
A Algorithm for Tree based Aggregation Protocol

Algorithm 2 Private Tree based aggregation protocol
Input: Vectors: 〈z1, · · · , zT ∈ Rp〉 (in an online sequence), µ : L2-norm bound on zi’s, privacy

parameter: ε.
1: Initialization: Define a binary tree of size 2dlog2Te+1 − 1 with leaves z1, · · · , zT .
2: Online Phase: At each iteration t ∈ [T ], execute Steps 3 to 18.
3: Accept zt from the data stream.
4: Let L = {zt → · · · → root} be the path from zt to the root.
5: Tree update: Steps 6 till10.
6: Λ← First node in L that is a left-child in A. Let LΛ = {at → · · · → Λ}.
7: for all α in L do
8: α← α+ zt.

9: If α ∈ LΛ, then α← α+n, where n ∼ λe−
‖n‖2ε

µ(dlog2Te+1) and λ is the proportionality constant.
10: end for
11: Output private partial sum: Steps 12 till 18.
12: Initialize vector v ∈ Rp to zero. Let b← dlog2T e+ 1-bit binary representation of t.
13: for all i in [dlog2T e+ 1] do
14: if bit bi = 1 then
15: If i-th node in L (denoted by L(i)) is the left child in A, then v ← v + L(i),

else v ← v + left sibling(L(i)).
16: end if
17: end for
18: return The noisy partial sum v.

B Privacy and Utility Guarantees of PFTAL Algorithm (Algorithm 1)

B.1 Privacy guarantee for Algorithm 1

Proof of Theorem 3. Notice that given v̂2, · · · , v̂t+1 (where v̂t+1 is the noisy version of vt+1 =
t∑

τ=1
5ft(ŵτ )), the outputs ŵ2, · · · ŵt+1 are completely determined. Hence, it suffices to argue for

the privacy of v̂2, · · · , v̂T . Let F and F ′ be any two sequences of L-Lipschitz, H-strongly convex
cost functions differing in exactly one cost function. Let V̂ = 〈v2, · · · , vT 〉. For ε-differential
privacy, we need to argue that for any set S = 〈s2, · · · , sT 〉 of T vectors, the following is true.

Pr[V̂ (F ) = S]

Pr[V̂ (F ′) = S]
=

T∏
t=2

Pr[v̂t(F ) = st|v̂2 = s2, · · · , v̂t−1 = st−1]

Pr[v̂t(F ′) = st|v̂2 = s2, · · · , v̂t−1 = st−1]
≤ eε (10)

Now in (10), each v̂t is computed using the tree A (see Algorithm 2) and hence fixing the values of
the nodes in the treeA completely determines V (F ). LetA(F ) = 〈α1(F ), · · ·α(2dlgTe+1−1)(F )〉 be
the in-order tree traversal ofA(F ). To prove (10), it suffices to prove that for all possible assignments
A = 〈α1, · · · 〉 to the tree, the following holds.

Pr[A(F ) = A]

Pr[A(F ′) = A]
=

(2dlog2Te+1−1)∏
t=1

Pr[αt(F ) = αt|α1(F ) = α1, · · · , αt−1(F ) = αt−1]

Pr[αt(F ′) = αt|α1(F ′) = α1, · · · , αt−1(F ′) = αt−1]
≤ eε

(11)
In the above ratio, changing one entry in the data set F affects only (dlog2T e + 1) terms in the
product in (11). By the amount of noise added to each node of the tree, each of the ratio in the

product of (11) is bounded by e
(

ε
dlog2Te+1

)
. (See Line 9 in Algorithm 2). Here we have used the fact

that for any vector w ∈ C, ‖5 ft(w)‖2 is at most L (by the Lipschitz property) and ‖5 f̃t(w)‖2 (in
(3)) is at most L+H‖C‖2 (by the bound on the convex set C).

Hence, we can conclude that in overall, Algorithm 1 is ε-differentially private.
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B.2 Regret guarantee for Algorithm 1

Proof of Theorem 4. Recall that regret is given by the following expression

Regret(T ) =

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w). (12)

We will prove the required regret bound via the following three stage argument. We will first show
in Lemma 7 that the regret in (12) is upper bounded by the regret for the cost functions f̃t (see (3)
for notation). Next in Lemma 8, we show that the regret for f̃t’s with respect to ŵt’s is not “too
much” higher compared to the regret with w̃t’s (see (4) for notation). Finally we bound the regret
with respect to w̃t’s.

