
Learning word embeddings efficiently with
noise-contrastive estimation

Andriy Mnih
DeepMind Technologies

andriy@deepmind.com

Koray Kavukcuoglu
DeepMind Technologies
koray@deepmind.com

Abstract

Continuous-valued word embeddings learned by neural language models have re-
cently been shown to capture semantic and syntactic information about words very
well, setting performance records on several word similarity tasks. The best results
are obtained by learning high-dimensional embeddings from very large quantities
of data, which makes scalability of the training method a critical factor.
We propose a simple and scalable new approach to learning word embeddings
based on training log-bilinear models with noise-contrastive estimation. Our ap-
proach is simpler, faster, and produces better results than the current state-of-the-
art method. We achieve results comparable to the best ones reported, which were
obtained on a cluster, using four times less data and more than an order of mag-
nitude less computing time. We also investigate several model types and find that
the embeddings learned by the simpler models perform at least as well as those
learned by the more complex ones.

1 Introduction

Natural language processing and information retrieval systems can often benefit from incorporating
accurate word similarity information. Learning word representations from large collections of un-
structured text is an effective way of capturing such information. The classic approach to this task
is to use the word space model, representing each word with a vector of co-occurrence counts with
other words [16]. Representations of this type suffer from data sparsity problems due to the ex-
treme dimensionality of the word count vectors. To address this, Latent Semantic Analysis performs
dimensionality reduction on such vectors, producing lower-dimensional real-valued word embed-
dings.

Better real-valued representations, however, are learned by neural language models which are trained
to predict the next word in the sentence given the preceding words. Such representations have been
used to achieve excellent performance on classic NLP tasks [4, 18, 17]. Unfortunately, few neural
language models scale well to large datasets and vocabularies due to use of hidden layers and the
cost of computing normalized probabilities.

Recently, a scalable method for learning word embeddings using light-weight tree-structured neural
language models was proposed in [10]. Although tree-structured models can be trained quickly, they
are considerably more complex than the traditional (flat) models and their performance is sensitive
to the choice of the tree over words [13]. Inspired by the excellent results of [10], we investigate
a simpler approach based on noise-contrastive estimation (NCE) [6], which enables fast training
without the complexity of working with tree-structured models. We compound the speedup obtained
by using NCE to eliminate the normalization costs during training, by using very simple variants of
the log-bilinear model [14], resulting in parameter update complexity linear in the word embedding
dimensionality.

1



We evaluate our approach on two analogy-based word similarity tasks [11, 10] and show that de-
spite the considerably shorter training times our models outperform the Skip-gram model from [10]
trained on the same 1.5B-word Wikipedia dataset. Furthermore, we can obtain performance com-
parable to that of the huge Skip-gram and CBOW models trained on a 125-CPU-core cluster after
training for only four days on a single core using four times less training data. Finally, we explore
several model architectures and discover that the simplest architectures learn embeddings that are at
least as good as those learned by the more complex ones.

2 Neural probabilistic language models

Neural probabilistic language models (NPLMs) specify the distribution for the target word w, given
a sequence of words h, called the context. In statistical language modelling, w is typically the next
word in the sentence, while the context h is the sequence of words that precede w. Though some
models such as recurrent neural language models [9] can handle arbitrarily long contexts, in this
paper, we will restrict our attention to fixed-length contexts. Since we are interested in learning
word representations as opposed to assigning probabilities to sentences, we do not need to restrict
our models to predicting the next word, and can, for example, predict w from the words surrounding
it as was done in [4].

Given a context h, an NPLM defines the distribution for the word to be predicted using the scoring
function sθ(w, h) that quantifies the compatibility between the context and the candidate target
word. Here θ are model parameters, which include the word embeddings. The scores are converted
to probabilities by exponentiating and normalizing:

Phθ (w) =
exp(sθ(w, h))∑
w′ exp(sθ(w′, h))

. (1)

Unfortunately both evaluating Phθ (w) and computing the corresponding likelihood gradient requires
normalizing over the entire vocabulary, which means that maximum likelihood training of such
models takes time linear in the vocabulary size, and thus is prohibitively expensive for all but the
smallest vocabularies.

