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Before proceeding, we first define some useful terminologies and notations. Specifically, to distinguish C in
different episodes, we use Cj to denote the C in episode j. For simplicity of notations, we use z as a shorthand
notation for a state-action-time triple (x, a, t), and use Z to denote the set of all state-action-time triples,
that is

Z = {(x, a, t) : x ∈ S, a ∈ A, and t = 0, 1, · · · , H − 1} .

Appendix A Proofs for Theorem 1 and Corollary 1

We prove Theorem 1 and Corollary 1 in this section. First of all, the following lemma states that Q∗ ∈ QCj ,
∀j = 0, 1, · · · .

Lemma 1 For any j = 0, 1, · · · , we have (1) Q∗ ∈ QCj and (2) Lj,t ≤ Q∗t (xj,t, aj,t) ≤ Uj,t, ∀t = 0, · · · , H−1.

Proof:
First, we prove that ∀j, if Q∗ ∈ QCj , then Lj,t ≤ Q∗t (xj,t, aj,t) ≤ Uj,t, ∀t = 0, 1, · · · , H − 1. To see it,
notice that for t = H − 1, by definition, we have Q∗t (xj,t, aj,t) = Rt(xj,t, aj,t). Furthermore, from the OCP
algorithm, we also have Lj,t = Uj,t = Rt(xj,t, aj,t). Thus Lj,t ≤ Q∗t (xj,t, aj,t) ≤ Uj,t trivially holds. On the
other hand, for any t < H − 1, from Bellman equation, we have

Q∗t (xj,t, aj,t) = Rt(xj,t, aj,t) + V ∗t+1(xj,t+1),

thus, from the definitions of Lj,t and Uj,t, Lj,t ≤ Q∗t (xj,t, aj,t) ≤ Uj,t if and only if

inf
Q∈QCj

sup
a∈A

Qt+1(xj,t+1, a) ≤ V ∗t+1(xj,t+1) ≤ sup
Q∈QCj

sup
a∈A

Qt+1(xj,t+1, a).

Note that V ∗t+1(xj,t+1) = supa∈AQ
∗
t+1(xj,t+1, a), thus, the above inequality trivially holds since Q∗ ∈ QCj .

We now prove Q∗ ∈ QCj , ∀j by induction on j. First, notice that if j = 0, by definition, QC0 = Q. From
the definition of the coherent hypothesis class, we have Q∗ ∈ Q = QC0 . Now assume for any j′ < j, we have
Q∗ ∈ QCj′ . Thus, from our analysis above, we have

Lj′,t′ ≤ Q∗t′(xj′,t′ , aj′,t′) ≤ Uj′,t′ , ∀j′ < j, ∀t = 0, 1, · · · , H − 1.

Since we also have Q∗ ∈ Q, thus, there is no inconsistent constraint before episode j. Thus, from the
constraint selection algorithm, we have

QCj = Q∩
[
∩j′<j ∩t=0,1,··· ,H−1 {Q : Lj′,t′ ≤ Qt′(xj′,t′ , aj′,t′) ≤ Uj′,t′}

]
,

and hence Q∗ ∈ QCj . By mathematical induction, we have Q∗ ∈ QCj , ∀j.
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Algorithm 3 Definition of Zj and t∗j

Initialize Z0 ← ∅
for j = 0, 1, · · · do

Set t∗j ← NULL
if ∃t = 0, 1, · · · , H − 1 s.t. (xj,t, aj,t, t) is marginally independent of Zj with respect to Q then

Set

t∗j ← last period t in episode j s.t. (xj,t, aj,t, t) is marginally

independent of Zj with respect to Q

and
Zj+1 ←

[
Zj , (xj,t∗j , aj,t∗j , t

∗
j )
]

else
Set Zj+1 ← Zj

end if
end for

Combining the above two results, we also have Lj,t ≤ Q∗t (xj,t, aj,t) ≤ Uj,t, ∀(j, t). q.e.d.

Before proceeding, we define two more useful notations. Specifically, for any episode j = 0, 1, · · · , we define
Zj and t∗j by Algorithm 3.
Note that based on the definition, ∀j = 0, 1, · · · ,

• Zj is a sequence (ordered set) of elements in Z. Furthermore, each element in Zj is marginally
independent of its predecessors.

• If t∗j 6= NULL, then it is the last period in episode j s.t. (xj,t, aj,t, t) is marginally independent of Zj
with respect to Q.

Based on the notions of Zj and t∗j , we can prove the following technical lemma:

Lemma 2 ∀j = 0, 1, · · · and ∀t = 0, 1, · · · , T − 1, we have

(a) ∀z ∈ Zj and ∀Q ∈ QCj , we have Q(z) = Q∗(z).

(b) If (xj,t, aj,t, t) is marginally dependent on Zj with respect to Q, then (1) aj,t is optimal and (2)

Qt(xj,t, aj,t) = Q∗t (xj,t, aj,t) = V ∗t (xj,t), ∀Q ∈ QCj .

Proof:
We prove this lemma by induction on j. First, notice that if j = 0, then from Algorithm 3, we have Z0 = ∅.
Thus, Lemma 2(a) holds for j = 0.

Second, we prove that if Lemma 2(a) holds for episode j, then Lemma 2(b) holds for episode j and
Lemma 2(a) holds for episode j + 1. To see why Lemma 2(b) holds for episode j, notice that from Lemma
1, we have Q∗ ∈ QCj ⊆ Q. Furthermore, from the induction hypothesis, we have

Q(z) = Q∗(z), ∀z ∈ Zj and ∀Q ∈ QCj ⊆ Q.
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Since (xj,t, aj,t, t) is marginally dependent on Zj with respect to Q, then we have that

Qt(xj,t, aj,t) = Q∗t (xj,t, aj,t), ∀Q ∈ QCj ⊆ Q.

