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Abstract

We establish lower bounds on minimax risks for distributed statistical estima-
tion under a communication budget. Such lower bounds reveal the minimum
amount of communication required by any procedure to achieve the centralized
minimax-optimal rates for statistical estimation. We study two classes of proto-
cols: one in which machines send messages independently, and a second allowing
for interactive communication. We establish lower bounds for several problems,
including various types of location models, as well as for parameter estimation in
regression models.

1 Introduction

Rapid growth in the size and scale of datasets has fueled increasing interest in statistical estimation
in distributed settings [see, e.g., 5, 23, 7, 9, 17, 2]. Modern data sets are often too large to be stored
on a single machine, so that it is natural to consider methods that involve multiple machines, each
assigned a smaller subset of the full dataset. An essential design parameter in such methods is the
amount of communication required between machines or chips. Bandwidth limitations on network
and inter-chip communication often impose significant bottlenecks on algorithmic efficiency.

The focus of the current paper is the communication complexity of various classes of statistical es-
timation problems. More formally, suppose that we are interested in estimating the parameter θ of
some unknown distribution P , based on a dataset of N i.i.d. samples. In the classical setting, one
considers centralized estimators that have access to all N samples, and for a given estimation prob-
lem, the optimal performance over all centralized schemes can be characterized by the minimax rate.
By way of contrast, in the distributed setting, one is given m different machines, and each machine
is assigned a subset of samples of size n = ⌊Nm⌋. Each machine may perform arbitrary operations
on its own subset of data, and it then communicates results of these intermediate computations to
the other processors or to a central fusion node. In this paper, we try to answer the following ques-
tion: what is the minimal number of bits that must be exchanged in order to achieve the optimal
estimation error achievable by centralized schemes?

There is a substantial literature on communication complexity in many settings, including function
computation in theoretical computer science (e.g., [21, 1, 13]), decentralized detection and estima-
tion (e.g., [18, 16, 15]) and information theory [11]. For instance, Luo [15] considers architectures in
which machines may send only a single bit to a centralized processor; for certain problems, he shows
that if each machine receives a single one-dimensional sample, it is possible to achieve the optimal
centralized rate up to constant factors. Among other contributions, Balcan et al. [2] study Probably
Approximately Correct (PAC) learning in the distributed setting; however, their stated lower bounds
do not involve the number of machines. In contrast, our work focuses on scaling issues, both in terms
of the number of machines as well as the dimensionality of the underlying data, and we formalize
the problem in terms of statistical minimax theory.
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More precisely, we study the following problem: given a budget B of the total number of bits that
may be communicated from the m distributed datasets, what is the minimax risk of any estimator
based on the communicated messages? While there is a rich literature connecting information-
theoretic techniques with the risk of statistical estimators (e.g. [12, 22, 20, 19]), little of it character-
izes the effects of limiting communication. In this paper, we present some minimax lower bounds for
distributed statistical estimation. By comparing our lower bounds with results in statistical estima-
tion, we can identify the minimal communication cost that a distributed estimator must pay to have
performance comparable to classical centralized estimators. Moreover, we show how to leverage
recent work [23] to achieve these fundamental limits.

2 Problem setting and notation

We begin with a formal description of the statistical estimation problems considered here. Let
P denote a family of distributions and let θ : P → Θ ⊆ R

d denote a function defined on P .
A canonical example throughout the paper is the problem of mean estimation, in which θ(P ) =
EP [X]. Suppose that, for some fixed but unknown member P of P , there are m sets of data stored

on individual machines, where each subset X(i) is an i.i.d. sample of size n from the unknown
distribution P .1 Given this distributed collection of local data sets, our goal is to estimate θ(P )
based on the m samples X(1), . . . , X(m), but using limited communication.

We consider a class of distributed protocols Π, in which at each round t = 1, 2, . . ., machine i sends a

message Yt,i that is a measurable function of the local data X(i), and potentially of past messages. It

is convenient to model this message as being sent to a central fusion center. Let Y t = {Yt,i}i∈[m] de-
note the collection of all messages sent at round t. Given a total of T rounds, the protocol Π collects

the sequence (Y 1, . . . , Y T ), and constructs an estimator θ̂ := θ̂(Y 1, . . . , Y T ). The length Lt,i of

message Yt,i is the minimal number of bits required to encode it, and the total L =
∑T

t=1

∑m
i=1 Lt,i

of all messages sent corresponds to the total communication cost of the protocol. Note that the com-
munication cost is a random variable, since the length of the messages may depend on the data, and
the protocol may introduce auxiliary randomness.

It is useful to distinguish two different classes, namely independent versus interactive protocols. An
independent protocol Π is based on a single round (T = 1) of communication, in which machine
i sends message Y1,i to the fusion center. Since there are no past messages, the message Y1,i can

depend only on the local sample X(i). Given a family P , the class of independent protocols with
budget B ≥ 0 is given by

Aind(B,P) =
{

independent protocols Π such that sup
P∈P

EP

[ m∑

i=1

Li

]
≤ B

}
. (1)

(For simplicity, we use Yi to indicate the message sent from processor i and Li to denote its length
in the independent case.) It can be useful in some situations to have more granular control on the
amount of communication, in particular by enforcing budgets on a per-machine basis. In such cases,
we introduce the shorthand B1:m = (B1, . . . , Bm) and define

Aind(B1:m,P) =
{

independent protocols Π such that sup
P∈P

EP [Li] ≤ Bi for i ∈ [m]

}
. (2)

In contrast to independent protocols, the class of interactive protocols allows for interaction at dif-
ferent stages of the message passing process. In particular, suppose that machine i sends message
Yt,i to the fusion center at time t, who then posts it on a “public blackboard,” where all machines can
read Yt,i. We think of this as a global broadcast system, which may be natural in settings in which
processors have limited power or upstream capacity, but the centralized fusion center can send mes-
sages without limit. In the interactive setting, the message Yt,i should be viewed as a measurable

function of the local data X(i), and the past messages Y 1:t−1. The family of interactive protocols
with budget B ≥ 0 is given by

Ainter(B,P) =
{

interactive protocols Π such that sup
P∈P

EP [L] ≤ B

}
. (3)

1 Although we assume in this paper that every machine has the same amount of data, our technique gener-
alizes easily to prove tight lower bounds for distinct data sizes on different machines.
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We conclude this section by defining the minimax framework used throughout this paper. We wish to

characterize the best achievable performance of estimators θ̂ that are functions of only the messages

(Y 1, . . . , Y T ). We measure the quality of a protocol and estimator θ̂ by the mean-squared error

EP,Π

[
‖θ̂(Y 1, . . . , Y T )− θ(P )‖22

]
,

where the expectation is taken with respect to the protocol Π and the m i.i.d. samples X(i) of size
n from distribution P . Given a class of distributions P , parameter θ : P → Θ, and communication
budget B, the minimax risk for independent protocols is

M
ind(θ,P, B) := inf

Π∈Aind(B,P)
inf
θ̂

sup
P∈P

EP,Π

[∥∥∥θ̂(Y1, . . . , Ym)− θ(P )
∥∥∥
2

2

]
. (4)

Here, the infimum is taken jointly over all independent procotols Π that satisfy the budget constraint

B, and over all estimators θ̂ that are measurable functions of the messages in the protocol. This min-
imax risk should also be understood to depend on both the number of machines m and the individual
sample size n. The minimax risk for interactive protocols, denoted by M

inter, is defined analogously,
where the infimum is instead taken over the class of interactive protocols. These communication-
dependent minimax risks are the central objects in this paper: they provide a sharp characterization
of the optimal rate of statistical estimation as a function of the communication budget B.

3 Main results

With our setup in place, we now turn to the statement of our main results, along with some discussion
of their consequences.

3.1 Lower bound based on metric entropy

We begin with a general but relatively naive lower bound that depends only on the geometric struc-
ture of the parameter space, as captured by its metric entropy. In particular, given a subset Θ ⊂ R

d,
we say {θ1, . . . , θK} are δ-separated if

∥∥θi − θj
∥∥
2
≥ δ for i 6= j. We then define the packing

entropy of Θ as

logMΘ(δ) := log2
[
max

{
K ∈ N | {θ1, . . . , θK} ⊂ Θ are δ-separated

}]
. (5)

The function θ 7→ logMΘ(δ) is left-continuous and non-increasing in δ, so we may define the

inverse function logM−1
Θ (B) := sup{δ | logMΘ(δ) ≥ B}.

Proposition 1 For any family of distributions P and parameter set Θ = θ(P), the interactive
minimax risk is lower bounded as

M
inter(θ,P, B) ≥

(1
4
logM−1

Θ (2B + 2)
)2

. (6)

Of course, the same lower bound also holds for Mind(θ,P, B), since any independent protocol is
a special case of an interactive protocol. Although Proposition 1 is a relatively generic statement,
not exploiting any particular structure of the problem, it is in general unimprovable by more than
constant factors, as the following example illustrates.

