
Supplement to

“Bayesian optimization explains human active search”

NIPS 2013

Ali Borji and Laurent Itti
{borji,itti}@usc.edu

November 7, 2013

1 Stimuli in Optimization Task 1

Figure 1: Illustration of stimuli used during test trials. Functions are reconstructed from human
clicked locations. F18 is the Dirac function with a non-zero element at -270.

1

Figure 2: Progressive distribution of human clicks in optimization task 1 progressively up to 15
clicks (corresponding to Fig. 1 in main text).

−300 0 300

1

0.5

0
x

y

histogram of 1st clicks over all subjects

Figure 3: Distribution of first clicks over all subjects and functions. This pdf is used to draw
the initial x for optimization algorithms.

2

Table 1: Equations of stimuli functions.

No. Functions

1 f(x) =-4.6e-6 x4 -1.05e-4 x3 + 0.03 x2 + 0.39 x + 7.9
2 f(x) =6.3 e-6 x4 + 5.89 e-4x3 - 0.012x2 - 1.61x + 28.61
3 f(x) =-6.1e-7 x5 - 9e-5 x4 -7.2e-4 x3 + .3x2 + 11.8x + 1.46
4 f(x) =-9.18e-9x5 + 2.77e-6 x4 - 0.01x2 -0.69x + 65.9
5 f(x) = 2.34e-5x4 + 8.2e-5 x3 - 0.03x2 -0.21x + 56.8
6 f(x) = 5.4e-8x5 + 4.5e-6x4 -0.02x2 +0.86x + 62.6
7 f(x) =1.79e-7x4 -0.04x + 58.4
8 f(x) = 3.39e-6x4 + 0.77x + 41.7
9 f(x) =2.9e-6x6 - 6.2e-5x3 -0.01x3 -0.07x2 + 9.4x +195.4
10 f(x) =3.5e-7x6 + 5.3e-6x5 -0.01x3 + 0.13x2 + 4.4x + 39.3
11 f(x) =-3.6e-8x5 -1.4e-5x4 +0.03x2 -0.22x + 33.2
12 f(x) =1.1e-7 x5 + 1.08e-5x4 + 7.2e-5x3 -0.01x2 -0.28x+ 87
13 f(x) = 1.5e-5x4 -9.122e-5x3 -0.04x2 + 0.69x + 81.9
14 f(x) = 6.49e-8x5 + 9.99e-6x4 -0.02x2+ 0.40x + 53.9
15 f(x) = -1.06e-7x4 -1.98e-5x3 +1.10x2 +18x +83.1

16 f(x) = 7schw(x− 50); schw(x) = 837.96− xsin(
√
|x|)

17 f(x) = −psi(|100(x− 100)|); f(100) = −4.6
18 f(x) = 1 for x = −270; otherwise f(x) = 0

19 f(x) = 1

σ
√
2π
e

−(x−100−µ)2

2σ2 ; µ = 100, σ = 50

20 f(x) = (x+ 50)× cos(0.03πx)
21 f(x) = sinc(0.03(x− 200))
22 f(x) = −(2x)3 + 5000
23 f(x) = −(x+ 100)2

24 f(x) = e0.02(x−100)

25 f(x) = −x+ 100

2 Baseline Optimization Algorithms

Some algorithms perform local search including: fminSearch, fminBnd, and fminUnc. fmin-
Search algorithm (also known as Nelder-Mead simplex method [1]) finds the minimum of a
scalar function, starting at an initial estimate. This is a direct search method for unconstrained
nonlinear optimization and does not use numerical or analytic gradients. fminBnd algorithm
finds minimum of a single-variable function on a fixed interval. It uses the golden section search
and parabolic interpolation. fminUnc algorithm uses the BFGS Quasi-Newton method with a
cubic line search procedure. We used Matlab for running these algorithms.

We also run the Gradient Descent (GD) algorithm and its descendants using the minFunc-#
code1 where # refers to different Gradient approaches (e.g., Conjugate Gradient (cg), Quasi-
Newton (qnewton), etc.). Each iteration in these algorithms involves calculating a search direc-
tion, and then querying function values along that direction until certain conditions are met. In
GD, parameters α and tol control step size and tolerance on gradient norm, respectively.

To assess whether humans randomly pick a point and then follow the gradient, we run
three multi-start local search algorithms using fminSearch, fminBnd, and fminUnc. For these
algorithms, in addition to xTolm, we also change the number of random starts.