Hence we have supQ∈QCj
Qt(xj,t, aj,t) = Q∗t (xj,t, aj,t), furthermore, from the OCP algorithm, we have

supQ∈QCj
Qt(xj,t, aj,t) ≥ supQ∈QCj

Qt(xj,t, a), ∀a ∈ A, thus we have

Q∗t (xj,t, aj,t) = sup
Q∈QCj

Qt(xj,t, aj,t) ≥ sup
Q∈QCj

Qt(xj,t, a) ≥ Q∗t (xj , a), ∀a ∈ A,

where the last inequality follows from the fact that Q∗ ∈ QCj . Thus, aj,t is optimal and Q∗t (xj,t, aj,t) =
V ∗t (xj,t). Thus, Lemma 2(b) holds for episode j.

We now prove Lemma 2(a) holds for episode j+ 1. We prove the conclusion by considering two different
scenarios. If t∗j = NULL, then Zj+1 = Zj and QCj+1 ⊆ QCj . Thus, obviously, Lemma 2(a) holds for episode
j + 1. On the other hand, if t∗j 6= NULL, we have QCj+1 ⊆ QCj and

Zj+1 =
[
Zj , (xj,t∗j , aj,t∗j , t

∗
j )
]
.

Based on the induction hypothesis, ∀z ∈ Zj and ∀Q ∈ QCj+1 ⊆ QCj , we have Q(z) = Q∗(z). Thus, it is
sufficient to prove that

Qt∗j (xj,t∗j , aj,t∗j ) = Q∗t∗j (xj,t∗j , aj,t∗j ), ∀Q ∈ QCj+1 . (1)

We prove Eqn(1) by considering two different cases. First, if t∗j = H − 1, it is sufficient to prove that

QH−1(xj,H−1, aj,H−1) = RH−1(xj,H−1, aj,H−1), ∀Q ∈ QCj+1 ,

which holds by definition of QCj+1 (see OCP algorithm, and recall from Lemma 1 that no constraints are
conflicting). On the other hand, if t∗j < H − 1, it is sufficient to prove that

Qt∗j (xj,t∗j , aj,t∗j ) = Rt∗j (xj,t∗j , aj,t∗j ) + V ∗t∗j+1(xj,t∗j+1), ∀Q ∈ QCj+1 .

Recall that OCP algorithm add a constraint Lj,t∗j ≤ Qt∗j (xj,t∗j , aj,t∗j ) ≤ Uj,t∗j to QCj+1 (and again, from Lemma

1, no constraints are conflicting). Based on the definitions of Lj,t∗j and Uj,t∗j , it is sufficient to prove that

V ∗t∗j+1(xj,t∗j+1) = sup
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a) = inf
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a). (2)

We first prove that

V ∗t∗j+1(xj,t∗j+1) = sup
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a). (3)

Specifically, we have that

sup
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a) = sup
a∈A

sup
Q∈QCj

Qt∗j+1(xj,t∗j+1, a) = sup
Q∈QCj

Qt∗j+1(xj,t∗j+1, aj,t∗j+1) = V ∗t∗j+1(xj,t∗j+1),

where

• The second equality follows from the fact that aj,t∗j+1 ∈ arg maxa∈A supQ∈QCj
Qt∗j+1(xj,t∗j+1, a).

3



• The last equality follows from the definition of t∗j and Part (b) of the lemma for episode j (which we have
just proved above, and holds by the induction hypothesis). Specifically, since t∗j is the last period in
episode j s.t. (xj,t, aj,t, t) is marginally independent of Zj with respect to Q. Thus, (xj,t∗j+1, aj,t∗j+1, t

∗
j+

1) is marginally dependent on Zj with respect to Q. From Lemma 2(b) for episode j, we have
V ∗t∗j+1(xj,t∗j+1) = Qt∗j+1(xj,t∗j+1, aj,t∗j+1) for any Q ∈ QCj . Thus, supQ∈QCj

Qt∗j+1(xj,t∗j+1, aj,t∗j+1) =

V ∗t∗j+1(xj,t∗j+1).

On the other hand, we have that

inf
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a) ≥ sup
a∈A

inf
Q∈QCj

Qt∗j+1(xj,t∗j+1, a) ≥ inf
Q∈QCj

Qt∗j+1(xj,t∗j+1, aj,t∗j+1) = V ∗t∗j+1(xj,t∗j+1),

where the first inequality follows from the max-min inequality, and the second inequality follows from the
fact that aj,t∗j+1 ∈ A. Recall that we have V ∗t∗j+1(xj,t∗j+1) = Qt∗j+1(xj,t∗j+1, aj,t∗j+1) for any Q ∈ QCj . Thus,

infQ∈QCj Qt
∗
j+1(xj,t∗j+1, aj,t∗j+1) = V ∗t∗j+1(xj,t∗j+1) and the last equality holds. Hence we have

V ∗t∗j+1(xj,t∗j+1) = sup
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a) ≥ inf
Q∈QCj

sup
a∈A

Qt∗j+1(xj,t∗j+1, a) ≥ V ∗t∗j+1(xj,t∗j+1).

Thus, Eqn(2) holds. Hence, Lemma 2(a) holds for episode j + 1.
Thus, by induction, we have proved Lemma 2. q.e.d.

Based on Lemma 2, we prove the following exploration/exploitation lemma, which states that in each
episode j, OCP algorithm will either achieve the optimal reward (exploitation), or update QCj+1 based on
the Q-value at a marginally independent state-action-time triple (exploration).

Lemma 3 For any j = 0, 1, · · · , we have

• Exploration: If t∗j 6= NULL, then (xj,t∗j , aj,t∗j , t
∗
j ) is marginally independent of Zj and |Zj+1| = |Zj |+1.