Example: Bounded mean estimation. Suppose that our goal is to estimate the mean θ = θ(P )
of a class of distributions P supported on the interval [0, 1], so that Θ = θ(P) = [0, 1]. Suppose
that a single machine (m = 1) receives n i.i.d. observations Xi according to P . Since the packing
entropy is lower bounded as logMΘ(δ) ≥ log(1/δ), the lower bound (6) implies

M
ind(θ,P, B) ≥M

inter(θ,P, B) ≥ e−2

4
e−2B .

Thus, setting B = 1
2 log n yields the lower bound M

ind(θ,P([0, 1]), B) ≥ e−2

4n . This lower bound
is sharp up to the constant pre-factor, since it can be achieved by a simple method. Given its n
observations, the single machine can compute the sample mean Xn = 1

n

∑n
i=1 Xi. Since the

sample mean lies in the interval [0, 1], it can be quantized to accuracy 1/n using log(n) bits, and this

quantized version θ̂ can be transmitted. A straightforward calculation shows that E[(θ̂ − θ)2] ≤ 2
n ,

so Proposition 1 yields an order-optimal bound in this case.
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3.2 Multi-machine settings

We now turn to the more interesting multi-machine setting (m > 1). Let us study how the budget
B—meaning the of bits required to achieve the minimax rate—scales with the number of machines
m. We begin by considering the uniform location family U = {Pθ, θ ∈ [−1, 1]}, where Pθ is
the uniform distribution on the interval [θ − 1, θ + 1]. For this problem, a direct application of
Proposition 1 gives a nearly sharp result.

Corollary 1 Consider the uniform location family U with n i.i.d. observations per machine:

(a) Whenever the communication budget is upper bounded as B ≤ log(mn), there is a univer-
sal constant c such that

M
inter(θ,U , B) ≥ c

(mn)2
.

(b) Conversely, given a budget of B =
[
2+2 lnm

]
log(mn) bits, there is a universal constant

c′ such that

M
inter(θ,U , B) ≤ c′

(mn)2
.

If each of m machines receives n observations, we have a total sample size of mn, so the minimax
rate over all centralized procedures scales as 1/(mn)2 (for instance, see [14]). Consequently, Corol-
lary 1(b) shows that the number of bits required to achieve the centralized rate has only logarithmic
dependence on the number m of machines. Part (a) shows that this logarithmic dependence on m is
unavoidable.

It is natural to wonder whether such logarithmic dependence holds more generally. The following
result shows that it does not: for some problems, the dependence on m must be (nearly) linear. In
particular, we consider estimation in a normal location family model, where each machine receives
an i.i.d. sample of size n from a normal distribution N(θ, σ2) with unknown mean θ.

Theorem 1 For the univariate normal family N = {N(θ, σ2) | θ ∈ [−1, 1]}, there is a universal
constant c such that

M
inter(θ,N , B) ≥ c

σ2

mn
min

{
mn

σ2
,

m

logm
,

m

B logm

}
. (7)

The centralized minimax rate for estimating a univariate normal mean based on mn observations

is σ2

mn ; consequently, the lower bound (7) shows that at least B = Ω
(

m
logm

)
bits are required for a

decentralized procedure to match the centralized rate in this case. This type of scaling is dramati-
cally different than the logarithmic scaling for the uniform family, showing that establishing sharp
communication-based lower bounds requires careful study of the underlying family of distributions.

3.3 Independent protocols in multi-machine settings

Departing from the interactive setting, in this section we focus on independent protocols, providing
somewhat more general results than those for interactive protocols. We first provide lower bounds
for the problem of mean estimation in the parameter for a d-dimensional normal location family

Nd = {N(θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}, (8)

Theorem 2 For i = 1, . . . ,m, assume that each machine has communication budget Bi, and re-
ceives an i.i.d. sample of size n from a distribution P ∈ Nd. There exists a universal (numerical)
constant c such that

M
ind(θ,Nd, B1:m) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

logm
,

m(∑m
i=1 min{1, Bi

d }
)
logm

}
. (9)

Given centralized access to the full mn-sized sample, a reasonable procedure would be to compute

the sample mean, leading to an estimate with mean-squared error σ2d
mn , which is minimax optimal.
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Consequently, Theorem 2 shows that to achieve an order-optimal mean-squared error, the total num-
ber of bits communicated must (nearly) scale with the product of the dimension d and number of
machines m, that is, as dm/ logm. If we ignore logarithmic factors, this lower bound is achievable
by a simple procedure: each machine computes the sample mean of its local data and quantizes each
coordinate to precision σ2/n usingO(d log(n/σ2)) bits. These quantized sample averages are com-
municated to the fusion center using B = O(dm log(n/σ2)) total bits. The fusion center averages
them, obtaining an estimate with mean-squared error of optimal order σ2d/(mn) as required.

We finish this section by presenting a result that is sharp up to numerical constant prefactors. It is a
minimax lower bound for mean estimation over the family Pd = {P supported on [−1, 1]d}.

Proposition 2 Assume that each of m machines receives a single sample (n = 1) from a distribution
in Pd. There exists a universal (numerical) constant c such that

M
ind(θ,Pd, B1:m) ≥ c

d

m
min

{
m,

m∑m
i=1 min{1, Bi

d }

}
, (10)

where Bi is the budget for machine i.

The standard minimax rate for d-dimensional mean estimation scales as d/m. The lower bound (10)

shows that in order to achieve this scaling, we must have
∑m

i=1 min{1, Bi

d } & m, showing that each
machine must send Bi & d bits.

Moreover, this lower bound is achievable by a simple scheme. Suppose that machine i receives
a d-dimensional vector Xi ∈ [−1, 1]d. Based on Xi, it generates a Bernoulli random vector
Zi = (Zi1, . . . , Zid) with Zij ∈ {0, 1} taking the value 1 with probability (1 + Xij)/2, indepen-

dently across coordinates. Machine i uses d bits to send the vector Zi ∈ {0, 1}d to the fusion center.

The fusion center then computes the average θ̂ = 1
m

∑m
i=1(2Zi − 1). This average is unbiased, and

its expected squared error is bounded by d/m.

4 Consequences for regression

In this section, we turn to identifying the minimax rates for a pair of important estimation problems:
linear regression and probit regression.

4.1 Linear regression

We consider a distributed instantiation of linear regression with fixed design matrices. Concretely,

suppose that each of m machines has stored a fixed design matrix A(i) ∈ R
n×d and then observes a

response vector b(i) ∈ R
d from the standard linear regression model

b(i) = A(i)θ + ε(i), (11)

where ε(i) ∼ N(0, σ2In×n) is a noise vector. Our goal is to estimate unknown regression vector
θ ∈ Θ = [−1, 1]d, shared across all machines, in a distributed manner, To state our result, we
assume uniform upper and lower bounds on the eigenvalues of the rescaled design matrices, namely

0 < λmin ≤ min
i∈{1,...,m}

ηmin(A
(i))√

n
and max

i∈{1,...,m}

ηmax(A
(i))√

n
≤ λmax. (12)

Corollary 2 Consider an instance of the linear regression model (11) under condition (12).

(a) Then there is a universal positive constant c such that

M
ind(θ,P, B1:m) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

λ2
max logm

,
m

λ2
max

(∑m
i=1 min{1, Bi

d }
)
logm

}
.

(b) Conversely, given budgets Bi ≥ d log(mn) for i = 1, . . . ,m, there is a universal constant
c′ such that

M
ind(θ,P, B1:m) ≤ c′

λ2
min

σ2d

mn
.
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It is a classical fact (e.g. [14]) that the minimax rate for d-dimensional linear regression scales as
dσ2/(nm). Part (a) of Corollary 2 shows this optimal rate is attainable only if the budget Bi at each

machine is of the order d/ log(m), meaning that the total budget B =
∑m

i=1 Bi must grow as dm
logm .

Part (b) of the corollary shows that the minimax rate is achievable with budgets that match the lower
bound up to logarithmic factors.

Proof: The proof of part (b) follows from techniques of Zhang et al. [23], who show that solving
each regression problem separately and then performing a form of approximate averaging, in which
each machine uses Bi = d log(mn) bits, achieves the minimax rate up to constant prefactors.

To prove part (a), we show that solving an arbitrary Gaussian mean estimation problem can be
reduced to solving a specially constructed linear regression problem. This reduction allows us to
apply the lower bound from Theorem 2. Given θ ∈ Θ, consider the Gaussian mean model

X(i) = θ + w(i), where w(i) ∼ N

(
0,

σ2

λ2
maxn

Id×d

)
.