Lemma 7.
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w).

Proof. First notice that by definition, ft(ŵt) = f̃t(ŵt). Also, notice that f̃t(w) ≤ ft(w) for all

w ∈ Rp. There fore, i)
T∑
t=1

ft(ŵt) =
T∑
t=1

f̃t(ŵt) and ii) min
w∈C

T∑
t=1

f̃t(w) ≤ min
w∈C

T∑
t=1

ft(w).

This completes the proof.

In the next lemma we show that the regret with the outputs ŵ1, · · · , ŵT is not much different from
with respect to w̃1, · · · , w̃T .

Lemma 8. Under the randomness of Algorithm 1, the following is true.

E

[
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w)

]
≤ E

[
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w)

]
+

4p(L+H‖C‖2)2 log2.5 T

εH
.

Proof. Recall that w̃t+1 = arg min
w∈C

J(w), where J(w) = 〈
t∑

τ=1
5ft(ŵτ ), w〉 + H

2

t∑
τ=1
‖w − ŵτ‖22.

We can equivalently write ŵt+1 = arg min
w∈C

J(w) + 〈n,w〉, where n is the noise added in the noisy

computation of vt+1 =
t∑

τ=1
5ft(ŵτ ) in Line 9 (via the tree-aggregation scheme). By the Ht-strong

convexity property of J(w), we have

‖w̃t+1 − ŵt+1‖2 ≤
2‖n‖2
Ht

. (13)

Now, since ft is assumed to be L-Lipschitz and the L2 norm of any vector in C is bounded by ‖C‖2,
it directly follows that f̃t is (L + H‖C‖2)-Lipschitz. Therefore, from (13) and using the Lipschitz
property of f̃t, we have

|f̃t(ŵt)− f̃t(w̃t)| ≤
2‖n‖2(L+H‖C‖2)

Ht
.

Therefore,

E

[
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w)

]
≤

T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) +
2E[‖n‖2](L+H‖C‖2)

H

T∑
t=1

1

t

≤
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) +
2E[‖n‖2](L+H‖C‖2) log T

H
.

(14)
(15)
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To bound E[‖n‖2], notice that n is formed by adding at most dlog T e + 1 vectors whose
norms are drawn from the Gamma distribution with scale p and shape (dlog Te+1)(L+H‖C‖2)

ε .

Therefore,E[‖n‖2] ≤ 4p log1.5 T (L+H‖C‖2)
ε .

Plugging in the above bound in (15), we complete the proof.

Next, we prove the following fact which will be useful in proving the regret bound. In the on-
line learning literature this fact is also called the bound on regret via the bound on forward regret
[HAK07].

Fact 9.
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) ≤
T∑
t=1

f̃t(w̃t)− f̃t(w̃t+1).

Proof. We prove the above fact by proving that
T∑
t=1

f̃t(w̃t+1) ≤ min
w∈C

T∑
t=1

f̃t(w). We prove this by

induction. Clearly the base case is true by definition of w̃2 (see (4)). Now assume correctness for
T − 1, and

T∑
t=1

f̃t(w̃t+1) ≤ min
w∈C

T−1∑
t=1

f̃t(w) + f̃T (wT+1) (by induction hypothesis)

≤
T−1∑
t=1

f̃t(wT+1) + f̃T (wT+1)

= min
w∈C

T∑
t=1

f̃t(w) (by definition).

Let ζ =
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w). Using Fact 9 above and the Lipschitz property of f̃t’s, we can

conclude that ζ ≤ (L+H‖C‖2)
T∑
t=1
‖w̃t − w̃t+1‖2. All we now need to do is bound ‖w̃t − w̃t+1‖2

for all t.

Claim 10. For all t, ‖w̃t − w̃t+1‖2 ≤ 2(L+H‖C‖2)
Ht .

Proof. Notice that

w̃t = arg min
w∈C

t−1∑
τ=1

f̃τ (w)

and

w̃t+1 = arg min
w∈C

t−1∑
τ=1

f̃τ (w) + f̃t(w).

