A Concentration of the Sufficient Statistics: Proof of Lemma 3, and
Inequalities (6) and (7)

Proof of Lemma 3. The proof of Lemma 3 follows from the classical Cramér-Chenoff technique
(see [5]). For any A > 0.

u

A =P (1 Z[T(yz) —F'(0)] > (5) —P (e/\( [Ty —F'(9)]) > e>‘“5)

(2
=1

<o {eA(Z;"Zl[T(yi)fF’(O)])} — o~ ulBrA—¢a(V)
where we have used the Markov inequality, and where

$a(N) :=InEx/p [eMT(X)*F'(G))] = F(0+\) — F(0) — \F'(9).
Now we optimize in A by choosing A > 0 that maximizes

IN—da(N) = X0+ F'(0)) — F(O+ X))+ F(0) := f(N).
f(X) is differentiable in A and its minimum, A\*, satisfies f'(A*) = O i.e.
F'(0+X) =48+ F'(9).
(Note that \* > 0 since F” is increasing). Finally, we get
A < e~ W(HF (0)N =F(0+A")+F(8)) _,—u(F (9+A )N =F(0+X")+F(9)) _ ,—~uK(6+X",0)

The same reasoning leads to the upper bound

u

P (i Z[T(ys) —F'(0)] < 5) < oK)

where v* is such that F/(0 — v*) = F’'(0) — 0. O

For the proof of inequalities (6) and (7), we intoduce the notation Y, = Y \{ya,s} (the first u
observations of arms a exept observation y, ). First note that we have E’;t C Ban,,UDan,,
with

Ba,s = (Vs/ € [173]7p(ya,8’|9a) < L(04))

S

1
— / . § : /
Da,s = 35 S {1, .. S} N 5 _ 1 T /(T(ya,k) - F (90)) 2 5(1,

Indeed, we have used that for two sequences of event Fy and G4/,

(UFnG) = FsuGic N Fsul UG | = NFs|lul UG

s'=1 s'<s s'<s s"<s s'<s s'<s

One then has
T T t
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T s
P (p(yanlfa) < L(02)°+ > D P

1 s=1s'=1 k=1,k#s’
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where we use that the definition of L(6) gives P (p(yq4,1]00) < L(6,)) <
(6). To proof (7), we write:

1. This leads to inequality

T T t
ZP(Ea,t(éa)c N Na,t > tb) S E Z Z 1Na)t:s(1Ba’_’S + ]'Da,s)
t=1 t=1 s=¢b
T t
< SN P((yaalfa) < L(0a))*
t=1 g=tb
T t s 1 S
DD D Pl sy X (Ter) = F(6a))| = 0
t=1 s=tb s’'=1 k=1,k#s’
1 tb T
< tl=) +) Pexp(—tPK(6,,9)).

B Extracting the KL-divergence: Proof of Lemma 7

‘We assume that the event Eu holds, s’ < w. So, on this event we have

u

Jorcon ip@AWW@ﬂVMWMW
T s=1,s#s’

P(u(bu) = p+ AY*) =

Joco ﬁ p(ys | 0")p(ys |07 (0")de’

s=1,s#s’

Ticons _TL Betaiotum )00

fe/ee 1_[76 ) I;)((zijijl%l))p(ysl ‘el)ﬂ(el)del

s=1,s#s
weoys e TN n (0] )do'

e fgle@ e*(“*I)K[Y”‘19’9’]7r(9"ys/)d9’

where 7(6|ys ) denotes the posterior distribution on 6 after observation ys and

1 - p(ys | 0)
K[Y},0,0'] := In —"—+=
00 = 003 2 70

denotes the empirical KL-divergence obtained from the observations Y} = Y*\ {y, }. Introducing
X10)
YE0) = KIY2,0,0) — Ex (1n 2510
T(sv ) [377] X0<np(X|9,) )
we can rewrite
Jyco, o € @ DEOIE 0 11y ey
e=(u=D)(K0,01+r (Y0 (6 |y ) 6

P(u(bu) = p+AYY) =
Joce
Now, a direct computation show that

u

Pl < -0l Y [T - FO)]. (13)

s=1,s#s’

