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Theorem 1. For any breaking G and any data D, there exists ~γ ∈ Ω̄ such that PG(D) · ~γ = 0.

Proof. For any G and D, (I + PG(D)/m)T is a row stochastic matrix, which means that the
corresponding Markov chain has a stationary distribution ~γ. It follows that PG(D) · ~γ = 0 and
~γ ∈ Ω̄.

Theorem 2. Among the following three conditions, 1 and 2 are equivalent for any breaking G and
any dataD. Moreover, conditions 1 and 2 are equivalent to condition 3 if and only ifG is connected.

1. (I + PG(D)/m)T is irreducible.

2. |GMMG(D)| = 1.

3. GMMG(D) 6= ∅.

Proof. We first prove that 1 and 2 are equivalent.

1 ⇒ 2: By Proposition 1.14 in [10], we have that if (I + PG(D)/m)T is irreducible, then (I +
PG(D)/m)T has a unique positive stationary distribution, which means that |GMMG(D)| = 1.

2⇒ 1: suppose on the contrary that (I + PG(D)/m)T is not irreducible. There are two cases.

Case 1: there exists an inessential state. Then, for any stationary distribution, the inessential state
must have 0 probability (Proposition 1.25 in [10]). This means that GMMG(D) = ∅.
Case 2: there is no inessential state. In this case all essential communicating classes do not commu-
nicate. Therefore, any convex combination of their respective stationary distributions is an overall
stationary distribution. This means that |GMMG(D)| =∞.

We next prove that 1 and 3 are equivalent for any D if and only if G is connected. Notice that the
only possibility for 1 and 3 to be not equivalent is Case 2 above.

The “if” part: if G is connected, then Case 2 is not possible.

The “only if” part: ifG is not connected, without loss of generality let {1, . . . ,m} = M1∪M2 such
that M1 ∩M2 = ∅. W.l.o.g. let M1 = {1, . . . ,m′} and M2 = {m′ + 1, . . . ,m}. Let D = {[R1 �
R2]}, where R1 is any ranking over {c1, . . . , cm′} and R2 is any ranking over {cm′+1, . . . , cm}.
Therefore, there is a positive stationary probability for M1 and a positive stationary probability for
M2. Any convex combination of these two stationary probabilities is a positive stationary probability
for PG(D).

Theorem 3. A breaking G is consistent if and only if Ed|~γ∗ [g(d,~γ∗)] = 0, which is equivalent to
the following equalities:

for any i 6= j,
Pr(ci � cj |{ci, cj} ∈ G)

Pr(cj � ci|{ci, cj} ∈ G)
=
γi
γj
. (3)

Proof. We first prove the following lemma.

Lemma 1. For any breaking G, ~γ∗ ∈ Ω, Ed|~γ∗ [P (d)] · ~γ = 0 has a unique solution in Ω.

Proof sketch: It is not hard to verify that I + Ed|~γ∗ [P (d)]/m is a column stochastic matrix whose
entries are all strictly positive. So the stationary distribution ~γ′ of the Markov Chain with transition
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matrix (I + Ed|~γ∗ [P (d)]/m)T is unique and strictly positive. It follows that ~γ′ ∈ Ω is the solution
to Ed|~γ∗ [P (d)] · ~γ = 0. 2

For the “if” part, we apply Theorem 2.2 in [7]. By Lemma 1 and the premise of the theorem,
Condition 1 is satisfied. To show that G is consistent, it suffice to prove that GMMG satisfies
Assumption 2.1 to 2.6 and the three premises in the statement of Theorem 2.2 in [7]. We slightly
abuse the notation by adding one component to gG: the (m+ 1)th component is ~1× ~γ − 1.

Assumption 2.1: D is stationary and ergodic. This holds because in PL, data in D are generated
i.i.d.

Assumption 2.2: Ω is a separable metric space. Since Rm is separable and Ω is an open subset of
Rm, Ω is also separable.

Assumption 2.3: gG(·, ~γ) is Borel measurable for each ~γ ∈ Ω and gG(d, ·) is continuous on Ω for
each d. Since the domain of gG(·, ~γ) discrete, gG(·, ~γ) is continues, which means that gG(·, ~γ) is
Borel measurable. We note that gG(d, ·) is linear, which means that it is continuous.

Assumption 2.4: Ed|~γ∗ [gG(d,~γ)] exists and is finite for all ~γ ∈ Ω, and Ed|~γ∗ [gG(d,~γ∗)] = 0. The
former is because Ed|~γ∗ [gG(d,~γ)] is linear in ~γ and Ω is bounded. The latter is the assumption.

Assumption 2.5: The sequenceW converges almost surely to a positive semi-definite matrix. This
holds since Wn = I for all t.

Assumption 2.6 is satisfied by the definition of GMMG.

Premise (1): Since Rm+1 is locally compact and Ω is an open subset of Rm+1, Ω is also locally
compact.

Premise (2) and (3). Since
[
E[PG(d)]

~1

]
is full rank, following the discussion after Theorem 2.2

in [7], we have that (2) and (3) must be satisfied as well.