Furthermore, ∀Q ∈ QCj+1 , we have Qt∗j (xj,t∗j , aj,t∗j ) = Q∗t∗j
(xj,t∗j , aj,t∗j ).

• Exploitation: If t∗j = NULL, then R(j) = V ∗0 (xj,0).

Proof:
Note that from Algorithm 3, if t∗j = NULL, then ∀t = 0, 1, · · · , T − 1, (xj,t, aj,t, t) is marginally dependent
on Zj with respect to Q. Thus, from Lemma 2(b), aj,t is optimal ∀t = 0, 1, · · · , H − 1. Hence we have

R(j) =

H−1∑
t=0

Rt(xj,t, aj,t) = V ∗0 (xj,0).

On the other hand, t∗j 6= NULL, then from Algorithm 3, (xj,t∗j , aj,t∗j , t
∗
j ) is marginally independent of Zj

and |Zj+1| = |Zj | + 1. Note (xj,t∗j , aj,t∗j , t
∗
j ) ∈ Zj+1, hence from Lemma 2(a), ∀Q ∈ QCj+1 , we have

Qt∗j (xj,t∗j , aj,t∗j ) = Q∗t∗j
(xj,t∗j , aj,t∗j ). q.e.d.

We now prove Theorem 1 based on Lemma 3.

Proof for Theorem 1:
Notice that ∀j = 0, 1, · · · , R(j) ≤ V ∗0 (xj,0) by definition. Thus, from Lemma 3, R(j) < V ∗0 (xj,0) implies that
t∗j 6= NULL. Hence we have

1
[
R(j) < V ∗0 (xj,0)

]
≤ 1

[
t∗j 6= NULL

]
, ∀j = 0, 1, · · · .
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Furthermore, notice that from the definition of Zj , we have

1
[
t∗j 6= NULL

]
= |Zj+1| − |Zj |,

where | · | denotes the length of the given sequence. Notice that both |Zj+1| and |Zj | are finite, since by
definition, we have |Zj | ≤ j for any j = 0, 1, · · · . Thus for any J = 0, 1, · · · , we have

J∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
≤

J∑
j=0

1
[
t∗j 6= NULL

]
=

J∑
j=0

[|Zj+1| − |Zj |] = |ZJ+1| − |Z0| = |ZJ+1|, (4)

where the last equality follows from the fact that |Z0| = |∅| = 0.
Notice that by definition (see Algorithm 3), ∀j = 0, 1, · · · , Zj is a sequence of elements in Z such that

every element is marginally independent of its predecessors with respect to Q. Hence, from the definition
of margin dimension, we have |Zj | ≤ dimM[Q], ∀j = 0, 1, · · · . Combining this result with Eqn(4), we have

J∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
≤ |ZJ+1| ≤ dimM[Q], ∀J = 0, 1, · · · . (5)

Finally, notice that
∑J

j=0 1 [Vj < V ∗0 (xj,0)] is a non-decreasing function of J , and is bounded above by
dimM[Q]. Thus,

lim
J→∞

J∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
=

∞∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
exists, and satisfies

∞∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
≤ dimM[Q].

Hence we have
∣∣{j : R(j) < V ∗0 (xj,0)

}∣∣ ≤ dimM[Q]. q.e.d.

We now prove Corollary 1 based on Theorem 1:

Proof for Corollary 1:
Notice that if R(j) = V ∗0 (xj,0), then V ∗0 (xj,0)−R(j) = 0; on the other hand, if R(j) < V ∗0 (xj,0), then we have

V ∗0 (xj,0)−R(j) ≤ 2RH,

since the maximum achievable total reward is RH, while the minimum achievable total reward is −RH.
Hence we have the following key inequality:

V ∗0 (xj,0)− Vj ≤ 2RH1
[
R(j) < V ∗0 (xj,0)

]
, ∀j = 0, 1, · · · .

Thus, ∀J ≥ 0, we have

J∑
j=0

[
V ∗0 (xj,0)−R(j)

]
≤ 2RH

J∑
j=0

1
[
R(j) < V ∗0 (xj,0)

]
≤ 2RHdimM[Q],

where the second inequality follows from Eqn(5) in the proof for Theorem 1.
Recall that by definition, for any T , we have

Regret(T ) =

bT/Hc−1∑
j=0

(V ∗0 (xj,0)−R(j)) ≤ 2RHdimM[Q].

q.e.d.
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Appendix B Proofs for Theorem 2 and 3

We provide a constructive proof for Theorem 2 and 3. Before proceeding, we first define some useful
terminologies and notations. First, for any state space S, any time horizon H = 1, 2, · · · , any action space
A, and any function class Q, we use M (S,A, H,Q) to denote the set of all finite-horizon MDPM’s satisfying
the following conditions:

1. The state space of M is S.

2. The time horizon of M is H.

3. The single action space of M is A.

4. M admits an optimal policy µ∗.

5. Q∗, the optimal Q-function of M, belongs to the function class Q.

Notice that for any reinforcement learning algorithm that takes S, A, H, Q as input, and knows that Q is
a coherent hypothesis class, M (S,A, H,Q) is the set of all finite-horizon MDPs that are consistent with the
algorithm’s prior information.

We prove a result that is stronger than Theorem 2 and 3 by considering a scenario in which an adversary
adaptively chooses an MDP model M∈M (S,A, H,Q). Specifically, we assume that

• At the beginning of each episode j, the adversary adaptively chooses the initial state xj,0 for that
episode.