Some algorithms are inspired by natural phenomena and are population-based. They are
derivative-free and are suitable for scenarios where it is not possible to calculate the derivative
of the objective function. We explore two types: Particle Swarm Optimization (PSO)2 [2] and
Genetic Algorithms (GA) [3, 4]3. For GA, we use the stochastic universal sampling, single-point
crossover (rate = 0.7), and bit flip mutation (rate = 0.06). For PSO, we set cognitive and social
attraction parameters to 0.5 and 0.1, respectively.

1http://www.di.ens.fr/∼mschmidt/Software/minFunc
2http://code.google.com/p/psomatlab/.
3We use gatbx toolbox at: http://www.geatbx.com/

3

Simulated Annealing (SA) [5] models the physical process of heating a material and then
slowly lowering the temperature to decrease defects, thus minimizing the system energy while
avoiding local extrema (if the temperature is lowered with a sufficiently slow schedule). Here we
vary the stopping temperature and cooling schedule (β).

DIRECT [6] is a derivative-free sampling algorithm. Similar to BO approaches, it samples
points in the domain, and uses the information it has obtained to decide where to search next.
DIRECT can be very useful when the objective function is a “black box“ function or simula-
tion. It has been shown to be very competitive with existing algorithms, with the advantage of
requiring few parameters [7].

Note that our main goal here is to discover which algorithm explains human search behavior
better. See [8] for benchmarking of optimization algorithms.

3 Bayesian Global Optimization

3.1 Gaussian Processes

GP is used to probabilistically model an unknown function based on prior information which in-
cludes the set of existing observed samples and their obtained function values I = {(x1, y1), (x2, y2), · · · , (xn, yn)}
where yi = f(xi). Let I = {xI ,yI} where xI = {x1, x2, · · · , xn} and yI = {y1, y2, · · · , yn} rep-
resent the prior information. The goal for the posterior model is to predict the function output
for any x ∈ X d\xI . For any unobserved point, the Gaussian process models its function output
as a normal random variable, with its mean predicting the expected function output of the point,
and the variance indicating the uncertainty associated with the prediction. GP has a convenient
closed form for estimating the conditional posterior mean and variance of the function value y:

y|I ∼ N (µ, σ2) (1)

µ = k(x,xI)k(xI ,xI)−1yI

σ2 = k(x, x)− [k(x,xI)k(xI ,xI)−1k(xI , x)]

where k(., .) is an arbitrary symmetric positive definite kernel function that specifies the element
of the covariance matrix. Here, we use a zero mean GP prior and covariance specified by a
RBF kernel function (known as Squared Exponential): k(xi, xj) = σfexp(− 1

l |xi − xj |
2) where l

is the kernel width (scale parameter) that can be considered as the distance we need to move in
the input space before the function value changes significantly. σf is the signal variance which
specifies the maximum possible variance at each point. We conducted a grid search to learn l
and σf from training functions. The resultant parameters l = 500 and σf = 100 were used for
Bayesian optimization models. We also empirically verified that the GP behaved reasonably well
on our functions.

For interpolation and extrapolation tasks, GP parameters were learned from human data
(i.e., human responses over train trails and not the actual functions as opposed to Experiment
1). The learned GP parameters were then used to predict human answers over test trials.

3.2 Selection Criteria

Below we explain the 5 most popular sequential selection criteria in the literature, which we use
here. Note that selection criteria are not limited to these and additional ones have recently been
proposed (e.g., Information theoretic BO [9, 10], GP-Hedge [11], Thompson sampling [12]).
Maximum Mean (MM): This purely exploitative (greedy) heuristic (a.k.a. PMAX) selects the
point which has the highest output mean [13, 14]: xnext = argmaxx µ.
Maximum Variance (MV): This purely exploratory heuristic (a.k.a. uncertainty sampling [15])
selects the point which has the highest output variance (or standard deviation): xnext = argmaxx σ.
Maximum Probability of Improving (MPI): One intuitive strategy is to maximize the prob-
ability of improving over the current best observation, ymax, by a given margin α [16, 17, 18].
The next sample is the one that will produce an output no smaller than (1 + α)ymax with the

4

highest probability: xnext = argmaxx p(y(x) ≥ (1 +α)ymax). Using GP properties we can write:

xnext = argmaxx Φ
(µx − (1 + α)ymax

σx

)
(2)