There are two main approaches to scaling up NPLMs to large vocabularies. The first one involves
using a tree-structured vocabulary with words at the leaves, resulting in training time logarithmic
in the vocabulary size [15]. Unfortunately, this approach is considerably more involved than ML
training and finding well-performing trees is non-trivial [13]. The alternative is to keep the model but
use a different training strategy. Using importance sampling to approximate the likelihood gradient
was the first such method to be proposed [2, 3], and though it could produce substantial speedups, it
suffered from stability problems. Recently, a method for training unnormalized probabilistic models,
called noise-contrastive estimation (NCE) [6], has been shown to be a stable and efficient way of
training NPLMs [14]. As it is also considerably simpler than the tree-based prediction approach, we
use NCE for training models in this paper. We will describe NCE in detail in Section 3.1.

3 Scalable log-bilinear models

We are interested in highly scalable models that can be trained on billion-word datasets with vocab-
ularies of hundreds of thousands of words within a few days on a single core, which rules out most
traditional neural language models such as those from [1] and [4]. We will use the log-bilinear lan-
guage model (LBL) [12] as our starting point, which unlike traditional NPLMs, does not have a hid-
den layer and works by performing linear prediction in the word feature vector space. In particular,
we will use a more scalable version of LBL [14] that uses vectors instead of matrices for its context
weights to avoid the high cost of matrix-vector multiplication. This model, like all other models
we will describe, has two sets of word representations: one for the target words (i.e. the words
being predicted) and one for the context words. We denote the target and the context representations
for word w with qw and rw respectively. Given a sequence of context words h = w1, .., wn, the
model computes the predicted representation for the target word by taking a linear combination of
the context word feature vectors:

q̂(h) =

n∑
i=1

ci � rwi , (2)

2



where ci is the weight vector for the context word in position i and � denotes element-wise mul-
tiplication. The context can consist of words preceding, following, or surrounding the word being
predicted. The scoring function then computes the similarity between the predicted feature vector
and one for word w:

sθ(w, h) = q̂(h)>qw + bw, (3)

where bw is a bias that captures the context-independent frequency of word w. We will refer to this
model as vLBL, for vector LBL.

vLBL can be made even simpler by eliminating the position-dependent weights and computing the
predicted feature vector simply by averaging the context word feature vectors: q̂(h) = 1

n

∑n
i=1 rwi

.
The result is something like a local topic model, which ignores the order of context words, potentially
forcing it to capture more semantic information, perhaps at the expense of syntax. The idea of simply
averaging context word feature vectors was introduced in [8], where it was used to condition on large
contexts such as entire documents. The resulting model can be seen as a non-hierarchical version of
the CBOW model of [10].

As our primary concern is learning word representations as opposed to creating useful language
models, we are free to move away from the paradigm of predicting the target word from its context
and, for example, do the reverse. This approach is motivated by the distributional hypothesis, which
states that words with similar meanings often occur in the same contexts [7] and thus suggests look-
ing for word representations that capture their context distributions. The inverse language modelling
approach of learning to predict the context from the word is a natural way to do that. Some classic
word-space models such as HAL and COALS [16] follow this approach by representing the context
distribution using a bag-of-words but they do not learn embeddings from this information.

Unfortunately, predicting an n-word context requires modelling the joint distribution of n words,
which is considerably harder than modelling the distribution of a single word. We make the task
tractable by assuming that the words in different context positions are conditionally independent
given the current word w:

Pwθ (h) =

n∏
i=1

Pwi,θ(wi). (4)

Though this assumption can be easily relaxed without giving up tractability by introducing some
Markov structure into the context distribution, we leave investigating this direction as future work.
The context word distributions Pwi,θ(wi) are simply vLBL models that condition on the current word
and are defined by the scoring function

si,θ(wi, w) = (ci � rw)>qwi
+ bwi

. (5)

The resulting model can be seen as a Naive Bayes classifier parameterized in terms of word embed-
dings. As this model performs inverse language modelling, we will refer to it as ivLBL.