• At period t in episode j, the agent first chooses an action aj,t ∈ A based on some RL algorithm1,
and then the adversary adaptively chooses a set of state-action-time triples Zj,t ⊆ Z and specifies the
instantaneous rewards and state transitions on Zj,t, subject to the constraints that (1) (xj,t, aj,t, t) ∈
Zj,t and (2) these adaptively specified instantaneous rewards and state transitions must be consistent
with the agent’s prior knowledge and past observations.

We assume that the adversary’s objective is to maximize the number of episodes in which the agent achieves
sub-optimal rewards. Then we have the following lemma:

Lemma 4 ∀H = 1, 2, · · · , ∀K = 1, 2, · · · , and ∀R ≥ 0, there exist a state space S, an action space A
and a function class Q with dimM[Q] = K such that no matter how the agent adaptively chooses actions,
the adversary can adaptively choose a finite-horizon MDP M ∈ M (S,A, H,Q) satisfying the following
conditions:

• sup(x,a) |Rt(x, a)| ≤ R.

• The agent will achieve sub-optimal rewards in at least K episodes, and supT Regret(T ) ≥ 2RHK.

Proof:
We provide a constructive proof for Lemma 4. Specifically, ∀H = 1, 2, · · · , ∀K = 1, 2, · · · , and ∀R ≥ 0,
we construct the state space as S = {1, 2, · · · , 2K}, and the action space as A = {1, 2}. Recall that
Z = {(x, a, t) : x ∈ S, t = 0, 1, · · · , H − 1, and a ∈ A}, thus, for S and A constructed above, we have |Z| =
4KH. Hence, Q∗, the optimal Q-function, can be represented as a vector in <4KH .

1In general, the RL algorithm can choose actions randomly. If so, all the results in this section hold on the realized sample
path.
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Figure 1: Illustration of the state transition

Before constructing the function class Q, we first define a matrix Φ ∈ <4KH×K as follows. ∀(x, a, t) ∈ Z,
let Φ(x, a, t) ∈ <K denote the row of Φ corresponding to the state-action-time triple (x, a, t), we construct
Φ(x, a, t) as:

Φ(x, a, t) =


(T − t)ek if x = 2k − 1 for some k = 1, · · · ,K, a = 1, 2 and t = 1, · · · , H − 1
−(T − t)ek if x = 2k for some k = 1, · · · ,K, a = 1, 2 and t = 1, · · · , H − 1
Tek if x = 2k − 1 or 2k for some k = 1, · · · ,K, a = 1 and t = 0
−Tek if x = 2k − 1 or 2k for some k = 1, · · · ,K, a = 2 and t = 0

(6)

Notice that rank(Φ) = K. We construct Q = span [Φ], thus we have

dimM[Q] = dimM[span [Φ]] = dim (span [Φ]) = rank(Φ) = K.

Now we describe how the adversary adaptively chooses a finite-horizon MDP M∈M (S,A, T,Q):

• For any j = 0, 1, · · · , at the beginning of episode j, the adversary chooses the initial state in that
episode as

xj,0 = (j mod K)× 2 + 1.

That is, x0,0 = xK,0 = x2K,0 = · · · = 1, x1,0 = xK+1,0 = x2K+1,0 = · · · = 3 ...

• Before interacting with the agent, the adversary chooses the following system function F 2:

Ft(x, a) =


2k − 1 if t = 0, x = 2k − 1 or 2k for some k = 1, · · · ,K, and a = 1
2k if t = 0, x = 2k − 1 or 2k for some k = 1, · · · ,K, and a = 2
x if t = 1, · · · , H − 2 and a = 1, 2

.

The state transition is illustrated in Figure 1.

2More precisely, in this constructive proof, the adversary does not need to adaptively choose the system function F . He can
choose F beforehand.
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• In episode j = 0, 1, · · · ,K − 1, the adversary adaptively chooses the reward function R as follows. If
the agent takes action 1 in period 0 in episode j at initial state xj,0 = 2j + 1, then the adversary set

R0(2j + 1, 1) = R0(2j + 2, 1) = Rt(2j + 1, 1) = Rt(2j + 1, 2) = −R
R0(2j + 1, 2) = R0(2j + 2, 2) = Rt(2j + 2, 1) = Rt(2j + 2, 2) = R

∀t = 1, 2, · · · , H − 1. Otherwise (i.e. if the agent takes action 2 in period 0 in episode j), then the
adversary set

R0(2j + 1, 1) = R0(2j + 2, 1) = Rt(2j + 1, 1) = Rt(2j + 1, 2) = R

R0(2j + 1, 2) = R0(2j + 2, 2) = Rt(2j + 2, 1) = Rt(2j + 2, 2) = −R

Notice that the adversary completes the construction of the MDP model M at the end of episode
K − 1.

We now prove that the constructed MDP modelM∈M (S,A, T,Q). This is sufficient to prove Q∗, the
optimal Q-function of M, lies in the function class Q. To see it, notice that ∀j = 0, 1, · · · ,K − 1, if the
agent takes action aj,0 = 1 in period 0 in episode j, then from the constructed MDP model M, we have

Q∗0(2j + 1, 1) = Q∗0(2j + 2, 1) = −RH
Q∗0(2j + 1, 2) = Q∗0(2j + 2, 2) = RH

Q∗t (2j + 1, a) = −R(H − t) ∀t = 1, · · · , H − 1, ∀a = 1, 2

Q∗t (2j + 2, a) = R(H − t) ∀t = 1, · · · , H − 1, ∀a = 1, 2

On the other hand, if the agent takes action aj,0 = 2 in period 0 in episode j, then we have

Q∗0(2j + 1, 1) = Q∗0(2j + 2, 1) = RH

Q∗0(2j + 1, 2) = Q∗0(2j + 2, 2) = −RH
Q∗t (2j + 1, a) = R(H − t) ∀t = 1, · · · , H − 1, ∀a = 1, 2

Q∗t (2j + 2, a) = −R(H − t) ∀t = 1, · · · , H − 1, ∀a = 1, 2

Note that (a0,0, a1,0, · · · , aK−1,0) completely determines the constructed MDP modelM. For the convenience
of exposition, we use M (a0,0, a1,0, · · · , aK−1,0) to denote this particular MDP model.