Let J(w) =
t−1∑
τ=1

f̃τ (w) + ft(w). Therefore,

J(w̃t) ≥ J(w̃t+1) +
Ht

2
‖w̃t − w̃t+1‖22

⇔ Ht

2
‖w̃t − w̃t+1‖22 ≤

(
t−1∑
τ=1

f̃τ (w̃t)−
t−1∑
τ=1

f̃τ (w̃t+1)

)
+ f̃t(w̃t)− f̃t(w̃t+1)

⇔ Ht

2
‖w̃t − w̃t+1‖22 ≤ ft(w̃t)− ft(w̃t+1) ≤ (L+H‖C‖2)‖w̃t − w̃t+1‖2

⇔ ‖w̃t − w̃t+1‖2 ≤
2(L+H‖C‖2)

Ht
.
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Using the above claim and Fact 9, we can conclude that

T∑
t=1

f̃t(w̃t)− f̃t(w̃t+1) ≤ 2(L+H‖C‖2)2 log T

H
.

Combining the above expression with Lemma 8, we obtain the required regret bound.

C Results for General Convex Costs

In this section we will adapt the Private Follow the Approximate Leader (Algorithm 1) for H-
strongly convex costs from previous section to the to the case of general convex functions. The idea
is to add a L2-regularizer to the cost functions while running the PFTAL algorithm, and then tune H
for the optimal regularization parameter. To be more precise, for every cost function ft, we will have
Algorithm 1 work with the cost function ht(w) = ft(w) + H

2 ‖w‖
2
2 (instead of ft). Clearly, each

ht is now H-strongly convex. So, the privacy and regret guarantees in Section 2.1.1 will hold for
the cost sequence h1, · · · , hT . Notice that the following is always true for any sequence of vectors
w1, · · · , wT ∈ C, since the diameter of the convex set C is bounded.

T∑
t=1

ft(wt)−min
w∈C

T∑
t=1

ft(w) ≤

(
T∑
t=1

ht(wt)−min
w∈C

T∑
t=1

ht(w)

)
+
HT

2
‖C‖22. (16)

If ŵ1, · · · , ŵT be the sequence of outputs of Algorithm 1 on the cost sequence h1, · · · , hT , then
(17) follows from Theorem 4 and (16).

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ E

[
T∑
t=1

ht(ŵt)−min
w∈C

T∑
t=1

ht(w)

]
+
HT

2
‖C‖22

= O

(
p(L+H‖C‖2)2 log2.5 T

εH

)
+
HT

2
‖C‖22. (17)

Theorem 11 (Regret guarantee). Let f1, · · · , fT be L-Lipschitz convex functions and let C ⊆ Rp
be a fixed convex set. Setting the parameter H in the regularizer H

2 ‖w‖
2
2 optimally, we have the

following regret bound.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
= O

√p log2.5 T (L+
√

p log2.5 T
εT ‖C‖2)2

ε

√
T

 . (18)

The expectation is over the randomness of the algorithm and the adversary.

Proof. Setting H =
√

p log2.5 T
εT in the right hand side of (17), we get the regret guarantee in (18)

for the sequence of outputs ŵ1, · · · , ŵT .

Notice that the regret bound in (18) is a factor or
√
p log2.5 T/ε worse than the non-private regret

bound of O(
√
T ), assuming other parameters to be constants and T = ω

(
p
ε

)
. The assumption on T

is benign, since if T = O
(
p
ε

)
, then the regret guarantee in (18) will no longer be sublinear.

We believe it is unlikely that one can remove the explicit dependence on the dimensionality in the
regret bound for general convex costs, while preserving differential privacy.

D Regret Guarantees for Follow The Approximate Leader (Bandit version)

Theorem 12 (Regret guarantee). Let Bp be a d-dimensional unit ball centered at the origin and C
be a convex set such that rBp ⊆ C ⊆ RBp (where 0 < r < R).

13



• Adaptive adversary: Setting β = p2/3

T 1/4 and ξ = β/r , the expected regret is at most

Õ

(
p2/3T 3/4

(
BR+

(
1 +

R

r

)
L+

(H‖C‖2 +B)2

H

))
.

• Oblivious adversary: Setting β = p2/3

T 1/3 and ξ = β/r, the expected regret is at most

Õ

(
p2/3T 2/3

(
(1 +R/r)L+

(H‖C‖2 +B)2

H

))
.