Each machine i has its own design matrix A(i), and we use it to construct a response vector

b(i) ∈ R
n. Since ηmax(A

(i)/
√
n) ≤ λmax, the matrix Σ(i) := σ2In×n − σ2

λ2
maxn

A(i)(A(i))⊤ is

positive semidefinite. Consequently, we may form a response vector via

b(i) = A(i)X(i) + z(i), z(i) ∼ N
(
0,Σ(i)

)
is drawn independently of w(i). (13)

The independence of w(i) and z(i) guarantees that b(i) ∼ N(A(i)θ, σ2In×n), so that the pair

(b(i), A(i)) is faithful to the regression model (11).

Now consider any protocol Π ∈ Aind(B,P) that can solve any regression problem to within accu-

racy δ, so that E[‖θ̂ − θ‖22] ≤ δ2. By the previously described reduction, the protocol Π can also

solve the mean estimation problem to accuracy δ, in particular via the pair (A(i), b(i)) constructed
via expression (13). Combined with this reduction, the corollary thus follows from Theorem 2. �

4.2 Probit regression

We now turn to the problem of binary classification, in particular considering the probit re-
gression model. As in the previous section, each of m machines has a fixed design matrix

A(i) ∈ R
n×d, where A(i,k) denotes the kth row of A(i). Machine i receives n binary responses

Z(i) = (Z(i,1), . . . , Z(i,n)), drawn from the conditional distribution

P(Z(i,k) = 1 | A(i,k), θ) = Φ(A(i,k)θ) for some fixed θ ∈ Θ = [−1, 1]d, (14)

where Φ(·) denotes the standard normal CDF. The log-likelihood of the probit model (14) is con-
cave [4, Exercise 3.54]. Under condition (12) on the design matrices, we have:

Corollary 3 Consider the probit model (14) under condition (12). Then

(a) There is a universal constant c such that

M
ind(θ,P, B1:m) ≥ c

d

mn
min

{
mn,

m

λ2
max logm

,
m

λ2
max

(∑m
i=1 min{1, Bi

d }
)
logm

}
.

(b) Conversely, given budgets Bi ≥ d log(mn) for i = 1, . . . ,m, there is a universal constant
c′ such that

M
ind(θ,P, B1:m) ≤ c′

λ2
min

d

mn
.

Proof: As in the previous case with linear regression, Zhang et al.’s study of distributed convex
optimization [23] gives part (b): each machine solves the local probit regression separately, after
which each machine sends Bi = d log(mn) bits to average its local solution.

To prove part (a), we show that linear regression problems can be solved via estimation in a specially
constructed probit model. Consider an arbitrary θ ∈ Θ; assume we have a regression problem of the
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form (11) with noise variance σ2 = 1. We construct the binary responses for our probit regression

(Z(i,1), . . . , Z(i,n)) by

Z(i,k) =

{
1 if b(i,k) ≥ 0,

0 otherwise.
(15)

By construction, we have P(Z(i,k) = 1 | A(i), θ) = Φ(A(i,k)θ) as desired for our model (14). By
inspection, any protocol Π ∈ Aind(B,P) solving the probit regression problem provides an esti-
mator with the same error (risk) as the original linear regression problem via the construction (15).
Corollary 2 provides the desired lower bound. �

5 Proof sketches for main results

We now give an outline of the proof of each of our main results (Theorems 1 and 2), providing a
more detailed proof sketch for Proposition 2, since it displays techniques common to our arguments.

5.1 Broad outline

Most of our lower bounds follow the same basic strategy of reducing an estimation problem to
a testing problem. Following this reduction, we then develop inequalities relating the probability
of error in the test to the number of bits contained in the messages Yi sent from each machine.
Establishing these links is the most technically challenging aspect.

Our reduction from estimation to testing is somewhat more general than the classical reductions
(e.g., [22, 20]), since we do not map the original estimation problem to a strict test, but rather a
test that allows some errors. Let V denote an index set of finite cardinality, where ν ∈ V indexes a
family of probability distributions {P (· | ν)}ν∈V . For each member of this family, associate with a
parameter θν := θ(P (· | ν)) ∈ Θ, where Θ denotes the parameter space. In our proofs applicable to
d-dimensional problems, we set V = {−1, 1}d, and we index vectors θν by ν ∈ V . Now, we sample
V uniformly at random from V . Conditional on V = ν, we then sample X from a distribution
PX(· | V = ν) satisfying θν := θ(PX(· | ν)) = δν, where δ > 0 is a fixed quantity that we control.
We define dham(ν, ν

′) to be the Hamming distance between ν, ν′ ∈ V . This construction gives

‖θν − θν′‖2 = 2δ
√

dham(ν, ν′).

Fixing t ∈ R, the following lemma reduces the problem of estimating θ to finding a point ν ∈ V
within distance t of the random variable V . The result extends a result of Duchi and Wainwright
[8]; for completeness we provide a proof in Appendix H.

Lemma 1 Let V be uniformly sampled from V . For any estimator θ̂ and any t ∈ R, we have

sup
P∈P

E[‖θ̂ − θ(P )‖22] ≥ δ2(⌊t⌋+ 1) inf
ν̂
P (dham(ν̂, V ) > t) ,

where the infimum ranges over all testing functions.

Lemma 1 shows that minimax lower lower bound can be derived by showing that, for some t > 0
to be chosen, it is difficult to identify V within a radius of t. The following extension of Fano’s
inequality [8] can be used to control this type of error probability:

Lemma 2 Let V → X → V̂ be a Markov chain, where V is uniform on V . For any t ∈ R, we have

P(dham(V̂ , V ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nt

,

where Nt := max
ν∈V
|{ν′ ∈ V : dham(ν, ν

′) ≤ t}| is the size of the largest t-neighborhood in V .

Lemma 2 allows flexibility in the application of the minimax bounds from Lemma 1. If there is a
large set V for which it is easy to control I(V ;X), whereas neighborhoods in V are relatively small
(i.e., Nt is small), then we can obtain sharp lower bounds.
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In a distributed protocol, we have a Markov chain V → X → Y , where Y denotes the messages the

different machines send. Based on the messages Y , we consider an arbitrary estimator θ̂(Y ). For

0 ≤ t ≤ ⌈d/3⌉, we have Nt =
∑t

τ=0

(
d
τ

)
≤ 2
(
d
t

)
. Since

(
d
t

)
≤ (de/t)t, for t ≤ d/6 we have

log
|V|
Nt
≥ d log 2− log 2

(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√
6e

>
d

6

for d ≥ 12 (the case d < 12 can be checked directly). Thus, combining Lemma 1 and Lemma 2

(using the Markov chain V → X → Y → θ̂), we find that for t = ⌊d/6⌋,

sup
P∈P

E

[
‖θ̂(Y )− θ(P )‖22

]
≥ δ2(⌊d/6⌋+ 1)

(
1− I(Y ;V ) + log 2

d/6

)
. (16)

With inequality (16) in hand, it then remains to upper bound the mutual information I(Y ;V ), which
is the main technical content of each of our results.

5.2 Proof sketch of Proposition 2

Following the general outline of the previous section, let V be uniform on V = {−1, 1}d. Letting

0 < δ ≤ 1 be a positive number, for i ∈ [m] we independently sample X(i) ∈ R
d according to

P (X
(i)
j = νj | V = ν) =

1 + δ

2
and P (X

(i)
j = −νj | V = ν) =

1− δ

2
. (17)

Under this distribution, we can give a sharp characterization of the mutual information I(V ;Yi). In
particular, we show in Appendix B that under the sampling distribution (17), there exists a numerical
constant c such that

I(V ;Yi) ≤ cδ2I(X(i);Yi). (18)

Since the random variable X takes discrete values, we have

I(X(i);Yi) ≤ min{H(X(i)), H(Yi)} ≤ min{d,H(Yi)}.
Since the expected length of message Yi is bounded by Bi, Shannon’s source coding theorem [6]
implies that H(Yi) ≤ Bi. In particular, inequality (18) establishes a link between the initial distri-
bution (17) and the number of bits used to transmit information, that is,

I(V ;Yi) ≤ cδ2 min{d,Bi}. (19)

We can now apply the quantitative data processing inequality (19) in the bound (16). By the in-
dependence of the communication scheme, I(V ;Y1:m) ≤ ∑m

i=1 I(V ;Yi), and thus inequality (16)
simplifies to

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− cδ2

∑m
i=1 min{d,Bi}+ log 2

d/6

)
.

Assuming d ≥ 9, so 1 − 6 log 2/d > 1/2, we see that choosing δ2 = min{1, d
24c

∑
m
i=1 min{Bi,d}}

implies

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

4
=
⌊d/6⌋+ 1

4
min

{
1,

d

24c
∑m

i=1 min{Bi, d}

}
.

Rearranging slightly gives the statement of the proposition.
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Appendices

A Notation and proof setup

In these appendices, we provide the proofs of all our major results. Note that we prove the theorems
out of the order in which they are presented: many of the theorems build on one another, so we
present them in (rough) order of most basic to most complex. Before proceeding to the proofs
proper, we give notation.