As with our traditional language model, we also consider the simpler version of this model without
position-dependent weights, defined by the scoring function

si,θ(wi, w) = r>wqwi
+ bwi

. (6)

The resulting model is the non-hierarchical counterpart of the Skip-gram model [10]. Note that
unlike the tree-based models, such as those in the above paper, which only learn conditional embed-
dings for words, in our models each word has both a conditional and a target embedding which can
potentially capture complementary information. Tree-based models replace target embeddings with
parameters vectors associated with the tree nodes, as opposed to individual words.

3.1 Noise-contrastive estimation

We train our models using noise-contrastive estimation, a method for fitting unnormalized models
[6], adapted to neural language modelling in [14]. NCE is based on the reduction of density estima-
tion to probabilistic binary classification. The basic idea is to train a logistic regression classifier to
discriminate between samples from the data distribution and samples from some “noise” distribu-
tion, based on the ratio of probabilities of the sample under the model and the noise distribution. The

3



main advantage of NCE is that it allows us to fit models that are not explicitly normalized making
the training time effectively independent of the vocabulary size. Thus, we will be able to drop the
normalizing factor from Eq. 1, and simply use exp(sθ(w, h)) in place of Phθ (w) during training. The
perplexity of NPLMs trained using this approach has been shown to be on par with those trained
with maximum likelihood learning, but at a fraction of the computational cost.

Suppose we would like to learn the distribution of words for some specific context h, denoted by
Ph(w). To do that, we create an auxiliary binary classification problem, treating the training data as
positive examples and samples from a noise distribution Pn(w) as negative examples. We are free
to choose any noise distribution that is easy to sample from and compute probabilities under, and
that does not assign zero probability to any word. We will use the (global) unigram distribution of
the training data as the noise distribution, a choice that is known to work well for training language
models. If we assume that noise samples are k times more frequent than data samples, the probability
that the given sample came from the data is Ph(D = 1|w) =

Ph
d (w)

Ph
d (w)+kPn(w)

. Our estimate of this

probability is obtained by using our model distribution in place Phd :

Ph(D = 1|w, θ) =
Phθ (w)

Phθ (w) + kPn(w)
= σ (∆sθ(w, h)) , (7)

where σ(x) is the logistic function and ∆sθ(w, h) = sθ(w, h) − log(kPn(w)) is the difference in
the scores of word w under the model and the (scaled) noise distribution. The scaling factor k in
front of Pn(w) accounts for the fact that noise samples are k times more frequent than data samples.

Note that in the above equation we used sθ(w, h) in place of logPhθ (w), ignoring the normalization
term, because we are working with an unnormalized model. We can do this because the NCE
objective encourages the model to be approximately normalized and recovers a perfectly normalized
model if the model class contains the data distribution [6].

We fit the model by maximizing the log-posterior probability of the correct labels D averaged over
the data and noise samples:

Jh(θ) =EPh
d

[
logPh(D = 1|w, θ)

]
+ kEPn

[
logPh(D = 0|w, θ)

]
=EPh

d
[log σ (∆sθ(w, h))] + kEPn

[log (1− σ (∆sθ(w, h)))] , (8)

In practice, the expectation over the noise distribution is approximated by sampling. Thus, we
estimate the contribution of a word / context pair w, h to the gradient of Eq. 8 by generating k noise
samples {xi} and computing

∂

∂θ
Jh,w(θ) = (1− σ (∆sθ(w, h)))

∂

∂θ
logPhθ (w)−

k∑
i=1

[
σ (∆sθ(xi, h))

∂

∂θ
logPhθ (xi)

]
. (9)

Note that the gradient in Eq. 9 involves a sum over k noise samples instead of a sum over the entire
vocabulary, making the NCE training time linear in the number of noise samples and independent
of the vocabulary size. As we increase the number of noise samples k, this estimate approaches
the likelihood gradient of the normalized model, allowing us to trade off computation cost against
estimation accuracy [6].

NCE shares some similarities with a training method for non-probabilistic neural language models
that involves optimizing a margin-based ranking objective [4]. As that approach is non-probabilistic,
it is outside the scope of this paper, though it would be interesting to see whether it can be used to
learn competitive word embeddings.

4 Evaluating word embeddings

Using word embeddings learned by neural language models outside of the language modelling con-
text is a relatively recent development. An early example of this is the multi-layer neural network
of [4] trained to perform several NLP tasks which represented words exclusively in terms of learned
word embeddings. [18] provided the first comparison of several word embeddings learned with dif-
ferent methods and showed that incorporating them into established NLP pipelines can boost their
performance.