The expectation is over the randomness of the algorithm and the adversary.

D.1 Proof: Regret guarantee for Adaptive Adversary

Proof. We prove the regret bound in the following three stages: i) In Lemma 13, we show that the
regret for the output sequence ŵ1, · · · , ŵt with respect to the original cost functions ft’s is not much
higher compared to f̂t’s with parameter vectors w̃1, · · · , w̃T (defined in (8)), ii) We show in Lemma
14 that the regret of f̂t’s with the parameter vectors w̃t’s is at most the regret of the cost functions
ĝt’s with the same parameter vectors (defined in (6)). iii) In Lemma 15, we directly bound the regret
on ĝt’s with parameter vectors w̃t’s.

Lemma 13. For any sequence of parameter vectors w̃1, · · · , w̃T from the convex set (1 − ξ)C and
vectors ŵ1, · · · , ŵT such that for all t ∈ [T ], ŵt = w̃t + βut (where ut is a uniform vector drawn
from the unit sphere Sp−1), the following is true.

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

f̂t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

f̂t(w) + 3βLT + ξRLT

Proof. First notice that for any w ∈ C, the following is true for any t ∈ [T ] by the Lipschitz property
of ft’s. ∣∣∣ft(w)− f̂t(w)

∣∣∣ = |ft(w)− Ev∼Bp [ft(w + βv)]|

= |Ev [ft(w)− ft(w + βv)]|
≤ Lβ · Ev [‖v‖2] ≤ βL (19)

Now for any w ∈ C, by the Lipschitz property of ft, we can obtain the following bound |ft(w) −

ft((1 − ξ)w)| ≤ ξLR. This means that min
w∈(1−ξ)C

T∑
t=1

ft(w) ≤ min
w∈C

T∑
t=1

ft(w) + ξLRT . Therefore,

by (19) we directly have

min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤ min
w∈C

T∑
t=1

ft(w) + βLT + ξRLT (20)

By Lipschitz property of ft, we have |ft(ŵt) − ft(w̃t)| ≤ βL. Additionally, by (22) we have
|f̂t(w̃t)− ft(w̃t)| ≤ βL. Combining these two observations, we get

T∑
t=1

ft(ŵt) ≤
T∑
t=1

f̂t(w̃t) + 2βLT (21)

Combining (20) and (21) we get the required error guarantee.

Lemma 14. For any sequence of parameter vectors w̃1, · · · , w̃T from the convex set (1 − ξ)C, the
following is true.

T∑
t=1

f̂t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

14



Proof. First notice that by definition, f̂t(w̃t) = ĝt(w̃t). Also, notice that ĝt(w) ≤ f̂t(w) for all

w ∈ Rp. There fore, i)
T∑
t=1

f̂t(w̃t) =
T∑
t=1

ĝt(w̃t) and ii) min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤ min
w∈(1−ξ)C

T∑
t=1

ĝt(w).

This completes the proof.

Using the above lemma we directly get (22) below. In order to obtain the final regret guarantee, we

just need to bound
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w) and appropriately set β and ξ.

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w) + 3βLT + ξRLT (22)

Lemma 15. E
[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ 2(H‖C‖2+pB/β)2

H log T + 2BR
√
T p
β . The ex-

pectation is over the random unit vectors u1, · · · , uT .

Proof. Since g̃t’s are H-strongly convex functions and
(
H‖C‖2 + p

βB
)

-Lipschitz, from the regret
analysis in Lemma 8 we directly have the following.

T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w) ≤
2(H‖C‖2 + p

βB)2

H
log T (23)

Let w∗ = arg min
w∈(1−ξ)C

T∑
t=1

ĝt(w). Therefore by (23), we have (24).

