI'(T]C,1|CZ',C]' g kal)

And since we are conditioning on 7}, and we know ¢;, ¢; & Tj_1 , using Luce’s IIA, we have:

Vi

Pr(w(k) = Ci|Tk_1) o ZzeTk_l Y . l

Pl“(ﬂ'(k’) = lekal) ﬁ ’)/j
Hence:
Pr(c; = cil{ci,ci} €Gr) _
Pr(c; > c;l{ci,c;} € Gi)
and this concludes the proof. O

Theorem 5. Adjacent breaking G 4 is consistent if and only if all components in ¥* are the same.

Proof. 1Tt is not hard to check that if all the ~;’s are the same, then adjacent breaking is consistent.
We next show the “only if” part.

Suppose 7v; > ;. We know that:
Pr(c; = ¢;) Vi

Pr(c; > ¢)
We next show that for the adjacent breaking we have:

Pr(e; = ¢jl{ci,c;} € Ga) L
Pr(c; = cil{ci,cj} € Ga) =

“4)

To show the above inequality we will condition on the appearance of ¢;, c; as the kth pair (G 4,).

Pr(c; = ¢;|{ci,cj} € Ga) _ Yo Pr(ci = cjl{ci,cj} € Ga,)Pr(Ga,)
Pr(c; = cil{ci,cj} € Ga) Y, Pr(c; = cil{ci,¢j} € Ga,)Pr(Ga,)

It suffices to show:
Pr(c; = ¢il{ci,cj} €Gay) _ v
Pr(c; = cil{ci,cit € Gay)) — v

Again we can condition on the T}, _1, the set of alternatives ranked 1 to k& — 1.

Pr(c; = cjl{ci,cj} € Ga,) 2o, Prlci = ¢il{ci,¢;} € Gy, Tion) Pr(Ti1)
PI‘(Cj - ci|{ci,cj} € GAk) ZTk_1 PT(Cj - Ci|{Ci,Cj} S GAkakal) PI‘(kal)

Define, vy =1 —v; — v — EleTk_l 71, then using the assumption ; < «y;, we have:

Pr(c; = cjl{ci,c;} € Ga,, Tho1)  yr+7v _ i
= > —
Pr(c; = cil{ci,ci} € Gay, Tho1) v+~ v

This shows that inequality (4) holds. [
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B More Experimental Results
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Figure 6: The running time for MM (10 iterations), GMM (full breaking), and GMM (adjacent breaking).
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