4



Recently the focus has shifted towards evaluating such representations more directly, instead of mea-
suring their effect on the performance of larger systems. Microsoft Research (MSR) has released
two challenge sets: a set of sentences each with a missing word to be filled in [20] and a set of
analogy questions [11], designed to evaluate semantic and syntactic content of word representa-
tions respectively. Another dataset, consisting of semantic and syntactic analogy questions has been
released by Google [10].

In this paper we will concentrate on the two analogy-based challenge sets, which consist of questions
of the form “a is to b is as c is to ”, denoted as a : b→ c : ? . The task is to identify the held-out
fourth word, with only exact word matches deemed correct. Word embeddings learned by neural
language models have been shown to perform very well on these datasets when using the following
vector-similarity-based protocol for answering the questions. Suppose ~w is the representation vector
for word w normalized to unit norm. Then, following [11], we answer a : b→ c : ? , by finding the
word d∗ with the representation closest to~b− ~a+ ~c according to cosine similarity:

d∗ = arg max
x

(~b− ~a+ ~c)>~x

‖~b− ~a+ ~c‖
. (10)

We discovered that reproducing the results reported in [10] and [11] for publicly available word
embeddings required excluding b and c from the vocabulary when looking for d∗ using Eq. 10,
though that was not clear from the papers. To see why this is necessary, we can rewrite Eq. 10 as

d∗ = arg max
x

~b>~x− ~a>~x+ ~c>~x (11)

and notice that setting x to b or c maximizes the first or third term respectively (since the vectors are
normalized), resulting in a high similarity score. This equation suggests the following interpretation
of d∗: it is simply the word with the representation most similar to~b and ~c and dissimilar to ~a, which
makes it quite natural to exclude b and c themselves from consideration.

5 Experimental evaluation

5.1 Datasets

We evaluated our word embeddings on two analogy-based word similarity tasks released recently
by Google and Microsoft Research that we described in Section 4. We could not train on the data
used for learning the embeddings in the original papers as it was not readily available. [10] used the
proprietary Google News corpus consisting of 6 billion words, while the 320-million-word training
set used in [11] is a compilation of several Linguistic Data Consortium corpora, some of which
available only to their subscribers.

Instead, we decided to use two freely-available datasets: the April 2013 dump of English Wikipedia
and the collection of about 500 Project Gutenberg texts that form the canonical training data for
the MSR Sentence Completion Challenge [19]. We preprocessed Wikipedia by stripping out the
XML formatting, mapping all words to lowercase, and replacing all digits with 7, leaving us with
1.5 billion words. Keeping all words that occurred at least 10 times resulted in a vocabulary of
about 872 thousand words. Such a large vocabulary was used to demonstrate the scalability of our
method as well as to ensure that the models will have seen almost all the words they will be tested
on. When preprocessing the 47M-word Gutenberg dataset, we kept all words that occurred 5 or
more times, resulting in an 80-thousand-word vocabulary. Note that many words used for testing
the representations are missing from this dataset, which greatly limits the accuracy achievable when
using it. To make our results directly comparable to those in other papers, we report accuracy scores
computed using Eq. 10, excluding the second and the third word in the question from consideration,
as explained in Section 4.

5.2 Details of training

All models were trained on a single core, using minibatches of size 100 and the initial learning
rate of 3 × 10−2. No regularization was used. Initially we used a validation-set based learning
rate adaptation scheme described in [14], which halves the learning rate whenever the validation set

5



Table 1: Accuracy in percent on word similarity tasks. The models had 100D word embeddings
and were trained to predict 5 words on both sides of the current word on the 1.5B-word Wikipedia
dataset. Skip-gram(*) is our implementation of the model from [10]. ivLBL is the inverse language
model without position-dependent weights. NCEk denotes NCE training using k noise samples.