Recall that Q = span [Φ], where Φ is defined in Eqn(6). Note that based on the definition of Φ, for any
combination of

(a0,0, a1,0, · · · , aK−1,0) ∈ {1, 2}K ,
the optimal Q-function of MDP M (a0,0, a1,0, · · · , aK−1,0) lies in Q. Specifically, the optimal Q-function of
MDP M (a0,0, a1,0, · · · , aK−1,0) is Φθ, where θ ∈ <K , and θk, the kth element of θ, is defined as

θk =

{
−R if ak−1 = 1

R if ak−1 = 2
,

for any k = 1, 2, · · · ,K.
Finally, we show that the constructed MDP model M satisfies Lemma 4. First, notice that obviously,

we have |Rt(x, a)| ≤ R, ∀(x, a, t) ∈ Z. Second, we note that the agent achieves sub-optimal rewards in the
first K episodes, thus, he will achieve sub-optimal rewards in at least K episodes. The cumulative regret in
the first K episodes is 2KHR, thus, supT Regret(T ) ≥ 2KHR.

q.e.d.

Since the fact that an adversary can adaptively choose a “bad” MDP model simply implies that such
MDP model exists, thus, Theorem 2 and 3 follow from Lemma 4.
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Appendix C Proofs for Theorem 4, Corollary 2 and Proposition 1

Before proceeding, we first briefly how constraint selection algorithm updates QC ’s for the function class
Q specified in Eqn(4.1). Specifically, let θt,k denote the coefficient of the indicator function φt,k, ∀(t, k).
Assume that (x, a, t) belongs to partition Zt,k, then, with Q specified in Eqn(4.1), L ≤ Qt(x, a) ≤ U is a
constraint on and only on θt,k, and is equivalent to L ≤ θt,k ≤ U . By induction, it is straightforward to see
in episode j, QCj can be represented as{

θ ∈ <K : θ
(j)
t,k ≤ θt,k ≤ θ

(j)
t,k , ∀(t, k)

}
,

for some θ
(j)
t,k ’s and θ

(j)
t,k ’s. Note that θ

(j)
t,k can be −∞ and θ

(j)
t,k can be ∞, and, when j = 0, θ

(0)
t,k = ∞ and

θ
(0)
t,k = −∞. Furthermore, from the constraint selection algorithm, θ

(j)
t,k is monotonically non-increasing in

j, for any (t, k) (since when ranking the constraints, constraints with smaller upper bound are preferred).

Specifically, if OCP adds a new constraint L ≤ θt,k ≤ U on θt,k in episode j, we have θ
(j+1)
t,k = min{θ(j)t,k , U};

otherwise, θ
(j+1)
t,k = θ

(j)
t,k . Thus, if θ

(j)
t,k <∞, then ∀j′ ≥ j, we have θ

(j′)
t,k <∞.

For any (x, a, t) ∈ Z, and any j, we define the optimistic Q-function in episode j, Q,
j,t(x, a) as

Q,
j,t(x, a) = sup

Q∈QCj
Qt(x, a),

and the pessimistic Q-function in episode j, Q/
j,t(x, a) as

Q/
j,t(x, a) = inf

Q∈QCj
Qt(x, a).

Clearly, if (x, a, t) ∈ Zt,k, then we have Q,
j,t(x, a) = θ

(j)
t,k , and Q/

j,t(x, a) = θ
(j)
t,k . Moreover, (x, a, t)’s in the

same partition have the same optimistic and pessimistic Q-values.
It is also worth pointing out that by definition of ρ, if (x, a, t) and (x′, a′, t) are in the same partition,

then we have |Q∗t (x, a) − Q∗t (x
′, a′)| ≤ 2ρ. To see it, let Q̃ ∈ arg minQ∈Q ‖Q − Q∗‖∞, then we have

|Q̃t(x, a) − Q∗t (x, a)| ≤ ρ and |Q̃t(x′, a′) − Q∗t (x′, a′)| ≤ ρ. Since Q̃ ∈ Q and (x, a, t) and (x′, a′, t) are in
the same partition, we have Q̃t(x, a) = Q̃t(x

′, a′). Then from triangular inequality, we have |Q∗t (x, a) −
Q∗t (x

′, a′)| ≤ 2ρ.
We first prove the following lemma:

Lemma 5 ∀(x, a, t) and ∀j = 0, 1, · · · , if Q,
j,t(x, a) <∞, then |Q,

j,t(x, a)−Q∗t (x, a)| ≤ 2ρ(H − t).

Proof:
We prove Lemma 5 by induction on j. Note that when j = 0, ∀(x, a, t), Q,

j,t(x, a) = ∞. Thus, Lemma 5
trivially holds for j = 0.

Second, we prove that if Lemma 5 holds for episode j, then it also holds for episode j + 1, for any
j = 0, 1, · · · . To prove this result, it is sufficient to show that for any (x, a, t) whose associated optimistic Q-

value has been updated in episode j (i.e. Q,
j,t(x, a) 6= Q,

j+1,t(x, a)), if the new optimistic Q-value Q,
j+1,t(x, a)

is still finite, then we have

|Q,
j+1,t(x, a)−Q∗t (x, a)| ≤ 2ρ(H − t).

