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Abstract

One approach to computer object recognition and modeling the brain’s ventral
stream involves unsupervised learning of representations that are invariant to com-
mon transformations. However, applications of these ideas have usually been lim-
ited to 2D affine transformations, e.g., translation and scaling, since they are eas-
iest to solve via convolution. In accord with a recent theory of transformation-
invariance [1], we propose a model that, while capturing other common con-
volutional networks as special cases, can also be used with arbitrary identity-
preserving transformations. The model’s wiring can be learned from videos of
transforming objects—or any other grouping of images into sets by their depicted
object. Through a series of successively more complex empirical tests, we study
the invariance/discriminability properties of this model with respect to different
transformations. First, we empirically confirm theoretical predictions (from [1])
for the case of 2D affine transformations. Next, we apply the model to non-affine
transformations; as expected, it performs well on face verification tasks requiring
invariance to the relatively smooth transformations of 3D rotation-in-depth and
changes in illumination direction. Surprisingly, it can also tolerate clutter “trans-
formations” which map an image of a face on one background to an image of the
same face on a different background. Motivated by these empirical findings, we
tested the same model on face verification benchmark tasks from the computer
vision literature: Labeled Faces in the Wild, PubFig [2, 3, 4] and a new dataset
we gathered—achieving strong performance in these highly unconstrained cases
as well.

1 Introduction

In the real world, two images of the same object may only be related by a very complicated and
highly nonlinear transformation. Far beyond the well-studied 2D affine transformations, objects
may rotate in depth, receive illumination from new directions, or become embedded on different
backgrounds; they might even break into pieces or deform—melting like Salvador Dali’s pocket
watch [5]—and still maintain their identity. Two images of the same face could be related by the
transformation from frowning to smiling or from youth to old age. This notion of an identity-
preserving transformation is considerably more expansive than those normally considered in com-
puter vision. We argue that there is much to be gained from pushing the theory (and practice) of
transformation-invariant recognition to accommodate this unconstrained notion of a transformation.

Throughout this paper we use the formalism for describing transformation-invariant hierarchical
architectures developed by Poggio et al. (2012). In [1], the authors propose a theory which, they
argue, is general enough to explain the strong performance of convolutional architectures across a
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wide range of tasks (e.g. [6, 7, 8]) and possibly also the ventral stream. The theory is based on the
premise that invariance to identity-preserving transformations is the crux of object recognition.

The present paper has two primary points. First, we provide empirical support for Poggio et al.’s
theory of invariance (which we review in section 2) and show how various pooling methods for
convolutional networks can all be understood as building invariance since they are all equivalent to
special cases of the model we study here. We also measure the model’s invariance/discriminability
with face-matching tasks. Our use of computer-generated image datasets lets us completely control
the transformations appearing in each test, thereby allowing us to measure properties of the repre-
sentation for each transformation independently. We find that the representation performs well even
when it is applied to transformations for which there are no theoretical guarantees—e.g., the clutter
“transformation” which maps an image of a face on one background to the same face on a different
background.

Motivated by the empirical finding of strong performance with far less constrained transformations
than those captured by the theory, in the paper’s second half we apply the same approach to face-
verification benchmark tasks from the computer vision literature: Labeled Faces in the Wild, Pub-
Fig [2, 3, 4], and a new dataset we gathered. All of these datasets consist of photographs taken
under natural conditions (gathered from the internet). We find that, despite the use of a very simple
classifier—thresholding the angle between face representations—our approach still achieves results
that compare favorably with the current state of the art and even exceed it in some cases.

2 Template-based invariant encodings for objects unseen during training

We conjecture that achieving invariance to identity-preserving transformations without losing dis-
criminability is the crux of object recognition. In the following we will consider a very expansive
notion of ‘transformation’, but first, in this section we develop the theory for 2D affine transforma-
tions1.

Our aim is to compute a unique signature for each image x that is invariant with respect to a group
of transformations G. We consider the orbit {gx | g ∈ G} of x under the action of the group. In this
section, G is the 2D affine group so its elements correspond to translations, scalings, and in-plane
rotations of the image (notice that we use g to denote both elements of G and their representations,
acting on vectors). We regard two images as equivalent if they are part of the same orbit, that is, if
they are transformed versions of one another (x′ = gx for some g ∈ G).

The orbit of an image is itself invariant with respect to the group. For example, the set of images
obtained by rotating x is exactly the same as the set of images obtained by rotating gx. The orbit
is also unique for each object: the set of images obtained by rotating x only intersects with the
set of images obtained by rotating x′ when x′ = gx. Thus, an intuitive method of obtaining an
invariant signature for an image, unique to each object, is just to check which orbit it belongs to. We
can assume access to a stored set of orbits of template images τk; these template orbits could have
been acquired by unsupervised learning—possibly by observing objects transform and associating
temporally adjacent frames (e.g. [9, 10]).