Indeed, for any 6,6’ € ©




and one also recalls that

K(0,0') = F'(0)(0 — 0') — [F(6) — F(6")]. (14)
Hence
o | S~ [P0
r(Yy#,0,0")] = “_1s:§¢s/ {1 ) K(&,G)}
S| Y @@ - Fepe-m)| < | S ) - vEe)| W -6
s=1,s#s’ s=1,s#s’

The inequality (13) leads to the result, using that on E,,

u

S [Ty - F'0)| < 6

s=1,s#s’

1
u—1

C Proof of Lemma 6

From Theorem 4 we know that, for N, ;, > N(0,, F'),

1g, PES) | Fo) = 15, PI(EL)® | Yau)

< Cl a67(Na,t71)(1750.02,0.)1((0(17/‘71(#a+Aa))+ln Ng,t

< e Wait=1)((1=6aC2,0)K(Oa,n ™" (1a+24) =10(C1a Nay)/(Nae 1) )

Let Ne = Nc(4,Aq, 8,) be the smallest integer such that for all n > N,

In(Ch 4 _
% < 5(1 - 5ac2,a)K(0aa H 1(#(1 + Aa))'

Defining

InT
(1 =€)(1 = 8aC2,0)K(0a, =1 (110 + Ad))
we have that for all ¢ and T such that N, ; — 1 > max(Lp, N, N(0,, F')),

1
15, P(u(0a(t) > pa) + Ao | F2) < 7

LT =

Let 7 = inf{t € N | N, > max(Ly, Ne, N(6,, F')) + 1}. 7 is a stopping time with respect to F.
Then,

T T T
Z]P) (at =a (Eg,t)cv Ea,t) <E lz la,=a)| + E Z l(atza)lEa_tl(Eg t)C]
t=1 =1 t=r+1 ' ’
T
= E[Na;,-] +E Z 1(at:a)1E~a‘t]P) ((Eg’t)c | ft)‘|
t=7+1
T
= E[Naﬂ'] +E Z 1(at:a)1E~‘a,tP(u(0a(t) > ,u(aa) + Aa ‘ Ya,t)
t=7+1

< Lp+1+max(N,N(,,F))+E

ZT 1]
T
t=7+1

< Ly 4+ max(Ne, N(0,, F)) + 2.
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D Controling the Number of Optimal Plays: Outline Proof of Proposition 5

The proof of this proposition is quite detailed, and essentially the same as the proof given for Propo-
sition 1 in [11], which we will sometimes refer to. However, in generalising to the case of exponen-
tial family bandits we show how to avoid the need to explicity calculate posterior probabilities that
lead to Lemma 4 in [11]. While simplifying the proof we loose the ability to specify the constants
explicitly, and so the analysis becomes asymptotic, but holds for every b €]0, 1].

Sketch of the proof and key results Let 7; be the occurrence of the ;%" play of the optimal arm
(with 79 := 0). Let & := (7j41 — 1) — 7;: this random variable measures the number of time steps
between the j** and the (j + 1)*" play of the optimal arm, and so 2522 Noi = Zf;g &;. We then

upper bound P(N; ; < t*) asin [11]:

[£°]
P(Nyy <t?) <P (Fje{0,., "]} &=t —1) <> PG =t -1 (15)
j=0

ZZSJ‘

We introduce the interval Z; = {7;,7; + [t'~% — 1]}: on the event &;, Z; is included in {7;, 741}
and no draw of arm 1 occurs on Z. We also introduce for each arm a # 1 d, := #5F=.

The idea of the rest of the analysis is based on the following remark. If on a subinterval Z C
[T, Tj41] of size f(t) arm 1 is not drawn and all the samples of the suboptimal arms fall below
po + da < pq, then for all s € Z, pu(61,5) < p2 + de. On Z, the sequence (0 5) is i.i.d. with
distribution T1,7) and hence,

P(Ys € T, p(01.0) < pa +0) < (P ((0r.r,) < pio + 62))" "

At this point, an asymptotic result, telling that the posterior on #; concentrates to a Dirac in 67 (the
Bernstein-Von-Mises theorem, see [16]) , leads to

]P([L(ol’,,-j) S 125 =+ 52) = 0.
j—o0

Assuming that Vj, P(u(61,7,) < po + d2) # 1, we have shown the following Lemma, which plays
the role of an asymptotic couterpart for Lemma 3 in [11].