This is because for any (x, a, t) with Q,
j+1,t(x, a) = Q,

j,t(x, a), Lemma 5 holds for episode j + 1 by induction
hypothesis.
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Note that if Q,
j,t(x, a) 6= Q,

j+1,t(x, a), then (x, a, t) must be in the same partition Zt,k as (xj,t, aj,t, t). Fur-

thermore, from the discussion above, and noting that supQ∈QCj
supa∈AQt+1(xj,t+1, a) = supa∈AQ

,
j,t+1(xj,t+1, a),

we have

Q,
j+1,t(x, a) = θ

(j+1)
t,k =

{
RH−1(xj,H−1, aj,H−1) if t = H − 1

Rt(xj,t, aj,t) + supa∈AQ
,
j,t+1(xj,t+1, a) if t < H − 1

We now prove |Q,
j+1,t(x, a)−Q∗t (x, a)| ≤ 2ρ(H − t) by considering two different scenarios:

• If t = H − 1, note that Q,
j+1,t(x, a) = RH−1(xj,H−1, aj,H−1) = Q∗H−1(xj,H−1, aj,H−1), since (x, a, t)

and (xj,H−1, aj,H−1, H − 1) are in the same partition, from our discussion above, we have |Q∗t (x, a)−
Q∗H−1(xj,H−1, aj,H−1)| ≤ 2ρ. Hence we have that

|Q∗t (x, a)−Q,
j+1,t(x, a)| ≤ 2ρ = 2ρ(H − t).

• If t < H − 1, note that

Q,
j+1,t(x, a) = Rt(xj,t, aj,t) + sup

a∈A
Q,
j,t+1(xj,t+1, a).

If Q,
j+1,t(x, a) < ∞, then supa∈AQ

,
j,t+1(xj,t+1, a) < ∞, and hence Q,

j,t+1(xj,t+1, a) < ∞, ∀a ∈ A.

Furthermore, from the induction hypothesis, Q,
j,t+1(xj,t+1, a) <∞, ∀a ∈ A, implies that∣∣∣Q,

j,t+1(xj,t+1, a)−Q∗t+1(xj,t+1, a)
∣∣∣ ≤ 2ρ(H − t− 1), ∀a ∈ A. (7)

On the other hand, from the Bellman equation at (xj,t, aj,t, t), we have that

Q∗t (xj,t, aj,t) = Rt(xj,t, aj,t) + V ∗t+1(xj,t+1) = Rt(xj,t, aj,t) + sup
a∈A

Q∗t+1(xj,t+1, a).

Consequently, we have that∣∣∣Q,
j+1,t(x, a)−Q∗t (xj,t, aj,t)

∣∣∣ =

∣∣∣∣sup
a∈A

Q,
j,t+1(xj,t+1, a)− sup

a∈A
Q∗t+1(xj,t+1, a)

∣∣∣∣
≤ sup

a∈A

∣∣∣Q,
j,t+1(xj,t+1, a)−Q∗t+1(xj,t+1, a)

∣∣∣
≤ 2ρ(H − t− 1). (8)

On the other hand, since (x, a, t) and (xj,t, aj,t, t) are in the same partition, we have

|Q∗t (x, a)−Q∗t (xj,t, aj,t)| ≤ 2ρ,

consequently, we have ∣∣∣Q,
j+1,t(x, a)−Q∗t (x, a)

∣∣∣ ≤ 2ρ(H − t).

Thus, Lemma 5 holds for episode j + 1. By induction, we have proved Lemma 5. q.e.d.

Based on Lemma 5, we have the following result:
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Lemma 6 ∀j = 0, 1, · · · , if Q,
j,t(xj,t, aj,t) <∞ for any t = 0, 1, · · · , H − 1, then we have

V ∗0 (xj,0)−R(j) ≤ 2ρH(H + 1) = O
(
ρH2

)
. (9)

Furthermore, if the conditions of Proposition 1 hold, then we have

V ∗0 (xj,0)−R(j) ≤ 6ρH = O(ρH). (10)

Proof:
Notice that from OCP algoriothm, ∀t = 0, 1, · · · , H − 1, we have

Q,
j,t(xj,t, aj,t) ≥ Q,

j,t(xj,t, a), ∀a ∈ A.

Thus, if Q,
j,t(xj,t, aj,t) <∞ for any t = 0, 1, · · · , H − 1, we then have

Q,
j,t(xj,t, a) <∞, ∀t = 0, 1, · · · , H − 1 and ∀a ∈ A.

Consequently, from Lemma 5, we have that∣∣∣Q∗t (xj,t, a)−Q,
j,t(xj,t, a)

∣∣∣ ≤ 2ρ(H − t), ∀t = 0, 1, · · · , H − 1 and ∀a ∈ A.

Thus, for any t = 0, 1, · · · , H − 1, we have

Q∗t (xj,t, aj,t) + 2ρ(H − t) ≥ Q,
j,t(xj,t, aj,t) ≥ Q,

j,t(xj,t, a) ≥ Q∗t (xj,t, a)− 2ρ(H − t), ∀a ∈ A.

Hence we have Q∗t (xj,t, aj,t) ≥ Q∗t (xj,t, a)− 4ρ(H − t), ∀a ∈ A. Thus we have

Q∗t (xj,t, aj,t) ≥ sup
a∈A

Q∗t (xj,t, a)− 4ρ(H − t) = V ∗t (xj,t)− 4ρ(H − t). (11)

Notice that the above inequality holds for any t = 0, 1, · · · , H − 1.
We first prove Eqn(9). Note that from Bellman equation, we have

Q∗t (xj,t, aj,t) =

{
Rt(xj,t, aj,t) + V ∗t+1(xj,t+1) if t < H − 1
RH−1(xj,H−1, aj,H−1) if t = H − 1

Thus, for any t < H − 1, we have

Rt(xj,t, aj,t) ≥ V ∗t (xj,t)− V ∗t+1(xj,t+1)− 4ρ(H − t),

and
RH−1(xj,H−1, aj,H−1) ≥ V ∗H−1(xj,H−1)− 4ρ.