The key fact enabling this approach to object recognition is this: It is not necessary to have all
the template orbits beforehand. Even with a small, sampled, set of template orbits, not including
the actual orbit of x, we can still compute an invariant signature. Observe that when g is unitary
〈gx, τk〉 = 〈x, g−1τk〉. That is, the inner product of the transformed image with a template is the
same as the inner product of the image with a transformed template. This is true regardless of
whether x is in the orbit of τk or not. In fact, the test image need not resemble any of the templates
(see [11, 12, 13, 1]).

Consider gtτk to be a realization of a random variable. For a set {gtτk, | t = 1, ..., T} of images
sampled from the orbit of the template τk, the distribution of 〈x, gtτk〉 is invariant and unique to each
object. See [1] for a proof of this fact in the case that G is the group of 2D affine transformations.

1See [1] for a more complete exposition of the theory.
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Thus, the empirical distribution of the inner products 〈x, gtτk〉 is an estimate of an invariant. Fol-
lowing [1], we can use the empirical distribution function (CDF) as the signature:

µkn(x) =
1

T

T∑
t=1

σ(〈x, gtτk〉+ n∆) (1)

where σ is a smooth version of the step function (σ(x) = 0 for x ≤ 0, σ(x) = 1 for x > 0), ∆ is
the resolution (bin-width) parameter and n = 1, . . . , N . Figure 1 shows the results of an experiment
demonstrating that the µkn(x) are invariant to translation and in-plane rotation. Since each face has its
own characteristic empirical distribution function, it also shows that these signatures could be used
to discriminate between them. Table 1 reports the average Kolmogorov-Smirnov (KS) statistics
comparing signatures for images of the same face, and for different faces: Mean(KSsame) ∼ 0 =⇒
invariance and Mean(KSdifferent) > 0 =⇒ discriminability.

1

2

(A) IN-PLANE ROTATION                           (B) TRANSLATION

Figure 1: Example signatures (empirical distribution functions—CDFs) of images depicting two
different faces under affine transformations. (A) shows in-plane rotations. Signatures for the upper
and lower face are shown in red and purple respectively. (B) Shows the analogous experiment with
translated faces. Note: In order to highlight the difference between the two distributions, the axes
do not start at 0.

Since the distribution of the 〈x, gtτk〉 is invariant, we have many choices of possible signatures.
Most notably, we can choose any of its statistical moments and these may also be invariant—or
nearly so—in order to be discriminative and “invariant for a task” it only need be the case that for
each k, the distributions of the 〈x, gtτk〉 have different moments. It turns out that many different
convolutional networks can be understood in this framework2. The differences between them cor-
respond to different choices of 1. the set of template orbits (which group), 2. the inner product
(more generally, we consider the template response function ∆gτk(·) := f(〈·, gtτk〉), for a possibly
non-linear function f—see [1]) and 3. the moment used for the signature. For example, a simple
neural-networks-style convolutional net with one convolutional layer and one subsampling layer (no
bias term) is obtained by choosing G =translations and µk(x) =mean(·). The k-th filter is the
template τk. The network’s nonlinearity could be captured by choosing ∆gτk(x) = tanh(x · gτk);
note the similarity to Eq. (1). Similar descriptions could be given for modern convolutional nets,
e.g. [6, 7, 11]. It is also possible to capture HMAX [14, 15] and related models (e.g. [16]) with this
framework. The “simple cells” compute normalized dot products or Gaussian radial basis functions
of their inputs with stored templates and “complex cells” compute, for example, µk(x) = max(·).
The templates are normally obtained by translation or scaling of a set of fixed patterns, often Gabor
functions at the first layer and patches of natural images in subsequent layers.

3 Invariance to non-affine transformations

The theory of [1] only guarantees that this approach will achieve invariance (and discriminability)
in the case of affine transformations. However, many researchers have shown good performance of
related architectures on object recognition tasks that seem to require invariance to non-affine trans-
formations (e.g. [17, 18, 19]). One possibility is that achieving invariance to affine transformations

2The computation can be made hierarchical by using the signature as the input to a subsequent layer.
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is itself a larger-than-expected part of the full object recognition problem. While not dismissing that
possibility, we emphasize here that approximate invariance to many non-affine transformations can
be achieved as long as the system’s operation is restricted to certain nice object classes [20, 21, 22].

A nice class with respect to a transformation G (not necessarily a group) is a set of objects that all
transform similarly to one another under the action of G. For example, the 2D transformation map-
ping a profile view of one person’s face to its frontal view is similar to the analogous transformation
of another person’s face in this sense. The two transformations will not be exactly the same since any
two faces differ in their exact 3D structure, but all faces do approximately share a gross 3D structure,
so the transformations of two different faces will not be as different from one another as would, for
example, the image transformations evoked by 3D rotation of a chair versus the analogous rotation
of a clock. Faces are the prototypical example of a class of objects that is nice with respect to many
transformations3.