Notation in proofs

The distributed machines are indexed by i ∈ {1, . . . ,m}. For machine i, it receives local dataset

Di. If Di contains multiple examples, we may denote the k-th example by X(i,k). If each example

has more than one coordinate, then the j-th coordinate is represented by X
(i,k)
j .

For a random variable X , we let PX denote the probability measure on X , so that PX(S) = P (X ∈
S), and we abuse notation by writing pX for the probability mass function or density of X , depend-
ing on the situation, so that pX(x) = P (X = x) in the discrete case and denotes the density of X
at x when pX is a density. For discrete random variable X , we let H(X) = −∑x pX(x) log pX(x)
denote the (Shannon) entropy, and for probability distributions P,Q on a set X , with densities p, q
with respect to a base measure µ, we write the KL-divergence as

Dkl (P ||Q) :=

∫

X
p(x) log

p(x)

q(x)
dµ(x).

The mutual information I(X;Y ) between random variables X and Y where Y has distribution PY

is defined as

I(X;Y ) := EPX
[Dkl (PY (· | X)||PY (·))] =

∫
Dkl (PY (· | X = x)||PY (·)) dPX(x).

Le Cam’s method

In low-dimensional settings, it is sometimes difficult to apply our incarnation of Fano’s inequality
as outlined in Section 5.1. In these settings, we use a minimax lower bound based on a two-point
family. In this setting, we let V = {−1, 1}, and define θν = θ(Pν) as usual. Then Le Cam’s
inequality (e.g. [22] or [19, Theorem 2.2]) guarantees that for V chosen uniformly as V = 1 or
V = −1 we have

inf
ν̂
P(ν̂ 6= V ) ≥ 1

2
− 1

2
‖P1 − P−1‖TV .

As a consequence, if by construction θν = δν, then Lemma 1 implies that

inf
θ̂

max
P∈{P1,P−1}

E[‖θ̂ − θ(P )‖22] ≥ δ2
(
1

2
− 1

2
‖P1 − P−1‖TV

)
. (20)

We use arguments based on Le Cam’s method (20) when the dimension d is small.

In addition, it will be useful to have a few simple upper bounds on the distance ‖P1 − P−1‖TV. We
claim that if we have the Markov chain V → Y , for any random variable Y , then for V chosen
uniformly in a set V = {ν, ν′},

‖PY (· | V = ν)− PY (· | V = ν′)‖2TV ≤ 2I(Y, V ). (21)

To see inequality (21), let Pν be shorthand for PY (· | V = ν). The triangle inequality implies that

‖Pν − Pν′‖TV ≤ ‖Pν − (1/2)(Pν + Pν′)‖TV +
1

2
‖Pν − Pν′‖TV ,

and similarly swapping the roles of ν′ and ν, whence

‖Pν − Pν′‖TV ≤ 2min{‖Pν − (1/2)(Pν′ + Pν)‖TV , ‖Pν′ − (1/2)(Pν′ + Pν)‖TV}.
By Pinsker’s inequality, we thus have the upper bound

‖Pν − Pν′‖2TV ≤ 2min{Dkl (Pν ||(1/2)(Pν + Pν′)) , Dkl (Pν′ ||(1/2)(Pν + Pν′))}
≤ Dkl (Pν ||(1/2)(Pν + Pν′)) +Dkl (Pν′ ||(1/2)(Pν + Pν′)) = 2I(Y ;V )

by the definition of mutual information.
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Tensorization of information

We also require a type of tensorization inequality in each of our proofs for independent protocols.

When Yi is constructed based only on X(i), we have

I(V ;Y1:m) =

m∑

i=1

I(V ;Yi | Y1:i−1) =

m∑

i=1

H(Yi | Y1:i−1)−H(Yi | V, Y1:i−1)

≤
m∑

i=1

H(Yi)−H(Yi | V, Y1:i−1)

=

m∑

i=1

H(Yi)−H(Yi | V ) =

m∑

i=1

I(V ;Yi) (22)

where we have used that conditioning reduces entropy and Yi is conditionally independent of Y1:i−1

given V .

B Proof of Proposition 2

The proof of this proposition follows the basic outline described in Section 5.

We first describe the distribution of the step V → X . Given ν ∈ V , we assume that each machine i
receives a d-dimensional sample X(i) with coordinates independently sampled according to

P (Xj = νj | ν) =
1 + δνj

2
and P (Xj = −νj | ν) =

1− δνj
2

.

Let δ ≤ 1
4 . Then θν = Eν [X], and moreover we have the likelihood ratio bound

P (Xj ∈ S | ν)
P (Xj ∈ S | ν′) ≤

1 + δ

1− δ
≤ exp

(
17

8
δ

)
, and exp

(
17

4
δ

)
≤ 1 + 8δ.

We now present a lemma that relates this ratio bound via a type of quantitative data processing
inequality. The lemma is actually somewhat more general than what we require, and we prove it in
Section B.1. The result is similar to recent results of Duchi et al. [10, Theorems 1 and 2], who show
similar strong data processing inequalities in the context of privacy-preserving data analysis. Our
proof, however, is different, as we have the Markov chain V → X → Y , and instead of a likelihood
ratio bound on the channel X → Y , we place a likelihood ratio bound on V → X .

Lemma 3 Let V be sampled uniformly at random from {−1, 1}d. For any (i, j), assume that X
(i)
j

is independent of {X(i)
j′ : j′ 6= j} ∪ {Vj′ : j

′ 6= j} given Vj . Let PXj
be the probability measure of

X
(i)
j and assume in addition that

sup
S∈σ(Xj)

PXj
(S | V = ν)

PXj
(S | V = ν′)

≤ exp(α).

Then
I(V ;Yi) ≤ 2(e2α − 1)2I(X(i);Yi).

Lemma 3 provides a quantitative data processing inequality relating the mutual information in the

channel X(i) → Yi to that in V → Yi. In particular, we find that

I(V ;Yi) ≤ 2
(
e(17/4)δ − 1

)2
I(X(i);Yi) ≤ 128δ2I(X(i);Yi).

This is the claimed strong data processing inequality (18), which almost completes our proof. To
complete the proof, note that θ(P (· | V = ν)) = E[Y | ν] = δν. Recalling the tensorization
inequality (22), we also have

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi) ≤ 128δ2
m∑

i=1

I(Yi;X
(i)).
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The remainder of the proof we break into two cases: when d ≥ 9 and when d < 9. For the case
d ≥ 9, our proof sketch in Section 5.2, beginning from inequality (18) with c = 128, completes the
proof. When d < 9, we use a slightly different argument. By a reduction to smaller dimensions, we
may assume without loss of generality that d = 1, and we set V = {−1, 1}. In this case, Le Cam’s
method (20) coupled with the subsequent information inequality (21) implies that

M
ind(θ,P, B1:m) ≥ δ2

(
1

2
− 1

2

√
2I(V ;Y1:m)

)
. (23)

Applying our previous bound I(V ;Y1:m) ≤ 128δ2
∑m

i=1 I(Yi;X
(i)), and noting that I(X(i);Yi) ≤

min{H(X(i)), H(Yi)} ≤ min{1, H(Yi)} since X(i) ∈ {−1, 1}, we obtain

M
ind(θ,P, B1:m) ≥ δ2

(
1

2
− 8

(
δ2

m∑

i=1

min{1, H(Yi)}
) 1

2

)
.

Since H(Yi) ≤ Bi by Shannon’s source coding theorem [6], setting

δ2 = min

{
1,

1

400
∑m

i=1 min{1, Bi}

}

completes the proof.

B.1 Proof of Lemma 3

Let Y = Yi; we suppress the dependence on the index i (and similarly let X = X(i) denote a single
fixed sample). We begin with the simple observation that, by the chain rule for mutual information,

I(V ;Y ) =

d∑

j=1

I(Vj ;Y | V1:j−1).

Using the definition of mutual information and non-negativity of the KL-divergence, we have

I(Vj ;Y | V1:j−1) = EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)

+Dkl

(
PVj

(· | V1:j−1)||PVj
(· | Y, V1:j−1)

)
| V1:j−1

]]
.

Now, we require an argument that builds off of a technical lemma we present in Appendix G,
Lemma 8. We claim that Lemma 8 implies that

|P (Vj = νj | V1:j−1, Y )− P (Vj = νj | V1:j−1)|
≤ 2(e2α − 1)min {P (Vj = νj | V1:j−1, Y ), P (Vj = νj | V1:j−1)}
×
∥∥PXj

(· | V1:j−1, Y )− PXj
(· | V1:j−1)

∥∥
TV

. (24)

Indeed, making the identification

Vj ↔ A, Xj ↔ B, V1:j−1 ↔ C, Y ↔ D

gives inequality (24), by our independence assumptions. Expanding our KL divergence bound, we
have

Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)

≤
∑

νj

(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

.

