Appendix

In this appendix, we describe an auxiliary result, prove the two lemmas formulated, and present the
main steps for the computation of an approximate projection.

A A Useful Lemma

Lemma 4. Let Cq,...,Cn be convex subsets of a Euclidean space and let D = ﬂﬁ;l Cn # 0.

Let g : Hszl Cn — Randlet h : D — R be the function defined, for every x € D, as h(x) =
g(x,...,x). Then, for every x € D, it holds that

K (z) > g"" (z1,...,zN)

zp=x, VRE[N] -

Proof. Since the restriction of g on DV C HnN:1 C,, equals to h, the convex envelope of ¢ when
evaluated on the smaller set DV cannot be larger than the convex envelope of i on D. O

Using this result it is immediately possible to derive a convex lower bound for the function R in
equation (2). Since the convex envelope of the rank function on the unit ball of the spectral norm is
the trace norm, using Lemma 4 with C,, = {W : ||[W(,,)||oc < 1} and

N
1
gWi,...,Wpy) = i E rank((Wy)m)),
n=1

we conclude that the convex envelope of the function R on the set G, is bounded from below by

% ZnNzl [Wnyllte. Likewise the convex envelope of R on the set aGy is lower bounded by the
function €2, in equation (6).

B Proof of Lemma 1

Proof. First, we note that the conjugate of the function card on the ¢5 ball of radius « is given by
the formula

wr(s)= sup {(s,y) —card(y)} = max {a||sf7,||2 -} (13)
lyll2<e ref{0,...,d}

Hence, by the definition of the double conjugate, we have, for every s € R¢ that

w(x) > (s,2) — ma allst. |la — 7).
@) 2 (o)~ max {alstlla 1)

)

In particular, if s = kz for some k > 0 this inequality becomes

wa (@) > k2l — Tegaxd}(akllwf;rllz =)

If k is large enough, the maximum is attained at r = card(x). Consequently,
wi*(x) > ka® — ka? + card(x) = card(x).

By the definition of the convex envelope, it also holds that w’*(2:) < card(z). The result follows.
O

C Proof of Lemma 2

Proof. Without loss of generality we assume that p; < --- < py. By hypothesis p; < py. First we
consider the special case

p1:"':pN—13 and pN :p1+1 (14)
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We define a class of tensors VW by choosing a singular value decomposition for their mode-N
matricization,

Wi igsin Z oRUS VS (15)
where o1 = -+ = 0, = \/p1/(p1 + 1), the vectors u* € RPN Vk € [py] are orthonormal and
the vectors v* € RP1P2'PN-1 V[ € [py] are orthonormal as well. Moreover, we choose v* as

1 ifi, =---=iny_1 =k, k<pn
i =3 vh 2= =iya=module(inp)+ 1. k=py  (16)
0 otherwise.

By construction the matrix W) has rank equal to py and Frobenius norm equal to /p1. Thus
properties (a) and (c) hold true. It remains to show that W satisfies property (b). To this end, we
will show, for every n € [N] and every x € RP~, that

Wanzllz < |22
The case n = N is immediate. If n = 1 we have

Wigells = 2 {202 wliviiinen

12,-.,IN

— k Z k 4
- Z Z Z Lig L jy Ok 00U Ui Vi ig,ying—1 Vg yig,eosin—1
Z 7

<IN kL G,

_ 2 . k k
= E:UkE Ziy Ty E, Vit yizyeeyin—1 Vg1 yinsemin—1

k 11,71 12,0 N —1
— pN
= Z%%‘F Zxk—anz
where we used >, in uk u = 0y, ¢ in the third equality, equation (16) and a direct computation in
the fourth equality, and the definition of o}, in the last equality.
All other cases, namely n = 2,..., N — 1, are conceptually identical, so we only discuss the case
n = 2. We have
2
T 2 _
Weeld = Y Z o Z Ul Vi Tia
11,83, 0N
— kol ok ‘
- Z Z Z LigTjo Ok UG Wi Vi i ine—1 Vit jasenin—1
i1,23, ,ZN kf ’Lz,jz
k k
= Z O Z TiyTjy Z Vissig,eyin—1Yi1,52,0 00N 1
i2,J2 11,0350, IN=1
o2
Opn. 2 2
= Z%%*‘ Zl’k: [E4lp
pr
where again we used ) _, uzNqu = J}, ¢ in the third equality, equation (16) and a direct computa-

tion in the fourth equahtyh,] and the definition of oy, in the last equality.
Finally, if assumption (14) is not true we set W;, i\ = 0if i, > p; + 1, forsome n < N — 1 or
iy > p1 + 1. We then proceed as in the case p; = --- = py_1 and py = p1 + 1.