(A) ROTATION IN DEPTH                        (B) ILLUMINATION

Figure 2: Example signatures (empirical distribution functions) of images depicting two different
faces under non-affine transformations: (A) Rotation in depth. (B) Changing the illumination direc-
tion (lighting from above or below).

Figure 2 shows that unlike in the affine case, the signature of a test face with respect to template faces
at different orientations (3D rotation in depth) or illumination conditions is not perfectly invariant
(KSsame > 0), though it still tolerates substantial transformations. These signatures are also use-
ful for discriminating faces since the empirical distribution functions are considerably more varied
between faces than they are across images of the same face (Mean(KSdifferent) > Mean(KSsame),
table 1). Table 2 reports the ratios of within-class discriminability (negatively related to invari-
ance) and between-class discriminability for moment-signatures. Lower values indicate both better
transformation-tolerance and stronger discriminability.

Transformation Mean(KSsame) Mean(KSdifferent)
Translation 0.0000 1.9420
In-plane rotation 0.2160 19.1897
Out-of-plane rotation 2.8698 5.2950
Illumination 1.9636 2.8809

Table 1: Average Kolmogorov-Smirnov statistics comparing the distributions of normalized inner
products across transformations and across objects (faces).

Transformation MEAN L1 L2 L5 MAX
Translation 0.0000 0.0000 0.0000 0.0000 0.0000
In-plane rotation 0.0031 0.0031 0.0033 0.0042 0.0030
Out-of-plane rotation 0.3045 0.3045 0.3016 0.2923 0.1943
Illumination 0.7197 0.7197 0.6994 0.6405 0.2726

Table 2: Table of ratios of “within-class discriminability” to “between-class discriminability” for
one template ‖µ(xi) − µ(xj)‖2. within: xi, xj depict the same face, and between: xi, xj depict
different faces. Columns are different statistical moments used for pooling (computing µ(x)).

3It is interesting to consider the possibility that faces co-evolved along with natural visual systems in order
to be highly recognizable.
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4 Towards the fully unconstrained task
The finding that this templates-and-signatures approach works well even in the difficult cases of 3D-
rotation and illumination motivates us to see how far we can push it. We would like to accommodate
a totally-unconstrained notion of invariance to identity-preserving transformations. In particular,
we investigate the possibility of computing signatures that are invariant to all the task-irrelevant
variability in the datasets used for serious computer vision benchmarks. In the present paper we
focus on the problem of face-verification (also called pair-matching). Given two images of new
faces, never encountered during training, the task is to decide if they depict the same person or not.

We used the following procedure to test the templates-and-signatures approach on face verification
problems using a variety of different datasets (see fig. 4A). First, all images were preprocessed with
low-level features (e.g., histograms of oriented gradients (HOG) [23]), followed by PCA using all the
images in the training set and z-score-normalization4. At test-time, the k-th element of the signature
of an image x is obtained by first computing all the 〈x, gtτk〉 where gtτk is the t-th image of the k-th
template person—both encoded by their projection onto the training set’s principal components—
then pooling the results. We used 〈·, ·〉 = normalized dot product, and µk(x) = mean(·).

At test time, the classifier receives images of two faces and must classify them as either depicting
the same person or not. We used a simple classifier that merely computes the angle between the
signatures of the two faces (via a normalized dot product) and responds “same” if it is above a fixed
threshold or “different” if below threshold. We chose such a weak classifier since the goal of these
simulations was to assess the value of the signature as a feature representation. We expect that the
overall performance levels could be improved for most of these tasks by using a more sophisticated
classifier5. We also note that, after extracting low-level features, the entire system only employs two
operations: normalized dot products and pooling.

The images in the Labeled Faces in the Wild (LFW) dataset vary along so many different dimensions
that it is difficult to try to give an exhaustive list. It contains natural variability in, at least, pose,
lighting, facial expression, and background [2] (example images in fig. 3). We argue here that LFW
and the controlled synthetic data problems we studied up to now are different in two primary ways.

First, in unconstrained tasks like LFW, you cannot rely on having seen all the transformations of any
template. Recall, the theory of [1] relies on previous experience with all the transformations of tem-
plate images in order to recognize test images invariantly to the same transformations. Since LFW
is totally unconstrained, any subset of it used for training will never contain all the transformations
that will be encountered at test time. Continuing to abuse the notation from section 2, we can say
that the LFW database only samples a small subset of G, which is now the set of all transformations
that occur in LFW. That is, for any two images in LFW, x and x′, only a small (relative to |G|) subset
of their orbits are in LFW. Moreover, {g | gx ∈ LFW} and {g′ | g′x′ ∈ LFW} almost surely do not
overlap with one another6.