Summing up the above inequalities, we have

H−1∑
t=0

Rt(xj,t, aj,t) ≥ V ∗0 (xj,0)−
H−1∑
t=0

[4ρ(H − t)] = V ∗0 (xj,0)− 2ρH(H + 1).

That is V ∗0 (xj,0)−
∑H−1

t=0 Rt(xj,t, aj,t) = V ∗0 (xj,0)−R(j) ≤ 2ρH(H + 1).
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We now prove Eqn(10). Specifically, for any t = 0, 1, · · · , H − 1, if

QCj ⊆ {Q ∈ Q : Lj,t ≤ Qt(xj,t, aj,t) ≤ Uj,t},

then we will have
Uj,t ≥ Q,

j,t(xj,t, aj,t) ≥ Q/
j,t(xj,t, aj,t) ≥ Lj,t.

Note that by definition, Uj,H−1 = Lj,H−1 = RH−1(xj,H−1, aj,H−1), and for t < H − 1, we have

Uj,t = Rt(xj,t, aj,t) + sup
a∈A

Q,
j,t+1(xj,t+1, a) = Rt(xj,t, aj,t) +Q,

j,t+1(xj,t+1, aj,t+1),

and

Lj,t = Rt(xj,t, aj,t) + inf
Q∈QCj

sup
a∈A

Qt+1(xj,t+1, a)

≥ Rt(xj,t, aj,t) + sup
a∈A

Q/
j,t+1(xj,t+1, a) ≥ Rt(xj,t, aj,t) +Q/

j,t+1(xj,t+1, aj,t+1),

where the first inequality follows from the max-min inequality, and the second inequality follows from the
fact that aj,t+1 ∈ A. Thus we have

Q/
j,t(xj,t, aj,t) ≥ Rt(xj,t, aj,t) +Q/

j,t+1(xj,t+1, aj,t+1) ∀t < H − 1

Q/
j,H−1(xj,H−1, aj,H−1) ≥ RH−1(xj,H−1, aj,H−1).

Thus, we have Q/
j,0(xj,0, aj,0) ≥

∑H−1
t=0 Rt(xj,t, aj,t) = R(j). Similarly, we have that

Q,
j,t(xj,t, aj,t) ≤ Rt(xj,t, aj,t) +Q,

j,t+1(xj,t+1, aj,t+1) ∀t < H − 1

Q,
j,H−1(xj,H−1, aj,H−1) ≤ RH−1(xj,H−1, aj,H−1),

and hence Q,
j,0(xj,0, aj,0) ≤

∑H−1
t=0 Rt(xj,t, aj,t) = R(j). So we have

Q,
j,t(xj,t, aj,t) ≥ Q/

j,t(xj,t, aj,t) ≥ R(j) ≥ Q,
j,0(xj,0, aj,0),

and hence
Q,
j,0(xj,0, aj,0) = Q/

j,0(xj,0, aj,0) = R(j).

Since Q,
j,0(xj,0, aj,0) = R(j) <∞, then from Lemma 5,∣∣∣R(j) −Q∗0(xj,0, aj,0)

∣∣∣ =
∣∣∣Q,

j,0(xj,0, aj,0)−Q∗0(xj,0, aj,0)
∣∣∣ ≤ 2ρH.

Thus, R(j) ≥ Q∗0(xj,0, aj,0) − 2ρH. Furthermore, from Eqn(11), Q∗0(xj,0, aj,0) ≥ V ∗0 (xj,0) − 4ρH. Thus we
have R(j) ≥ V ∗0 (xj,0)− 6ρH, and hence

V ∗0 (xj,0)−R(j) ≤ 6ρH = O(ρH).

q.e.d.

Thus, Proposition 1 directly follows from Lemma 6. Before proving Theorem 4, we first define some useful
notations. Specifically, for any j = 0, 1, · · · , we define t∗j as the last period t in episode j s.t. Q,

j,t(xj,t, aj,t) =

∞. If Q,
j,t(xj,t, aj,t) < ∞ for all t = 0, 1, · · · , H − 1, we define t∗j = NULL. We then have the following

lemma:
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Lemma 7
∑∞

j=0 1[t∗j 6= NULL] ≤ K, where K is the number of partitions.

Proof:
∀j = 0, 1, · · · , if t∗j 6= NULL, then by definition of t∗j , Q

,
j,t∗j

(xj,t∗j , aj,t∗j ) =∞. We now show thatQ,
j′,t∗j

(xj,t∗j , aj,t∗j ) <

∞ for all j′ > j, and Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) =∞ for all j′ ≤ j.

Assume that (xj,t∗j , aj,t∗j , t
∗
j ) belongs to partition Zt∗j ,k, thus Q,

j′,t∗j
(xj,t∗j , aj,t∗j ) = θ

(j′)
t∗j ,k

, ∀j′ = 0, 1, · · · .

Based on our discussion at the beginning of this section, θ
(j′)
t∗j ,k

is monotonically non-increasing in j′. Thus,

Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) is monotonically non-increasing in j′, and hence for any j′ ≤ j, we have Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) =

∞. Furthermore, to prove that Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) <∞ for all j′ > j, it is sufficient to prove that

Q,
j+1,t∗j

(xj,t∗j , aj,t∗j ) <∞.