GOOGLE MSR TIME
MODEL SEMANTIC SYNTACTIC OVERALL (HOURS)
SKIP-GRAM(*) 28.0 36.4 32.6 31.7 12.3
IVLBL+NCE1 28.4 42.1 35.9 34.9 3.1
IVLBL+NCE2 30.8 44.1 38.0 36.2 4.0
IVLBL+NCE3 34.2 43.6 39.4 36.3 5.1
IVLBL+NCE5 37.2 44.7 41.3 36.7 7.3
IVLBL+NCE10 38.9 45.0 42.2 36.0 12.2
IVLBL+NCE25 40.0 46.1 43.3 36.7 26.8

Table 2: Accuracy in percent on word similarity tasks for large models. The Skip-gram† and
CBOW† results are from [10]. ivLBL models predict 5 words before and after the current word.
vLBL models predict the current word from the 5 preceding and 5 following words.

EMBED. TRAINING GOOGLE MSR TIME
MODEL DIM. SET SIZE SEM. SYN. OVERALL (DAYS)
SKIP-GRAM† 300 1.6B 52.2 55.1 53.8 2.0
SKIP-GRAM† 300 785M 56.7 52.2 55.5 2.5
SKIP-GRAM† 1000 6B 66.1 65.1 65.6 2.5×125
IVLBL+NCE25 300 1.5B 61.2 58.4 59.7 48.8 1.2
IVLBL+NCE25 300 1.5B 63.6 61.8 62.6 52.4 4.1
IVLBL+NCE25 300×2 1.5B 65.2 63.0 64.0 54.2 4.1
IVLBL+NCE25 100 1.5B 52.6 48.5 50.3 39.2 1.2
IVLBL+NCE25 100 1.5B 55.9 50.1 53.2 42.3 2.9
IVLBL+NCE25 100×2 1.5B 59.3 54.2 56.5 44.6 2.9
CBOW† 300 1.6B 16.1 52.6 36.1 0.6
CBOW† 1000 6B 57.3 68.9 63.7 2×140
VLBL+NCE5 300 1.5B 40.3 55.4 48.5 48.7 0.3
VLBL+NCE5 100 1.5B 45.0 56.8 51.5 52.3 2.0
VLBL+NCE5 300 1.5B 54.2 64.8 60.0 58.1 2.0
VLBL+NCE5 600 1.5B 57.3 66.0 62.1 59.1 2.0
VLBL+NCE5 600×2 1.5B 60.5 67.1 64.1 60.8 3.0

perplexity failed to improve after some time, but found that it led to poor representations despite
achieving low perplexity scores, which was likely due to undertraining. The linear learning rate
schedule described in [10] produced better results. Unfortunately, using it requires knowing in
advance how many passes through the data will be performed, which is not always possible or
convenient. Perhaps more seriously, this approach might result in undertraining of representations
for rare words because all representation share the same learning rate.

AdaGrad [5] provides an automatic way of dealing with this issue. Though AdaGrad has already
been used to train neural language models in a distributed setting [10], we found that it helped
to learn better word representations even using a single CPU core. We reduced the potentially
prohibitive memory requirements of AdaGrad, which requires storing a running sum of squared
gradient values for each parameter, by using the same learning rate for all dimensions of a word
embedding. Thus we store only one extra number per embedding vector, which is helpful when
training models with hundreds of millions of parameters.

5.3 Results

Inspired by the excellent performance of tree-based models of [10], we started by comparing the
best-performing model from that paper, the Skip-gram, to its non-hierarchical counterpart, ivLBL
without position-dependent weights, proposed in Section 3, trained using NCE. As there is no pub-
licly available Skip-gram implementation, we wrote our own. Our implementation is faithful to the
description in the paper, with one exception. To speed up training, instead of predicting all context
words around the current word, we predict only one context word, sampled at random using the

6



Table 3: Results for various models trained for 20 epochs on the 47M-word Gutenberg dataset
using NCE5 with AdaGrad. (D) and (I) denote models with and without position-dependent weights
respectively. For each task, the left (right) column give the accuracy obtained using the conditional
(target) word embeddings. nL (nR) denotes n words on the left (right) of the current word.