Now, using the elementary inequality for a, b ≥ 0 that

∣∣∣log a

b

∣∣∣ ≤ |a− b|
min{a, b} ,
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we have

(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

≤ (PVj
(νj | Y, V1:j−1)− PVj

(νj | V1:j−1))
2

min{PVj
(νj | Y, V1:j−1), PVj

(νj | V1:j−1)}
≤ 4(e2α − 1)2 min

{
PVj

(νj | Y, V1:j−1), PVj
(νj | V1:j−1)

}

×
∥∥PXj

(· | V1:j−1, Y )− PXj
(· | V1:j−1)

∥∥2
TV

by inequality (24).

Substituting this into our bound on KL-divergence, we obtain

I(Vj ;Y | V1:j−1)

= EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ 4(e2α − 1)2EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]
.

Using Pinsker’s inequality, we then find that

EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]

≤ 1

2
EV1:j−1

[
EY

[
Dkl

(
PXj

(· | Y, V1:j−1)||PXj
(· | V1:j−1)

)
| V1:j−1

]]
=

1

2
I(Xj ;Y | V1:j−1).

In particular, we have

I(Vj ;Y | V1:j−1) ≤ 2
(
e2α − 1

)2
I(Xj ;Y | V1:j−1) (25)

Lastly, we argue that I(Xj ;Y | V1:j−1) ≤ I(Xj ;Y | X1:j−1). Indeed, we have by definition2 that

I(Xj ;Y | V1:j−1)
(i)
= H(Xj)−H(Xj | Y, V1:j−1)

(ii)

≤ H(Xj)−H(Xj | Y, V1:j−1, X1:j−1)

(iii)
= H(Xj | X1:j−1)−H(Xj | Y,X1:j−1) = I(Xj ;Y | X1:j−1).

Here, equality (i) follows since Xj is independent of V1:j−1, inequality (ii) because conditioning
reduces entropy, and equality (iii) because Xj is independent of X1:j−1. Thus

I(V ;Y ) =

d∑

j=1

I(Vj ;Y | V1:j−1) ≤ 2(e2α − 1)2
d∑

j=1

I(Xj ;Y | X1:j−1) = 2(e2α − 1)2I(X1:d;Y ),

which completes the proof.

C Proof of Theorem 2

In this section, we represent the ith sample by an ni sample matrix X(i) ∈ R
d×ni , where the kth

column of X(i) is X(i,k) and jth row of X(i) is X
(i)
j . As usual, we assume the testing Markov

chain V → X(i) → Yi, as in the setup for our proofs. We assume that m ≥ 4, since otherwise the
interactive lower bound (Proposition 1) provides a stronger result.

We have the following lemma, which is an analogue of Lemma 3.

Lemma 4 Let V be sampled uniformly at random from {−1, 1}d. For any (i, j), assume that X
(i)
j

is independent of {X(i)
j′ : j′ 6= j} ∪ {Vj′ : j

′ 6= j} given Vj . Let PXj
be the probability measure of

X
(i)
j and assume in addition that

sup
S∈σ(Bj)

PXj
(S | V = ν)

PXj
(S | V = ν′)

≤ exp(α).

2We assume that X is discrete or has a density with respect to Lebesgue measure.
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Define the random variable Ej = 1 if X
(i)
j ∈ Bj and 0 otherwise. Then

I(V ;Yi) ≤ 2
(
e4α − 1

)2
I(X(i);Yi) +

d∑

j=1

H(Ej) +

d∑

j=1

P (Ej = 0).

For the next lemma, we assume that as usual V = {−1, 1}d, and the parameter θν has coordinates
given by (θν)j = νjδ. Moreover, we assume that each machine i has ni independent samples from

a N(νδ, σ2I) distribution, so Eν [X] = θν . For conciseness we define the shorthand

bi = min

{
128

a2

σ2
H(Yi), d

}
.

Lemma 5 Let a > 0 and δ > 0 be chosen such that
√
niaδ
σ2 ≤ 1.2564

4 for any i ∈ {1, . . . ,m}, and
let h(p) = −p log(p)− (1− p) log(1− p) be binary entropy. Then

I(V ;Yi) ≤
niδ

2

σ2
min

{
128

a2

σ2
H(Yi), d

}
+ dh

(
2 exp

(
− (a−√niδ)

2

2σ2

))

+ 2d exp

(
− (a−√niδ)

2

2σ2

)
.

(26)

With the bound (26) on the mutual information I(Yi;V ), we may now divide our proof into two
cases: when d ≥ 9 and d < 9. Let us being with d ≥ 9. Recalling our earlier minimax bound (16),
we have—since θ(Pν) = δν—that

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− I(Y1:m;V ) + log 2

d/6

)
.

If we can choose appropriate δ so that I(Y1:m;V ) < 3/10, then (since d ≥ 9), we will obtain that
the minimax error is lower bounded by δ2(⌊d/6⌋+ 1)/2, which will complete the proof.

Now, we consider each of the terms in the bound in Lemma 5 in turn, finding settings of δ and a so
that each is small. Specifically, recalling the assumption that m ≥ 2, we will find settings of δ and a
so that the sum is bounded by 3/10. We begin with the third term in the bound, where we note that
if

δ23 ≤
σ2

25 · 16 log(m)maxi ni
and a = 5σ

√
logm, (27a)

then the condition
√
niaδ
σ2 ≤ 1.2564

4 in Lemma 5 is satisfied. In addition, we have (a − √niδ3)
2 ≥

(5− 1/20)2σ2 logm ≥ 24σ2 logm, so

m∑

i=1

4 exp

(
− (a−√niδ3)

2

2σ2

)
≤ 4m exp (−12 logm) =

4

m11
< 10−6.

For the first term in the bound from Lemma 5, we note that with the identical choice of a =
5σ
√
n logm, by taking

δ21 ≤
dσ2

10
∑m

i=1 bini
, (27b)

we have that
∑m

i=1 2biniδ
2
1/(dσ

2) ≤ 1/5. Lastly, we have h(q) ≤ (6/5)
√
q for q ≥ 0. As a

consequence, we see that for δ22 chosen identically to the choice (27a) for δ3, we have

m∑

i=1

2h

(
2 exp

(
− (a−√niδ2)

2

2σ2

))
≤ 12m

5

√
2 exp

(
−24

4
logm

)
≤ 1

300
.

In particular, combining bounds (27a) and (27b), we see that if we choose

δ2 = min

{
1,

σ2

400 log(m)maxi ni
,

dσ2

10
∑m

i=1 bini

}
and a = 5σ

√
logm,
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then
m∑

i=1

2biniδ
2

dσ2
+ 2h

(
2 exp

(
− (a−√niδ)

2

2σ2

))
+ 4 exp

(
− (a−√niδ)

2

2σ2

)
<

3

10
.

This completes the proof for the case that d ≥ 9, since

bi ≤ min

{
128

a2

σ2
H(Yi), d

}
= min {25 · 128H(Yi) logm, d} ≤ min {25 · 128Bi logm, d}

by Shannon’s source coding theorem.

When d < 9, an appeal to Le Cam’s method (20), as in the proof of Proposition 2, and an identical
series of steps to bound the mutual information using inequality (26) (i.e., again applying inequali-
ties (27a)–(27b)) completes the proof.

C.1 Proof of Lemma 4

The proof is substantially similar to that of Lemma 3, but we exhibit some care since we must

condition on the event that X
(i)
j ∈ Bj . For notational simplicity, we again suppress all dependence

of X and Y on the machine index i.

We begin by noting that given Ej , the variable Vj is independent of V1:j−1, X1:j−1, Vj+1:d, and
Xj+1:d. Moreover, by the assumption in the lemma we have for any S ∈ σ(Bj) that

PXj
(S | V = ν,Ej = 1)

PXj
(S | V = ν′, Ej = 1)

=
PXj

(S | V = ν)

PXj
(Xj ∈ Bj | V = ν)

PXj
(Xj ∈ Bj | V = ν′)

PXj
(Xj ∈ S | V = ν′)

≤ exp(2α),

so we have the analogue of the bound (24) that

P (Vj = νj | V1:j−1, Y, Ej = 1)− P (Vj = νj | V1:j−1, Ej = 1)

≤ 2
(
e4α − 1

) ∥∥PXj
(· | V1:j−1, Y, Ej = 1)− PXj

(· | V1:j−1, Ej = 1)
∥∥
TV
· . . . (28)

min {P (Vj = νj | V1:j−1, Y, Ej = 1), P (Vj = νj | V1:j−1, Ej = 1)} .
Thus, proceeding as in the proof of Lemma 3 (specifically the argument preceding inequality (25)),
the expression (28) implies

I(Vj ;Y | V1:j−1, Ej = 1) ≤ 2
(
e4α − 1

)2
I(Xj ;Y | V1:j−1, Ej = 1). (29)

The bound (29) as stated conditions on Ej , which makes it somewhat unwieldy. We turn to removing
this conditioning. By the definition of (conditional) mutual information, we have

P (Ej = 1)I(Vj ;Y | V1:j−1, Ej = 1)

= I(Vj ;Y | V1:j−1, Ej)− I(Vj ;Y | V1:j−1, Ej = 0)P (Ej = 0)

= I(Vj ;Ej , Y | V1:j−1)− I(Vj ;Ej | V1:j−1)− I(Vj ;Y | V1:j−1, Ej = 0)P (Ej = 0)

Since conditioning reduces entropy,

I(Vj ;Ej , Y | V1:j−1) = H(Vj | V1:j−1)−H(Vj | Ej , Y, V1:j−1)

≥ H(Vj | V1:j−1)−H(Vj | Y, V1:j−1) = I(Vj ;Y | V1:j−1),

and noting that I(Vj ;Y | V1:j−1, Ej = 0) ≤ H(Vj) ≤ 1 and I(Vj ;Ej | V1:j−1) ≤ H(Ej) gives

P (Ej = 1)I(Vj ;Y | V1:j−1, Ej = 1) ≥ I(Vj ;Y | V1:j−1)−H(Ej)− P (Ej = 0). (30)

We now combine inequalities (30) and (29) to complete the proof of the lemma. By the definition
of conditional mutual information,

I(Xj ;Y | V1:j−1, Ej = 1) ≤ I(Xj ;Y | V1:j−1, Ej)

P (Ej = 1)
≤ I(Xj ;Y | V1:j−1)

P (Ej = 1)
.