From OCP, the algorithm will add a new constraint Lj,t∗j ≤ Qt∗j (xj,t∗j , aj,t∗j ) ≤ Uj,t∗j . We first prove that

Uj,t∗j < ∞. To see it, notice that if t∗j = H − 1, then Uj,t∗j = Uj,H−1 = RH−1(xj,H−1, aj,H−1) < ∞. On the
other hand, if t∗j < H − 1, then by definition

Uj,t∗j = Rt∗j (xj,t∗j , aj,t∗j ) + sup
a∈A

Q,
j,t∗j+1(xj,t∗j+1, a) = Rt∗j (xj,t∗j , aj,t∗j ) +Q,

j,t∗j+1(xj,t∗j+1, aj,t∗j+1).

From the definition of t∗j , Q
,
j,t∗j+1(xj,t∗j+1, aj,t∗j+1) <∞, thus Uj,t∗j <∞.

Based on our discussion at the beginning of this section, due to the constraint selection algorithm, for
episode j + 1, we have

Q,
j+1,t∗j

(xj,t∗j , aj,t∗j ) = θ
(j+1)
t∗j ,k

= min{θ(j)t∗j ,k, Uj,t∗j } ≤ Uj,t∗j <∞.

Thus, Q,
j+1,t∗j

(xj,t∗j , aj,t∗j ) <∞ and hence Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) <∞ for all j′ > j.

Thus, if we consider Q,
j′,t∗j

(xj,t∗j , aj,t∗j ) = θ
(j′)
t∗j ,k

as a function of j′, then this function transits from infinity

to finite values in episode j. In summary, t∗j 6= NULL implies that θ
(j′)
t∗j ,k

transits from infinity to finite values

in episode j. Since other θ
(j′)
t,k ’s might also transit from ∞ to finite values in episode j, we have

1[t∗j 6= NULL] ≤ # of θ
(j′)
t,k ’s transiting from ∞ to finite values in episode j, ∀j = 0, 1, · · · .

Note that from the monotonicity of θ
(j′)
t,k , for each partition, this transition can occur at most once, and

there are K partitions in total. Hence we have

∞∑
j=0

1[t∗j 6= NULL] ≤ K.

q.e.d.

Finally, we prove Theorem 4.

Proof for Theorem 4:
First, notice that ∀j = 0, 1, · · · , if t∗j = NULL, then by definition of t∗j , ∀t = 0, 1, · · · , H − 1, Q,

j,t(xj,t, aj,t) <
∞. Then from Lemma 6, we have

V ∗0 (xj,0)−R(j) ≤ 2ρH(H + 1).
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Thus, V ∗0 (xj,0)−R(j) > 2ρH(H + 1) implies that t∗j 6= NULL, which is equivalent to

1
[
V ∗0 (xj,0)−R(j) > 2ρH(H + 1)

]
≤ 1

[
t∗j 6= NULL

]
, ∀j = 0, 1, · · · .

Thus, we have
∞∑
j=0

1
[
V ∗0 (xj,0)−R(j) > 2ρH(H + 1)

]
≤
∞∑
j=0

1
[
t∗j 6= NULL

]
≤ K,

where the last inequality follows from Lemma 7. Thus,

|{j : R(j) < V ∗0 (xj,0)− 2ρH(H + 1)}| ≤ K.

q.e.d.

Finally, we prove Corollary 2:

Proof for Corollary 2:
Notice that by definition, we have

Regret(T ) =

bT/Hc−1∑
j=0

[
V ∗0 (xj,0)−R(j)

]
.

Thus we have

Regret(T ) =

bT/Hc−1∑
j=0

[
V ∗0 (xj,0)−R(j)

]
1
[
V ∗0 (xj,0)−R(j) > 2ρH(H + 1)

]

+

bT/Hc−1∑
j=0

[
V ∗0 (xj,0)−R(j)

]
1
[
V ∗0 (xj,0)−R(j) ≤ 2ρH(H + 1)

]

≤ 2RH

bT/Hc−1∑
j=0

1
[
V ∗0 (xj,0)−R(j) > 2ρH(H + 1)

]

+ 2ρH(H + 1)

bT/Hc−1∑
j=0

[
V ∗0 (xj,0)−R(j)

]
≤ 2RHK + 2ρH(H + 1) bT/Hc ≤ 2RKH + 2ρ(H + 1)T.

q.e.d.

Appendix D Proof for Proposition 2

We now prove Proposition 2.

Proof for Proposition 2:
If Q is a linear subspace/polytope with dimension d, then in one period, OCP needs to perform the following
computation:
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1. Construct QC by constraint selection algorithm. This requires sorting |C| constraints by comparing
their upper bounds and positions in the sequence (with O (|C| log |C|) operations), and checking whether
QC ∩ Cτ 6= ∅ for |C| times. Note that checking whether QC ∩ Cτ 6= ∅ requires solving an LP feasibility
problem with d variables and O (|C|) constraints.

2. Choose action aj,t. Note that supQ∈QC Qt(xj,t, a) can be computed by solving an LP with d variables
and O (|C|) constraints, thus aj,t can be derived by solving |A| such LPs.

3. Compute the new constraint Lj,t ≤ Qt(xj,t, aj,t) ≤ Uj,t. Note Uj,t can be computed by solving |A| LPs
with d variables and O (|C|) constraints, and Lj,t can be computed by solving one LP with d variables
and O (|C|+ |A|) constraints.

If we assume that all the encountered numerical values can be represented with B bits, and use Karmarkar’s
algorithm to solve LPs, then for an LP with d variable and m constraints, the number of bits input to
Karmarkar’s algorithm is O (mdB), and hence it requires O

(
mBd4.5

)
operations to solve the LP. Thus,

the computational complexities for the first, second, third steps are O
(
|C|2d4.5B

)
, O

(
|A||C|d4.5B

)
and

O
(
|A||C|d4.5B

)
, respectively. Hence, the computational complexity of OCP is O

(
[|A|+ |C|] |C|d4.5B

)
oper-

ations per period. q.e.d.
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