CONTEXT GOOGLE MSR TIME
MODEL SIZE SEMANTIC SYNTACTIC OVERALL (HOURS)

VLBL(D) 5L + 5R 2.4 2.6 24.7 23.8 14.6 14.2 23.4 23.1 2.6
VLBL(D) 10L 1.9 2.8 22.1 14.8 12.9 9.3 20.9 9.0 2.6
VLBL(D) 10R 2.7 2.4 13.1 24.1 8.4 14.2 8.8 23.0 2.6
VLBL(I) 5L + 5R 3.0 2.9 27.5 29.6 16.4 17.5 22.9 24.2 2.3
VLBL(I) 10L 2.5 2.8 23.5 16.1 14.0 10.1 19.8 10.1 2.3
VLBL(I) 10R 2.3 2.6 16.2 24.6 9.9 14.6 10.0 20.3 2.1

IVLBL(D) 5L + 5R 2.8 2.3 15.1 13.0 9.5 8.1 14.5 14.0 1.2
IVLBL(I) 5L + 5R 2.8 2.6 26.8 26.8 15.9 15.8 21.4 21.0 1.2

non-uniform weighting scheme from the paper. Note that our models are also trained using the same
context-word sampling approach. To make the comparison fair, we did not use AdaGrad for our
models in these experiments, using the linear learning rate schedule as in [10] instead.

Table 1 shows the results on the word similarity tasks for the two models trained on the Wikipedia
dataset. We ran NCE training several times with different numbers of noise samples to investigate the
effect of this parameter on the representation quality and training time. The models were trained for
three epochs, which in our experience provided a reasonable compromise between training time and
representation quality.1 All NCE-trained models outperformed the Skip-gram. Accuracy steadily
increased with the number of noise samples used, as did the training time. The best compromise
between running time and performance seems to be achieved with 5 or 10 noise samples.

We then experimented with training models using AdaGrad and found that it significantly improved
the quality of embeddings obtained when training with 10 or 25 noise samples, increasing the se-
mantic score for the NCE25 model by over 10 percentage points. Encouraged by this, we trained
two ivLBL models with position-independent weights and different embedding dimensionalities
for several days using this approach. As some of the best results in [10] were obtained with the
CBOW model, we also trained its non-hierarchical counterpart from Section 3, vLBL with position-
independent weights, using 100/300/600-dimensional embeddings and NCE with 5 noise samples,
for shorter training times. Note that due to the unavailability of the Google News dataset used in that
paper, we trained on Wikipedia. The scores for ivLBL and vLBL models were obtained using the
conditional word and target word representations respectively, while the scores marked with d × 2
were obtained by concatenating the two word representations, after normalizing them.

The results, reported in Table 2, show that our models substantially outperform their hierarchical
counterparts when trained using comparable amounts of time and data. For example, the 300D
ivLBL model trained for just over a day, achieves accuracy scores 3-9 percentage points better than
the 300D Skip-gram trained on the same amount of data for almost twice as long. The same model
trained for four days achieves accuracy scores that are only 2-4 percentage points lower than those
of the 1000D Skip-gram trained on four times as much data using 75 times as many CPU cycles.
By computing word similarity scores using the conditional and the target word representations con-
catenated together, we can bring the accuracy gap down to 2 percentage points at no additional
computational cost. The accuracy achieved by vLBL models as compared to that of CBOW models
follows a similar pattern. Once again our models achieve better accuracy scores faster and we can
get within 3 percentage points of the result obtained on a cluster using much less data and far less
computation.

To determine whether we were crippling our models by using position-independent weight, we
evaluated all model architectures described in Section 3 on the Gutenberg corpus. The models were
trained for 20 epochs using NCE5 and AdaGrad. We report the accuracy obtained with both condi-
tional and target representation (left and right columns respectively) for each of the models in Ta-

1We checked this by training the Skip-gram model for 10 epochs, which did not result in a substantial
increase in accuracy.

7



Table 4: Accuracy on the MSR Sentence Completion Challenge dataset.

MODEL CONTEXT LATENT PERCENT
SIZE DIM CORRECT

LSA [19] SENTENCE 300 49
SKIP-GRAM [10] 10L+10R 640 48.0

LBL [14] 10L 300 54.7
IVLBL 5L+5R 100 51.0
IVLBL 5L+5R 300 55.2
IVLBL 5L+5R 600 55.5

ble 3. Perhaps surprisingly, the results show that representations learned with position-independent
weights, designated with (I), tend to perform better than the ones learned with position-dependent
weights. The difference is small for traditional language models (vLBL), but is quite pronounced
for the inverse language model (ivLBL). The best-performing representations were learned by the
traditional language model with the context surrounding the word and position-independent weights.