T∑
t=1

g̃t(w̃t)−
T∑
t=1

g̃t(w
∗) ≤

2(H‖C‖2 + p
βB)2

H
log T (24)

Notice that

E

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
= E

[
T∑
t=1

ĝt(w̃t)−
T∑
t=1

ĝt(w
∗)

]

= E[

T∑
t=1

g̃t(w̃t)]− E[

T∑
t=1

ĝt(w
∗)] (25)

The last inequality follows from the observation that Eut [g̃t(w)] = ĝt(w) for all w ∈ C. Let
αt = 5Ev∼Bp [ft(w̃t + βv)]− p

β ft(w̃t + βut)ut. For any w ∈ (1− ξ)C,∣∣∣∣∣
T∑
t=1

(ĝt(w)− g̃t(w))

∣∣∣∣∣ =

∣∣∣∣∣〈w,
T∑
t=1

αt〉

∣∣∣∣∣ ≤ R‖
T∑
t=1

αt‖2

Now,

E

[
‖

T∑
t=1

αt‖2

]2

≤ E

[
‖

T∑
t=1

αt‖22

]

=

T∑
t=1

E[‖αt‖22] + 2
∑
t<t′

E [αtαt′ ] ≤ 4T
p2

β2
B2

The last inequality is true because E [αtαt′ ] = 0. Therefore,

E

[
min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≥ E

[
min

w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
− 2p

β
BR
√
T
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Using this bound in (25), we have

E

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ E

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+

2p

β
BR
√
T

Plugging in the bound from (24) completes the proof.

Combining Lemmas 13, 14 and 15, we obtain the following.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ 3βLT + ξRLT +

2(H‖C‖2 + p
βB)2

H
log T +

2p

β
BR
√
T

Setting, β = p2/3

T 1/4 and ξ = β
r gives the required regret bound.

D.2 Proof: Regret guarantee for Oblivious Adversary

Proof. The proof of this theorem is similar to the proof with adaptive adversary, except we will be
prove a tighter bound corresponding to Lemma 15.

Lemma 16. E
[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ 2(H‖C‖2+pB/β)2

H log T . The expectation is

over the random unit vectors u1, · · · , uT .

Proof. Similar to the proof of Lemma 15, let w∗ = arg min
w∈(1−ξ)C

T∑
t=1

ĝt(w). Notice that

Eut [g̃t(w)] = ĝt(w) for all w ∈ C. Therefore,

E

[
T∑
t=1

ĝt(w̃t)−
T∑
t=1

ĝt(w
∗)

]
= E

[
T∑
t=1

g̃t(w̃t)

]
− E

[
T∑
t=1

g̃t(w
∗)

]

= E

[
T∑
t=1

g̃t(w̃t)−
T∑
t=1

g̃t(w
∗)

]

≤ E

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
(26)

Now, using the bound from (23) in (26), we get the required regret bound.

Combining Lemmas 13, 14 and 16, we obtain the following.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ 3βLT + ξRLT +

2(H‖C‖2 + p
βB)2

H
log T

Setting, β = p2/3

T 1/3 and ξ = β
r gives the required regret bound.

E Algorithm and Regret Guarantees for Private Follow The Approximate
Leader

(Bandit version)

E.1 Private Follow The Approximate Leader (Bandit version) Algorithm
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Algorithm 3 Differentially Private Follow the Approximate Leader (PFTAL): Bandit Version
Input: Cost functions: 〈f1, · · · , fT 〉 (in an online sequence), strong convexity parameter: H , bound

on the costs: B, convex set: C ⊆ Rp, scaling parameter: ξ, sampling radius: β, and privacy
parameter: ε.

1: w†1 ← Any vector from C. Output w†1.
2: Sample u1 uniformly from the sphere Sp−1 = {w ∈ Rp : ‖w‖2 = 1}.
3: Pass p

β f1(w†1 + βu1)u1, L2-bound pB
β and privacy parameter ε to the tree based protocol (Al-

gorithm 2) and receive the current partial sum in v†1.
4: for time steps t ∈ {1, · · · , T − 1} do

5: w†t+1 = arg min
w∈(1−ξ)C

〈v†t, w〉+ H
2

t∑
τ=1
‖w − w†τ‖22. Output ŵt.

6: Sample ut+1 uniformly from the sphere Sp−1.
7: Pass p

β ft+1(w†t+1 + βut+1)ut+1, L2-bound pB
β and privacy parameter ε to the tree based

protocol (Algorithm 2) and receive the current partial sum in v†t+1.
8: end for

E.2 Regret Analysis

Proof of Theorem 6. Corresponding to definitions of ĝt and g̃t’s in (6), (7), and (8) (in Section 3.1),
we redefine them while using the Taylor expansion around w†t+1.