Combining this with inequalities (30) and (29) yields

I(Vj ;Y | V1:j−1) ≤ H(Ej) + P (Ej = 0) + 2
(
e4α − 1

)2
I(Xj ;Y | V1:j−1).

Up to the additive terms, this is equivalent to the earlier bound (25) in the proof of Lemma 3;
proceeding mutatis mudandis we complete the proof.
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C.2 Proof of Lemma 5

Inequality (26) is the consequence of two intermediate upper bounds, which we prove separately:

I(V ;Yi) ≤
dniδ

2

σ2
, (31)

I(V ;Yi) ≤ 128
δ2a2

σ4
niH(Yi)

+ dh

(
2 exp

(
− (a−√niδ)

2

2σ2

))
+ 2d exp

(
− (a−√niδ)

2

2σ2

)
. (32)

To prove inequality (31), we note that V → X(i) → Yi forms a Markov chain. Thus, the data-
processing inequality [6] implies that

I(V ;Yi) ≤ I(V ;X(i)) ≤
ni∑

j=1

I(V ;X(i,j)) = niI(V ;X(i,1))

where the last inequality comes from the independence of the X(i,j). Let Pν denote the conditional

distribution of X(i,j) given V = ν. Then the convexity of the KL-divergence implies

I(V ;X(i,j)) ≤ 1

|V|2
∑

ν,ν′∈V
Dkl (Pν ||Pν′) =

δ2

2σ2

1

|V|2
∑

ν,ν′∈V
‖ν − ν′‖22 =

dδ2

σ2
.

This establishes inequality (31).

To prove inequality (32), we apply Lemma 4. First, we note that by taking a ratio of the densities of
two normals with ni independent samples, one with mean δ and the other with mean −δ, both with
variance σ2, we have

exp(− 1
2σ2

∑ni

l=1(xl − δ)2)

exp(− 1
2σ2

∑ni

l=1(xl + δ)2)
= exp

(
2δ

2σ2

ni∑

l=1

xl

)
≤ exp

(√
niδa

σ2

)

whenever |∑l xl| ≤
√
nia. As a consequence, we see that by taking the sets

Bj =

{
x ∈ R

ni :

∣∣∣∣
ni∑

l=1

xl

∣∣∣∣ ≤
√
nia

}
,

we satisfy the conditions of Lemma 4 with α =
√
niδa/σ

2. In addition, when α ≤ 1.2564, we have

exp(α) − 1 ≤ 2α, so under the conditions of the lemma, exp(4α) − 1 = exp(4
√
niδa/σ

2) − 1 ≤
8
√
niδa/σ

2. Recalling the definition of the event Ej = {X(i)
j ∈ Bj} from Lemma 4, we obtain

I(V ;Yi) ≤ 128
δ2a2

σ4
niI(X

(i);Yi) +

d∑

j=1

H(Ej) +

d∑

j=1

P (Ej = 0).

Comparing this inequality with inequality (32), we see that we must bound the probability of the
event Ej = 0.

Bounding P (Ej = 0) is not challenging, however. From standard Gaussian tail bounds, we have

for Zi distributed i.i.d. according to N(δ, σ2) that

P (Ej = 0) = P

(∣∣∣∣
ni∑

l=1

Zl

∣∣∣∣ ≥
√
nia

)

= P

( ni∑

l=1

(Zl − δ) ≥ √nia− nδ

)
+ P

( ni∑

l=1

(Zl − δ) ≤ √nia− nδ

)

≤ 2 exp

(
− (a−√niδ)

2

2σ2

)
.
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D Proof of Proposition 1

We prove the lower bound via a standard information-theoretic argument. Fix δ > 0, and let

V = [2logMΘ(2δ)] index a maximal 2δ-packing of Θ, which we identify by {θν}ν∈V ⊂ Θ. Fix
an (arbitrary) protocol Π for communication.

Following the standard reduction from (worst-case) estimation to testing [20, 22, 19], let V be

sampled uniformly from V . For messages Y = (Y1, . . . , YT ) sent by the protocol Π, let θ̂(Y ) denote

the estimator of θ based on Y and define V̂ = argminν∈V ‖θ̂(Y )− θν‖2. Then ‖θ̂(Y )− θν‖2 ≥ δ

if V̂ 6= V , and we have

max
ν∈V

E

[
‖θ̂(Y )− θν‖22

]
≥
∑

ν∈V
P(V = ν)E

[
‖θ̂(Y )− θV ‖22 | V = ν

]

≥
∑

ν∈V
δ2P(V = ν)P(V̂ 6= V | V = ν) = δ2P(V̂ 6= V ). (33)

By Fano’s inequality [6], the testing error (33) is lower bounded by

P(V̂ 6= V ) ≥ 1− I(V ;Y ) + 1

logMΘ(2δ)
≥ 1− H(Y ) + 1

logMΘ(2δ)
,

since H(Y ) ≥ I(V ;Y ). Shannon’s source coding theorem [6, Chapter 5] guarantees the lower
bound B ≥ H(Y ). Since the protocol Π was arbitrary, we have as an immediate consequence of
inequality (33) that

M
inter(θ,P, B) ≥ δ2

(
1− B + 1

logMΘ(2δ)

)
for any δ ≥ 0. (34)

Using inequality (34), the remainder of the proof is straightforward. Indeed, we have

1− B + 1

logMΘ(2δ)
≥ 1

2
iff

logMΘ(2δ)

B + 1
≥ 2 iff 2δ ≥ logM−1

Θ (2B + 2).

Setting δ = 1
2 logM

−1
Θ (2B + 2) thus gives the result of the theorem.

E Proof of Theorem 1

We follow a standard hypothesis testing setup (recall Section 5.1) to choose a variable V ∈ {−1, 1}
uniformly at random and then sample X(i) w.r.t. N(δV, σ2) independently on each of the m ma-
chines. However, in this situation, while the local samples are independent, the messages are not:
the sequence of random variables Y = (Y1, . . . , YT ) is generated such that the distribution of Yt is a

measurable function of (X(it), Y1:t−1) where it ∈ {1, . . . ,m} is the index the existing sample upon
which Yt is based. We assume without loss of generality that the sequence {i1, i2, . . . , } is fixed
in advance—if the choice of index it is based on Y1:t−1 and X , then we simply say there exists a
default value (say Yt =⊥) that indicates “nothing.”

Lemma 6 Assume that |V| = 2. Also assume that there is a set B such that for any ν, ν′ ∈ V we
have

sup

{
PX(i)(S | ν)
PX(i)(S | ν′)

∣∣∣∣S ∈ σ(B), ν, ν′ ∈ V
}
≤ eα. (35)

Let the random variable E = 1 if X(i) ∈ B for all i and E = 0 otherwise. Then

I(V ;Y ) ≤ 2
(
e4α − 1

)2
I(X;Y ) +H(E) + P (E = 0).

Consider the following scheme. Given ν ∈ {−1, 1}, we assume that each machine i receives n
sample X(i,k) (k = 1, . . . , n) independently sampled according to

X ∼ N(δν, σ2)
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Following the low dimension case of Proposition 2, inequality (23) implies that

if I(V ;Y ) ≤ 3

10
then sup

θ∈Θ
E[(θ̂ − θ)2] >

δ2

10
. (36)

We focus on showing the conditions for the implication (36) hold. By defining B = {x ∈ R
n :

|∑n
i=1 xi ≤

√
na} and the condition of Lemma 6 is satisfied with α =

√
nδa/σ2. If we assume

that α ≤ 1.2564 (which is satisfied by the assignment described below), then exp(α)− 1 ≤ 2α and
hence exp(4α)− 1 = exp(4

√
nδa/σ2)− 1 ≤ 8

√
nδa/σ2. We obtain

I(V ;Y ) ≤ 128
δ2na2

σ4
H(Y ) +H(E) + P (E = 0).