Sentence completion: We also applied our approach to the MSR Sentence Completion Challenge
[19], where the task is to complete each of the 1,040 test sentences by picking the missing word
from the list of five candidate words. Using the 47M-word Gutenberg dataset, preprocessed as in
[14], as the training set, we trained several ivLBL models with NCE5 to predict 5 words preceding
and 5 following the current word. To complete a sentence, we compute the probability of the 10
words around the missing word (using Eq. 4) for each of the candidate words and pick the one
producing the highest value. The resulting accuracy scores, given in Table 4 along with those of
several baselines, show that ivLBL models perform very well. Even the model with the lowest
embedding dimensionality of 100, achieves 51.0% correct, compared to 48.0% correct reported in
[10] for the Skip-gram model with 640D embeddings. The 55.5% correct achieved by the model
with 600D embeddings is also better than the best single-model score on this dataset in the literature
(54.7% in [14]).

6 Discussion

We have proposed a new highly scalable approach to learning word embeddings which involves
training lightweight log-bilinear language models with noise-contrastive estimation. It is simpler
than the tree-based language modelling approach of [10] and produces better-performing embed-
dings faster. Embeddings learned using a simple single-core implementation of our method achieve
accuracy scores comparable to the best reported ones, which were obtained on a large cluster using
four times as much data and almost two orders of magnitude as many CPU cycles. The scores we
report in this paper are also easy to compare to, because we trained our models only on publicly
available data.

Several promising directions remain to be explored. [8] have recently proposed a way of learning
multiple representations for each word by clustering the contexts the word occurs in and allocating
a different representation for each cluster, prior to training the model. As ivLBL predicts the context
from the word, it naturally allows using multiple context representations per current word, resulting
in a more principled approach to the problem based on mixture modeling. Sharing representations
between the context and the target words is also worth investigating as it might result in better-
estimated rare word representations.

Acknowledgments

We thank Volodymyr Mnih for his helpful comments.

References
[1] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language

model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[2] Yoshua Bengio and Jean-Sébastien Senécal. Quick training of probabilistic neural nets by importance
sampling. In AISTATS’03, 2003.

8



[3] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate training of a
neural probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–722, 2008.

[4] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2010.

[6] M.U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with
applications to natural image statistics. Journal of Machine Learning Research, 13:307–361, 2012.

[7] Zellig S Harris. Distributional structure. Word, 1954.

[8] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving word representa-
tions via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics, pages 873–882, 2012.

[9] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural network based
language model. In Eleventh Annual Conference of the International Speech Communication Association,
2010.

[10] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. International Conference on Learning Representations 2013, 2013.

[11] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. Proceedings of NAACL-HLT, 2013.

[12] A. Mnih and G. Hinton. Three new graphical models for statistical language modelling. Proceedings of
the 24th International Conference on Machine Learning, pages 641–648, 2007.

[13] Andriy Mnih and Geoffrey Hinton. A scalable hierarchical distributed language model. In Advances in
Neural Information Processing Systems, volume 21, 2009.

[14] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Conference on Machine Learning, pages 1751–1758,
2012.

[15] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In AIS-
TATS’05, pages 246–252, 2005.

[16] Magnus Sahlgren. The Word-Space Model: Using distributional analysis to represent syntagmatic and
paradigmatic relations between words in high-dimensional vector spaces. PhD thesis, Stockholm, 2006.

[17] R. Socher, C.C. Lin, A.Y. Ng, and C.D. Manning. Parsing natural scenes and natural language with
recursive neural networks. In International Conference on Machine Learning (ICML), 2011.

[18] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 384–394, 2010.

[19] G. Zweig and C.J.C. Burges. The Microsoft Research Sentence Completion Challenge. Technical Report
MSR-TR-2011-129, Microsoft Research, 2011.

[20] Geoffrey Zweig and Chris J.C. Burges. A challenge set for advancing language modeling. In Proceedings
of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of
Language Modeling for HLT, pages 29–36, 2012.

9