The second important way in which LFW differs from our synthetic image sets is the presence of
clutter. Each LFW face appears on many different backgrounds. It is commmon to consider clut-
ter to be a separate problem from that of achieving transformation-invariance, indeed, [1] conjec-
tures that the brain employs separate mechanisms, quite different from templates and pooling—e.g.

4PCA reduces the final algorithm’s memory requirements. Additionally, it is much more plausible that
the brain could store principal components than directly memorizing frames of past visual experience. A
network of neurons with Hebbian synapses (modeled by Oja’s rule)—changing its weights online as images are
presented—converges to the network that projects new inputs onto the eigenvectors of its past input’s covariance
[24]. See also [1] for discussion of this point in the context of the templates-and-signatures approach.

5Our classifier is unsupervised in the sense that it doesn’t have any free parameters to fit on training data.
However, our complete system is built using labeled data for the templates, so from that point-of-view it may
be considered supervised. On the other hand, we also believe that it could be wired up by an unsupervised
process—probably involving the association of temporally-adjacent frames—so there is also a sense in which
the entire system could be considered, at least in principle, to be unsupervised. We might say that, insofar as
our system models the ventral stream, we intend it as a (strong) claim about what the brain could learn via
unsupervised mechanisms.

6The brain also has to cope with sampling and its effects can be strikingly counterintuitive. For example,
Afraz et al. showed that perceived gender of a face is strongly biased toward male or female at different
locations in the visual field; and that the spatial pattern of these biases was distinctive and stable over time for
each individual [25]. These perceptual heterogeneity effects could be due to the templates supporting the task
differing in the precise positions (transformations) at which they were encountered during development.
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attention—toward achieving clutter-tolerance. We set aside those hypotheses for now since the goal
of the present work is to explore the limits of the totally unconstrained notion of identity-preserving
transformation. Thus, for the purposes of this paper, we consider background-variation as just an-
other transformation. That is, “clutter-transformations” map images of an object on one background
to images of the same object on different backgrounds.

We explicitly tested the effects of non-uniform transformation-sampling and background-variation
using two new fully-controlled synthetic image sets for face-verification7. Figure 3B shows the
results of the test of robustness to non-uniform transformation-sampling for 3D rotation-in-depth-
invariant face verification. It shows that the method tolerates substantial differences between the
transformations used to build the feature representation and the transformations on which the system
is tested. We tested two different models of natural non-uniform transformation sampling, in one
case (blue curve) we sampled the orbits at a fixed rate when preparing templates, in the other case,
we removed connected subsets of each orbit. In both cases the test used the entire orbit and never
contained any of the same faces as the training phase. It is arguable which case is a better model of
the real situation, but we note that even in the worse case, performance is surprisingly high—even
with large percentages of the orbit discarded. Figure 3C shows that signatures produced by pooling
over clutter conditions give good performance on a face-verification task with faces embedded on
backgrounds. Using templates with the appropriate background size for each test, we show that our
models continue to perform well as we increase the size of the background while the performance
of standard HOG features declines.
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Figure 3: (A) Example images from Labeled Faces in the Wild. (B) Non-uniform sampling sim-
ulation. The abscissa is the percentage of frames discarded from each template’s transformation
sequence, the ordinate is the accuracy on the face verification task. (C) Pooling over variation in the
background. The abscissa is the background size (10 scales), and the ordinate is the area under the
ROC curve (AUC) for the face verification task.

5 Computer vision benchmarks: LFW, PubFig, and SUFR-W
An implication of the argument in sections 2 and 4, is that there needs to be a reasonable number of
images sampled from each template’s orbit. Despite the fact that we are now considering a totally
unconstrained set of transformations, i.e. any number of samples is going to be small relative to |G|,
we found that approximately 15 images gtτk per face is enough for all the face verification tasks
we considered. 15 is a surprisingly manageable number, however, it is still more images than LFW
has for most individuals. We also used the PubFig83 dataset, which has the same problem as LFW,
and a subset of the original PubFig dataset. In order to ensure we would have enough images from
each template orbit, we gathered a new dataset—SUFR-W8—with ∼12,500 images, depicting 450
individuals. The new dataset contains similar variability to LFW and PubFig but tends to have more
images per individual than LFW (there are at least 15 images of each individual). The new dataset
does not contain any of the same individuals that appear in either LFW or PubFig/PubFig83.

7We obtained 3D models of faces from FaceGen (Singular Inversions Inc.) and rendered them with Blender
(www.blender.org).

8See paper [26] for details. Data available at http://cbmm.mit.edu/
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