Let Ei be the random variable such that Ei = 1 if X(i) ∈ B and Ei = 0 otherwise. Since
E =

∏m
i=1 Ei, we have P (E = 0) ≤∑m

i=1 P (Ei = 0). We apply the last inequality in the proof of
Lemma 5 to upper bounds P (Ei = 0), which yields that

P (E = 0) ≤
m∑

i=1

P (Ei = 0) ≤ 2m exp

(
− (a−√nδ)2

2σ2

)
.

Consequently,

I(V ;Y ) ≤ 128
δ2na2

σ4
H(Y ) +mh

(
2 exp

(
− (a−√nδ)2

2σ2

))
+ 2m exp

(
− (a−√nδ)2

2σ2

)
,

(37)

where h(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function. We also used the
convexity of h in [0, 1/2], so that h(p) ≤ mh(p/m) for 0 ≤ p ≤ 1/2.

Given upper bound (37), we follow the proof of Theorem 2 to see that by choosing

δ2 = min

{
1,

σ2

400 log(m)n
,

σ2

10 · 128 · 36 log(m)nH(Y )

}
and a = 5σ

√
logm,

we obtain I(V ;Y ) ≤ 3
10 . Thus, there is a universal constant c such that

max
ν∈V

E[(θ̂ − θ)2] > cmin

{
1,

σ2

log(m)n
,

σ2

log(m)nH(Y )

}
.

Applying the source coding theorem to bound H(Y ) ≤ B completes the proof.

E.1 Proof of Lemma 6

Lemma 7 Consider the hypothesis testing problem described in the second paragraph of Ap-
pendix E, but assume that X(i) is sampled from another probability measure Q(· | ν) satisfying

sup

{
Q(S | ν)
Q(S | ν′) | S ∈ σ(X ), ν, ν′ ∈ V

}
≤ eα. (38)

Then we have
I(V ;Y ) ≤ 2

(
e2α − 1

)2
I(X;Y ).

With Lemma 7 established, the proof of Lemma 6 follows, mutatis mutandis, as in the proof of
Lemma 4 from Lemma 3. Thus, it only remains to prove Lemma 7.

Proof of Lemma 7 By the chain-rule for mutual information, we have that

I(V ;Y ) =

T∑

t=1

I(V ;Yt | Y1:t−1).

Let PYt
(· | Y1:t−1) denote the (marginal) distribution of Yt given Y1:t−1 and define PV (· | Y1:t) to

be the distribution of V conditional on Y1:t. Then we have by marginalization that

PV (· | Y1:t−1) =

∫
PV (· | Y1:t−1, yt)dPYt

(yt | Y1:t−1)
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and thus

I(V ;Yt | Y1:t−1) = EY1:t−1

[
EYt

[Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) | Y1:t−1]
]
. (39)

We now bound the above KL divergence using the assumptions in the lemma.

By the nonnegativity of the KL divergence, we have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1))

≤ Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

=
∑

ν∈V
(pV (ν | Y1:t−1)− pV (ν | Y1:t)) log

pV (ν | Y1:t−1)

pV (ν | Y1:t)

where pV denotes the p.m.f. of V . We claim that Lemma 8 implies that

|pV (ν | Y1:t−1)− pV (ν | Y1:t)|
≤ 2

(
e2nα − 1

)
min {pV (ν | Y1:t−1), pV (ν | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖TV .

(40)

Deferring the proof of inequality (40) to the end of this section, we give the remainder of the proof.
First, by a first-order convexity argument, we have that for any a, b > 0

log
a

b
≤ |a− b|

min{a, b} .

As a consequence, we find

(pV (ν | Y1:t−1)− pV (ν | Y1:t)) log
pV (ν | Y1:t−1)

pV (ν | Y1:t)
≤ (pV (ν | Y1:t−1)− pV (ν | Y1:t))

2

min{pV (ν | Y1:t−1), pV (ν | Y1:t)}
≤ 4

(
e2nα − 1

)2
min {pV (ν | Y1:t−1), pV (ν | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

by using inequality (40). Using the fact that pV is a p.m.f., we thus have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

∑

ν∈V
min {pV (ν | Y1:t−1), pV (ν | Y1:t)}

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV .

Using Pinsker’s inequality, we then find that

EY1:t−1

[
EYt

[
‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV | Y1:t−1

]]

≤ 1

2
EY1:t−1

[EYt
[Dkl (PX(it)(· | Y1:t)||PX(it)(· | Y1:t−1)) | Y1:t−1]] =

1

2
I(X(it);Yt | Y1:t−1).

Since conditioning reduces entropy and Y is discrete, we have

I(X(it);Yt | Y1:t−1) = H(Yt | Y1:t−1)−H(Yt | X(it), Y1:t−1)

≤ H(Yt | Y1:t−1)−H(Yt | X,Y1:t−1) = I(X;Yt | Y1:t−1).

This completes the proof of the lemma, since
∑T

t=1 I(X;Yt | Y1:t−1) = I(X;Y ) by the chain rule
for information.

Proof of inequality (40) To establish the inequality, we give a one-to-one correspondence between
the variables in Lemma 8 and the variables in Lemma 7. We make the following identifications:

V ↔ A X(it) ↔ B Y1:t−1 ↔ C Yt ↔ D.

For Lemma 8 to hold, we must verify conditions (43), (44), and (45). For condition (43) to hold, Yt

must be independent of V given {Y1:t−1, X
(it)}. Since the distribution of PYt

(· | Y1:t−1, X
(it)) is

measurable-{Y1:t−1, X
(it)}, Condition (45) is satisfied by the assumption in the lemma.
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Finally, for condition (44) to hold, we must be able to factor the conditional probability of Y1:t−1

given {V,X(it)} as

P (Y1:t−1 = y1:t−1 | V,X(it)) = Ψ1(V, y1:t−1)Ψ2(X
(it), y1:t−1). (41)

To prove this decomposition, notice that

P (Y1:t−1 = y1:t−1 | V,X(it)) =

t−1∏

k=1

P (Yk = yk | Y1:k−1, V,X
(it)).

For any k ∈ {1, . . . , t − 1}, if ik = it—that is, the message Yk is generated based on sample

X(it) = X(ik)—then Yk is independent of V given {X(it), Y1:k−1}. Thus, PYk
(· | Y1:k−1, V,X

(it))
is measurable-{X(it), Y1:k−1}. If the kth index ik 6= it, then Yk is independent of X(it) given

{Y1:k−1, V } by construction, which means PYk
(· | Y1:k−1, V,X

(it)) = PYk
(· | Y1:k−1, V ). The

decomposition (41) thus holds, and we have verified that each of the conditions of Lemma 8 holds.
We thus establish inequality (40).

F Proof of Corollary 1

We prove Corollary 1 in two parts: the upper bound (for part (a)) and lower bound (for part (b)).
We prove the upper bound by exhibiting an interactive protocol Π∗ and prove the lower bound by
applying Proposition 1.

Upper bound on the minimax risk We consider the following communication protocol Π∗ ∈
Ainter(B,P):

1. Machine i ∈ {1, . . . ,m} computes its local minimum a(i) = min{X(i,k) : k = 1, . . . , n}.
2. Machine 1 broadcasts a(1) using 2 log(mn) bits. Upon receiving the broadcast, all ma-

chines initialize global minimum variables s← a(1).

3. In the order i = 2, 3, . . . ,m, machine i performs the following operations:

(i) Check if a(i) < s. If so, machine i performs the update s ← a(i) and broadcasts s,
otherwise it does nothing.

(ii) All other machines update their local s after receiving machine i’s update. All real
numbers in the message are rounded down to 2 log(mn)-bit discrete values.

4. One machine outputs θ̂ = s+ 1.

According to the protocol described above, Π∗ computes a global minima

s = min
{
X(i,k) : i = 1, . . . ,m; k = 1, . . . , n

}

to accuracy ofO(1/(mn)2) since because real numbers are encoded with 2 log(mn) bits. Then clas-

sical convergence analysis [14] yields estimator θ̂ = s + 1 achieves minimax optimal convergence

rate E[‖θ̂ − θ‖22] . 1/(mn)2.

To analyze the communication complexity of the protocol Π∗, we study Steps 2–3. In Step 2,
machine 1 sends 2 log(mn) bits as message Y1. In Step 3, machine i sends 2 log(mn) bits only if

a(i) < min{a(1), · · · , a(i−1)}. By inspection, this event happens with probability bounded by 1/i,
so we find that the expected length of message Yi is

E[Li] ≤
2 log(mn)

i
.