Lemma 9. There exists a constant C = C(mg) < 1, such that for every (random) interval T
included in IL; and for every positive function f, one has

P (Vs € T, u(b1s) < pio + 02, |Z| > f(t)) < CFO.

Another key lemma is the following which generalizes Lemma 4 in [11]. The proof of this lemma
is standard: it proceeds by conditioning on the event E, ;' and applying Theorem 4, and Lemma 3.

Lemma 10. For everya € A, § > 0, there exist constants C, = Cy(jiq,9, F) and N such that for
t> N,
2(K —1)

PEs<t,Ja#1:p(bs,s) > pa+de, Nos > Coln(t)) < 2

The rest of the proof proceeds by finding a subinterval of Z; on which all the samples of all the
suboptimal arms indeed fall below the corresponding thresholds i, + d,. This is done exactly as in
[11] and we recall the main steps of the proof below. Before that, we need to introduce the notion of
saturated, suboptimal action.

Definition 11. Let t be fixed. For any a # 1, an action a is said to be saturated at time s if it has been
chosen at least Cy 1n(t) times, i.e. N,y > Cyln(t). We shall say that it is unsaturated otherwise.
Furthermore at any time we call a choice of an unsaturated, suboptimal action an interruption.

'Using Ea,t in place of E, ; from [11] only changes slightly the constant Cj,.
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Step 1: Decomposition of Z; We want to study the process of saturation on the event £; = {{; >
170 — 1}. We start by decomposing the interval Z; = {7;,7; + [t! 7% — 1]} into K subintervals:

Ty = {Tﬁ- {(l—l)(t[:b—l)w T+ [WW}, I=1,....K.

Now for each interval Z;;, we introduce:

e F;;: the event that by the end of the interval Z; ; at least [ suboptimal actions are saturated;

e n;;: the number of interruptions during this interval.

We use the following decomposition to bound the probability of the event &;:
P(g) :IP’(gjﬁ]:j,K,l)—HP(Sj ﬂ]—'ﬁK,l) (16)

Note that the quantities &;, Z;;, F;; and n;; all depend on ¢, however we suppress this dependency
for notational convenience. However, we keep in mind that we bound the different probabilities for
t > N, so that Lemma 10 applies.

Step 2: Bounding P(£; N F; k—1) Onthe event £; N F; x_1, only saturated suboptimal arms are
drawn on the interval Z; . Using Lemma 10, we get
]P)((‘:j n ]:j_’Kfl) SP({HS S Ij’K, a#1: /1,(9(1’5) > g + da} N gj N fijfl)
+ P({VS S Ij,K,a 7& 1: /1,(9(175) < g + da} N gj n .FjﬁKfl)
<P(3s <t,a#1:p(bas) > pia+da, Not > Coln(t))
+ P({VS S ijK,a 75 1: ,U,(G(LS) > g + da} N Ej n ]:j,K—l)
< 2(K -1)

+P({Vs € I i : p(01,5) < pz + d2} NE;)

2(K —1 t1=b_y
%4,0

for 0 < C' < 1 as in Lemma 9. The second last inequality comes from the fact that if arm 1 is not
drawn, the sample 6; ; must be smaller than some sample 6, s and therefore smaller than po + do.

<

Step 3: Bounding P(&; N Fik- 1) A similar argument to that employed in Step 2 can be used in
an induction to show that for all 2 < < K, if t is larger than some deterministic constant N, ., 1
specified in the base case,

2(K —1 tlmbog
(g m}“cl 1) (l _2) ((152) +CCK21n(t)>

We refer the reader to [11] for a precise description of the induction. For [ = K we then get

P(ENFSr 1) < (K—2) < TR CTRTInn (17)

Step 4: Conclusion Putting Steps 2 and 3 together we obtain that for ¢ > Ny :=
maX(N NH17#27 )

— +1-b_
P(&;(1)) < 2(}{7571) (K — 2)KCIn(t)CeR7m0,
—1)2 tl=b_ tl=bo1
P(Ny, <t%) < 2K 1) +CTF T 4 (K — 2)KC# In(t)Cer® mé),

$2-b

where we use 15. It then follows that

ZIP N1t<t < No + Z Cb(ﬂ-Omuh,uQaK)<oo'
t=No+1
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