ĝt(w) = f̂t(w
†
t ) + 〈5f̂t(w†t ), w − w

†
t 〉+

H

2
‖w − w†t‖22 (27)

g̃t(w) = f̂t(w
†
t )− 〈5f̂t(w

†
t ), w

†
t 〉+ 〈 p

β
ft(w

†
t + βut)ut, w〉+

H

2
‖w − w†t‖22 (28)

w̃t+1 = arg min
w∈(1−ξ)C

t∑
τ=1

g̃τ (w) (29)

With the above equations in hand, we can rewrite the definition of w†t+1 in (9) as follows. Here
nt = v†t − vt, where v†t and vt are as defined in Section 3.2.

w†t+1 = arg min
w∈(1−ξ)C

t∑
τ=1

g̃τ (w) + 〈nt, w〉 (30)

Using a similar argument we used in Lemma 8, we get the following.
T∑
t=1

ĝt(w
†
t )− min

w∈(1−ξ)C

T∑
t=1

ĝt(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)+
2(pB/β +H‖C‖2)

H

T∑
t=1

‖nt‖2
t

(31)
From (31) and using an expectation bound on ‖nt‖2 similar to Lemma 8, we obtain the following.

En1,··· ,nT

[
T∑
t=1

ĝt(w
†
t )− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]

≤ En1,··· ,nT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

(32)
Now,

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

= En1,··· ,nT

[
Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]]
(33)
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If the adversary is adaptive, then by the same line of argument in Lemma 15, we have

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
+

2p

β
BR
√
T (34)

If the adversary is oblivious, then by the same line of argument in Lemma 16, we have

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
(35)

For the purpose of brevity, we combine (34) and (35) into one expression (36), where the term γ
equals 2d

β

√
TRB for adaptive adversary and zero for oblivious adversary. For the rest of the proof,

we will set γ according to the assumption about the adversary.

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
+ γ (36)

Plugging (36) back in (33), we get

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

≤ En1,··· ,nT

[
Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]]
+ γ

= En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+ γ (37)

Combining (32) and (37), we have

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w
†
t )− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

= Eu1,··· ,uT

[
En1,··· ,nT

[
T∑
t=1

ĝt(w
†
t )− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]]

≤ Eu1,··· ,uT

[
En1,··· ,nT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

= En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

≤ En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ

(38)
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Plugging in the absolute bound on
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w) from (23), we obtain the follow-

ing.

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w
†
t )− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

≤
2(H‖C‖2 + p

βB)2

H
log T +

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ (39)

Combining Lemmas 13, 14 and (39), we obtain the following. The expectation is over the complete
randomness of the private FTAL (bandit version).

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]

≤ 3βLT + ξRLT +
2(H‖C‖2 + p

βB)2

H
log T +

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ

Recall that if the adversary is adaptive, then γ = 2p
β BR

√
T and zero otherwise. Setting β = p

T 1/4

for adaptive adversary and β = p
T 1/3 for oblivious adversary, and setting ξ = β

r , we get the required
regret bound.

E.3 Private Bandit Learning for General Convex Functions

Our results in this section can be extended to the setting with general convex costs via the regu-
larization “trick” from Appendix C (by adding H

2 ‖w‖
2
2 to each cost function ft) . One can show

that under optimal choice of H , both for oblivious and adaptive adversary, the regret scales as
Õ(T 3/4/ε), which is also the best known nonprivate bound [FKM05]. We provide the formal regret
guarantee below.
Theorem 17 (Regret guarantee). Let Bp be a p-dimensional unit ball centered at the origin and
C ⊆ Rp be a convex set such that rBp ⊆ C ⊆ RBp (where 0 < r < R). Let f1, · · · , fT be
L-Lipschitz functions and for all w ∈ C, |fi(w)| ≤ B. Additionally assume that the regularizing
parameterH is set to 1/T 1/4. Setting β = p

T 1/4 and ξ = β/r in the Private Follow The Approximate
Leader (bandit version) algorithm (Algorithm 3), we obtain the following regret guarantee.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ Õ

(
pT 3/4χ

)
.

Here χ =
(
BR+ (1 +R/r)L+ B3

ε

)
. The expectation is over the randomness of the algorithm

and the adversary.
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