Putting all pieces together, we obtain that

E[L] =

m∑

i=1

E[Li] ≤ 2 log(mn) +

m∑

i=2

2 log(dmn)

i
≤ 2 log(mn) + 2 ln(m) log(mn).
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A B

C D

Figure 1: Graphical model for Lemma 8

Lower bound on the minimax risk To prove the lower bound, we simply evaluate packing en-
tropies by using a volume argument [3]. Since Θ = [−1, 1], the size of a maximal 2δ-packing can
be lower bounded by

2logMΘ(2δ) ≥ Volume(Θ)

Volume({x ∈ R : ‖x‖2 ≤ 2δ}) ≥
1

2δ
. (42)

Taking logarithms and inverting B = logMΘ(δ) = logMΘ(1/(mn)) yields the lower bound.

G Total variation contraction

In this section, we prove a technical lemma that is essential to the proof of our results.

Consider four random variables A,B,C,D, of which we assume that A, C, and D have discrete
distributions. We denote the conditional distribution of A given B by PA|B and their full joint distri-
bution by PA,B,C,D. We assume that the random variables have conditional indpendence structure
specified by the graphical model in Figure 1, that is, that we can write the joint distribution as the
product

PA,B,C,D = PAPB|APC|A,BPD|B,C . (43)

We denote the domain of a random variable by the identical calligraphic letter, so A ∈ A, B ∈ B,
and so on. We write σ(A) for the sigma-field on A with respect to which our measures are defined.
Sometimes we write PA(· | B) for the conditional distribution of A given B. In addition to the
conditional independence assumption (43), we assume that the conditional distribution of C given
A,B factorizes in the following specific form. There exist functions Ψ1 : A × σ(C) → R+ and
Ψ2 : B × σ(C)→ R+ such that for any (measureable) set S in the range C of C, we have

PC(S | A,B) = Ψ1(A,S)Ψ2(B,S). (44)

Since C is assumed discrete, we abuse notation and write P (C = c | A,B) = Ψ1(A, c)Ψ2(B, c).
Lastly, we assume that for any a, a′ ∈ A, we have the following likelihood ratio bound:

sup
S∈σ(B)

PB(S | A = a)

PB(S | A = a′)
≤ exp(α). (45)

Lemma 8 Under assumptions (43), (44), and (45), the following inequality holds:

|P (A = a | C,D)− P (A = a | C)|
≤ 2

(
e2α − 1

)
min {P (A = a | C), P (A = a | C,D)} ‖PB(· | C,D)− PB(· | C)‖TV .

Proof: By assumption, A is independent of D given {B,C}. Thus we may write

P (A = a | C,D)− P (A = a | C) =

∫
P (A = a | B = b, C) (dPB(b | C,D)− dPB(b | C))

Combining this equation with the inequality
∫

P (A = a | C) (dPB(b | C,D)− dPB(b | C)) = 0
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we find that

P (A = a | C,D)− P (A = a | C)

=

∫
(P (A = a | B = b, C)− P (A = a | C)) (dPB(b | C,D)− dPB(b | C)) .

Using the fact that |
∫
f(b)dµ(b)| ≤ supb{|f(b)|}

∫
|dµ(b)| for any signed measure µ on B, we

conclude from the previous equality that for any version PA(· | B,C) of the conditional probability
of A given {B,C} that since

∫
|dµ| = ‖µ‖TV,

|P (A = a | C,D)− P (A = a | C)|
≤ 2 sup

b∈B
{|P (A = a | B = b, C)− P (A = a | C)|} ‖PB(· | C,D)− PB(· | C)‖TV .

Thus, to prove the lemma, it is sufficient to show (for some version of the conditional distribution3

PA(· | B,C)) that for any b ∈ B
|P (A = a | B = b, C)− P (A = a | C)| ≤ (e2α − 1)min{P (A = a | C), P (A = a | C,D)}.

(46)

To prove this upper bound, we consider the joint distribution (43) and likelihood ratio bound (46).
The distributions {PB(· | A = a)}a∈A are all absolutely continuous with respect to one another by
assumption (46), so it is no loss of generality to assume that there exists a density pB(· | A = a) for
which P (B ∈ S | A = a) =

∫
pB(b | A = a)dµ(b), for some fixed measure µ, and for which the

ratio pB(b | A = a)/pB(b | A = a′) ∈ [e−α, eα] for all b. By elementary conditioning we have for
any Sb ∈ σ(B) and c ∈ C

P (A = a | B ∈ Sb, C = c)

=
P (A = a,B ∈ Sb, C = c)

P (B ∈ Sb, C = c)

=
P (B ∈ Sb, C = c | A = a)P (A = a)∑

a′∈A P (A = a′)P (B ∈ Sb, C = c | A = a)

=
P (A = a)

∫
Sb

P (C = c | B = b, A = a)pB(b | A = a)dµ(b)
∑

a′∈A P (A = a′)
∫
Sb

P (C = c | B = b, A = a′)pB(b | A = a′)dµ(b)
,

where for the last equality we used the conditional independence assumptions (43). But now we
recall the decomposition formula (44), and we can express the likelihood functions by

P (A = a | B ∈ Sb, C = c) =
P (A = a)

∫
Sb

Ψ1(a, c)Ψ2(b, c)pB(b | A = a)dµ(b)
∑

a′ P (A = a′)
∫
Sb

Ψ1(a′, c)Ψ2(b, c)pB(b | A = a′)dµ(b)
.

As a consequence, there is a version of the conditional distribution of A given B and C such that

P (A = a | B = b, C = c) =
P (A = a)Ψ1(a, c)pB(b | A = a)∑

a′ P (A = a′)Ψ1(a′, c)pB(b | A = a′)
. (47)

Define the shorthand

β =
P (A = a)Ψ1(a, c)∑

a′∈A P (A = a′)Ψ1(a′, c)
.

We claim that

e−αβ ≤ P (A = a | B = b, C = c) ≤ eαβ. (48)

Assuming the correctness of bound (48), we establish inequality (46). Indeed, since P (A = a |
C = c) is a weighted average of P (A = a | B = b, C = c), we also have the same upper and lower
bound for P (A = a | C), that is

e−αβ ≤ P (A = a | C) ≤ eαβ,

3If P (A = a | C) is undefined, we simply set it to have value 1 and assign P (A = a | B,C) = 1 as well.
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while the conditional independence assumption that A is independent of D given B,C (recall Fig-
ure 1 and the product (43)) implies

P (A = a | C = c,D = d) =

∫

B
P (A = a | B = b, C = c,D = d)dPB(b | C = c,D = d)

=

∫

B
P (A = a | B = b, C = c)dPB(b | C = c,D = d),

and the final integrand belongs to β[e−α, eα]. Combining the preceding three displayed expressions,
we find that

|P (A = a | B = b, C)− P(A = a | C)| ≤
(
eα − e−α

)
β

≤
(
eα − e−α

)
eα min {P (A = a | C), P (A = a | C,D)} .

This completes the proof of the upper bound (46).

It remains to prove inequality (48). We observe from expression (47) that

P (A = a | B = b, C) =
P (A = a)Ψ1(a,C)

∑
a′∈A P (A = a′)Ψ1(a′, C)pB(b|A=a′)

pB(b|A=a)

.

By the likelihood ratio bound (45), we have pB(b | A = a′)/pB(b | A = a) ∈ [e−α, eα], and
combining this inequality with the above equation yields inequality (48). �

H Proof of Lemma 1

For any ∆ > 0 and any estimator θ̂, if V is a random variable uniformly chosen from V , then we
have

max
ν∈V

E

[
‖θ̂ − θν‖22

]
≥ E

[
‖θ̂ − θV ‖22

]
≥ E

[
∆21(‖θ̂−θV ‖2≥∆)

]
= ∆2

P(‖θ̂ − θV ‖2 ≥ ∆). (49)

We now lower bound P(‖θ̂ − θV ‖2 ≥ ∆) by a testing-like probability claimed in the lemma. Define
the testing function

ν̂ := argmin
ν∈V

‖θν − θ̂‖2.

The triangle inequality implies that

‖θν̂ − θV ‖2 ≤ ‖θν̂ − θ̂‖2 + ‖θ̂ − θV ‖2 ≤ 2‖θ̂ − θV ‖2 (50)

Recall that θν = δν where ν ∈ {−1, 1}d, we have ‖θν̂ − θV ‖2 = 2δ
√
dham(ν̂, V ). Combining this

equation with inequality (50) implies that

if dham(ν̂, V ) > t then ‖θ̂ − θV ‖22 ≥ δ2(⌊t⌋+ 1).

Consequently,

P
(
‖θ̂ − θV ‖22 ≥ δ2(⌊t⌋+ 1)

)
≥ P (dham(ν̂, V ) > t). (51)

Combining inequality (49) and (51) with ∆2 = δ2(⌊t⌋+ 1), we have

max
ν∈V

E

[
‖θ̂ − θν‖22

]
≥ δ2(⌊t⌋+ 1)P (dham(ν̂, V ) > t).

On the righthand side of the above inequality, taking infinium over all testing functions establishes
the result.
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