Note that one can build infinitely many tensors following this process, since the left singular vectors
can be arbitrarily chosen in equation (15). L]
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D Computation of an Approximated Projection

Here, we address the issue of computing an approximate Euclidean projection onto the set
S:{UERd:vlz---ZvdZO}.

That is, for every v, we shall find a point ]55(1)) € & such that

HPS (v) — 2z

2§ lv—=z],, V2 €S. (17)

As noted in [6], in order to build Ps such that this property holds true, it is useful to express the set
of interest as the smallest one in a series of nested sets. In our problem, we can express S as

§=85,C8;-1C...CS,

where S; := {v € R? : v; > vy > ... > v;,v > 0}. This property allows us to sequentially com-
pute an approximate projection on the set S using the formula

Ps(v) = Ps, (Ps,_, -+ (Ps, (v))) (18)

where, for every close convex set C, we let P be the associated projection operator. Indeed, fol-
lowing [6], we can argue by induction on i that Ps (v) verifies condition (17). The base case is
| Ps, (v) — z||, = ||v — z]||,, which is obvious. Now, if for a given 1 <4 < d — 1 it holds that

[ Ps; (- Ps, (v)) = zlly < [lv = z|,
then
HP5i+1 (PS7. ( "Psl (U))) - ZH2 < ||PSz ( ’ 'P31 (’U)) - Z||2 < HU - Z||2’

since z is also contained in S;4 1.

Note that to evaluate the right hand side of equation (18) we do not require full knowledge of Ps,,
we only need to compute Ps, ., (v) for v € S;. The next proposition describes a recursive formula
to achieve this step.

Proposition 5. For any v € S;, we express its first i elements as vi.; = [vu_ s vilj], where the

last j € [i] is the largest integer such that Vij4l = Vi—jy2 = -+ = 5, and 1% € R denotes the
vector containing 1 in all its elements. It holds that
v ifv; > vi41
Vit1—V; +1 . Vi1 —Vq
P3i+1(1)) = |:’U1:i7j7 (’Ui + ?T) 17+ , Ui+2:d} ifv; < Vi1 and Vi—j > v; + TT
PS¢+1([U1:i—j7 ’Ui_j]_], Vit+1 — (vi—j — ’Ui) j, Ui+2:d]) otherwise,

Proof. The first case is straightforward. In the following we prove the remaining two. In both cases
it will be useful to recall that the projection operator Pz on any convex set C is characterized as

r=P(y) <= (y—z,z—1x) <0, VzeCl. (19)

To prove the second case, we use property (19) and apply simple algebraic transformations to obtain,
forall z € S;41, that

Vi+1 — Ui

<U —Ps,., (v), 2z — Ps,., (U)> = T (j2i+1 — ||Zifj+1:iH1) <0.

Finally we prove the third case. We want to show that if x = Ps, , (v) then

i+1

x = Ps,, ([viizj, vi—j17, vig1 — (viej — ;) J, Vig2:a]) -
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Algorithm 2 Computing an approximated projection onto the set S = {v € R% : vy > - > vg >
0}.
Input: y € RY.
Output: v € S.
Initialization: v + y.
fori=1,2,...,ddo
while v; < Vi+1 do
J < argmax{(: ¢ € [i],v; = vi_¢y1}
ifvi_j; > v+ % then

Vi1 4 {Ulzz;jy (Uz‘ + U’;jri_lw) 1j+1}
else _
V11 < [V1sieg, viej 1, vigr — (vi—j — ;) j]
end if
end while
end for

By using property (19), the last equation is equivalent to the statement that if
(v—2,z—2) <0, Vz € S;41 then (20)
{[v1imj, iV, vig1 — (Vimj — v3) §, Vig2ud) — @, 2 —x) <0, Vz € Siy1. (21)

A way to show that it holds true is to prove that the term in the left hand side of (21) is upper bounded
by the corresponding term in (20). That is, for every z € S;11, we want to show that

([v1:i—js vies V), vig1 — (Viej — i) J, Vig2wa] — v, 2 — ) < 0.
A direct computation yields the equivalent inequality

(Viej — vi) (J@iv1 — @iz jrrally + l2icjtnall, — d2i41) < 0. (22)
Since x = PSi+1 (’U), Vi—j41 = Vi—j42 =+ = V4 and Vi4+1 > v, then LTi—jyl = Tj—j42 = =
x;41. Consequently, the left hand side of inequality (22) is equivalent to

(vi—j — vi) (||zimjs1:ll; — Jzit1) <O0.

Note that the first factor is negative and the second is positive because z and v are in S;;1. The
result follows. O

Algorithm 2 summarizes our method to compute the approximated projection operator onto the set
S, based on Proposition 5.
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