For the “only if” part, we need to show that there exists a neighborhood N of ~γ∗ such that for any
~γ ∈ N , there exists n∗ such that for any n ≥ n∗, gG(D,~γ) 6= 0 with high probability. We note
that as n → ∞, PG(D) → EPG(d), which means that PG(D) · ~γ 6= 0 with high probability for a
sufficiently small neighborhood of ~γ∗ and sufficient large dataset.

We next show that Ed|~γ∗ [g(d,~γ∗)] = 0 is equivalent to Equation (3). By Lemma 1, ~γ∗ is the only
nonzero solution to Ed|~γ∗ [g(d,~γ)] = 0. Also ~γ∗ is the only solution to Equation (3). This means
that they are equivalent.

Theorem 4. Let G1, G2 be a pair of consistent breakings.

1. If G1 ∩G2 = ∅, then G1 ∪G2 is also consistent.

2. If G1 ( G2, then G2 \G1 is also consistent.

Proof. We first prove 1. By Theorem 3, for i 6= j we have:

Pr(ci � cj |{ci, cj} ∈ G1)

Pr(cj � ci|{ci, cj} ∈ G1)
=
γi
γj

Pr(ci � cj |{ci, cj} ∈ G2)

Pr(cj � ci|{ci, cj} ∈ G2)
=
γi
γj

Then we have:

Pr(ci � cj |{ci, cj} ∈ G1 ∪G2)

Pr(cj � ci|{ci, cj} ∈ G1 ∪G2)
=

Pr(ci � cj |{ci, cj} ∈ G1) Pr(G1) + Pr(ci � cj |{ci, cj} ∈ G2) Pr(G2)

Pr(cj � ci|{ci, cj} ∈ G1) Pr(G1) + Pr(cj � ci|{ci, cj} ∈ G2) Pr(G2)
=
γi
γj

Where Pr(G) = Pr({ci, cj} ∈ G) is the probability that {ci, cj} ∈ G. This shows the consistency
of G1 ∪G2. The proof of 2 is similar.

Proposition 1. For any k ≥ 1, the position-k breaking GkP is consistent.
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Proof. Define Tk the set of top k alternatives in a ranking. And π(k) is the kth ranked alternative.
Then we have:

Pr(ci � cj |{ci, cj} ∈ Gk)

Pr(cj � ci|{ci, cj} ∈ Gk)
=

Pr(π(k) = ci|ci, cj 6∈ Tk−1)

Pr(π(k) = cj |ci, cj 6∈ Tk−1)
=

∑
Tk−1

Pr(π(k) = ci|Tk−1) Pr(Tk−1|ci, cj 6∈ Tk−1)∑
Tk−1

Pr(π(k) = cj |Tk−1) Pr(Tk−1|ci, cj 6∈ Tk−1)

And since we are conditioning on Tk−1 and we know ci, cj 6∈ Tk−1 , using Luce’s IIA, we have:

Pr(π(k) = ci|Tk−1)

Pr(π(k) = cj |Tk−1)
=

γi∑
l 6∈Tk−1

γl

γj∑
l 6∈Tk−1

γl

=
γi
γj

Hence:

Pr(ci � cj |{ci, cj} ∈ Gk)

Pr(cj � ci|{ci, cj} ∈ Gk)
=
γi
γj

and this concludes the proof.

Theorem 5. Adjacent breaking GA is consistent if and only if all components in ~γ∗ are the same.

Proof. It is not hard to check that if all the γi’s are the same, then adjacent breaking is consistent.
We next show the “only if” part.

Suppose γj > γi. We know that:

Pr(ci � cj)
Pr(cj � ci)

=
γi
γj

We next show that for the adjacent breaking we have:

Pr(ci � cj |{ci, cj} ∈ GA)

Pr(cj � ci|{ci, cj} ∈ GA)
>
γi
γj

(4)

To show the above inequality we will condition on the appearance of ci, cj as the kth pair (GAk
).

Pr(ci � cj |{ci, cj} ∈ GA)

Pr(cj � ci|{ci, cj} ∈ GA)
=

∑
k Pr(ci � cj |{ci, cj} ∈ GAk

) Pr(GAk
)∑

k Pr(cj � ci|{ci, cj} ∈ GAk
) Pr(GAk

)

It suffices to show:
Pr(ci � cj |{ci, cj} ∈ GAk

)

Pr(cj � ci|{ci, cj} ∈ GAk
))
>
γi
γj

Again we can condition on the Tk−1, the set of alternatives ranked 1 to k − 1.

Pr(ci � cj |{ci, cj} ∈ GAk
)

Pr(cj � ci|{ci, cj} ∈ GAk
)

=

∑
Tk−1

Pr(ci � cj |{ci, cj} ∈ GAk
, Tk−1) Pr(Tk−1)∑

Tk−1
Pr(cj � ci|{ci, cj} ∈ GAk

, Tk−1) Pr(Tk−1)

Define, γT = 1− γi − γj −
∑
l∈Tk−1

γl, then using the assumption γi < γj , we have:

Pr(ci � cj |{ci, cj} ∈ GAk
, Tk−1)

Pr(cj � ci|{ci, cj} ∈ GAk
, Tk−1)

=
γT + γi
γT + γj

>
γi
γj

This shows that inequality (4) holds.
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B More Experimental Results
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Figure 6: The running time for MM (10 iterations), GMM (full breaking), and GMM (adjacent breaking).
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