Φ(.) is the normal cumulative distribution function.
Maximum Expected Improvement (MEI): This criterion selects the sample that directly
maximizes the expected improvement [19, 20]. It can be written as the following closed form:

xnext = argmaxx σx
[
− uΦ(−u) + φ(u)

]
(3)

where u = ymax−µx
σx

and φ(.) is the normal pdf.
Upper Confidence Bounds (UCB): To overcome the greedy nature of MM, [21, 22] proposed the
Sequential Design for Optimization (SDO) algorithm, in which they exploited upper confidence
bounds (lower, when considering minimization) to construct acquisition functions of the form:

xnext = argmaxx UCB(x) = argmaxx µx + κσx (4)

where parameter κ balances exploitation against exploration. Here, we set κ to 5 to weigh
variance more than mean, we eventually tuned this parameter to achieve its best accuracy for
each function (denoted as GP-UCB-Opt in the paper). A similar version of this heuristic (posed
as a multi-armed bandit problem), called Maximum Upper-bound Interval (MUI) [23], explores
areas with non-trivial probability of achieving a good result, as measured by the upper bound
of the 95% confidence interval of output prediction: xnext = argmaxx µx + 1.96σx.

In addition to the above, we run two recent BO methods proposed by [24] referred here as
GP-Osborne and GP-Osborne-G. The latter also uses the local gradient information.

4 Convergence of Hit Rate and Function Calls

f1 f5

0 50 100 150 200
0

20

40

60

fu
n

c
ti
o

n
 c

a
ll
s

h
it
 r

a
te

runs runs

0 50 100 150 200
0

20

40

60

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.1

0.2

0.3

0.4

Figure 4: Convergence of the fminSearch (running average of hit rate and function calls) over
20 executions for two functions. Similar patterns happen over other algorithms.

5

5 Stimuli in Interpolation and Extrapolation Tasks

Polynomials of degree 2; Deg2:
y = p1 − p2 × (x− p3)2 (5)

Polynomials of degree 3; Deg3:

y = (x− p1)× (x− p2)× (x− p3)× p4 + p5 (6)

Polynomials of degree 5; Deg5:

y = (x− p1)× (x− p2)× (x− p3)× (x− p4)× (x− p5)× p6 + p7 (7)

We randomly generated two sets of coefficients for training and testing trials shown in Fig.
6 in the main text. Functions are then normalized to the range of [0 100].

6 Stimuli in Optimization Task 3

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

150

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

150

−300 −200 −100 0 100 200 300
−150

−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−40

−20

0

20

40

60

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−150

−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−150

−100

−50

0

50

−300 −200 −100 0 100 200 300
−20

0

20

40

60

80

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

−300 −200 −100 0 100 200 300
−100

−50

0

50

100

150

−300 −200 −100 0 100 200 300
−50

0

50

100

150

200

Figure 5: Test stimuli used in optimization task 3. Functions are sampled from a Gaussian
process with known parameters.

6

References

[1] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the nelder-
mead simplex method in low dimensions,” SIAM Journal of Optimization, vol. 9, no. 1, pp. 112–147,
1998. 3

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization.,” in proc. IEEE ICNN., 1995. 3

[3] J. H. Holland, “Adoption in natural and artificial systems.,” 1975. 3

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. 1989. 3

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.,” Science.,
1983. 4

[6] D. Finkel, DIRECT Optimization Algorithm User Guide. 2003. 4

[7] C. P. D. Jones and B. Stuckman., “Lipschitzian optimization without the lipschitz constant,” Jour-
nal of Optimization Theory and Application, vol. 79, no. 1, pp. 157–181, 1993. 4

[8] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimization algorithms,” SIAM J. Op-
timization, vol. 20, no. 1, pp. 172–191, 2009. 4

[9] P. Hennig and C. J. Schuler, “Entropy search for information-efficient global optimization.,” Journal
of Machine Learning Research., vol. 13, pp. 1809–1837, 2012. 4

[10] M. N. I. M. Park and M. Park, “Active bayesian optimization: Minimizing minimizer entropy.,”
arXiv:1202.2143., 2012. 4

[11] E. B. M. Hoffman and N. de Freitas, “Portfolio allocation for bayesian optimization.,” in In Uncer-
tainty in Artificial Intelligence, pp. 327–336, 2011. 4

[12] B. May, N. Korda, A. Lee, and D. Leslie, “Optimistic bayesian sampling in contextual bandit
problems.,” 2011. 4

[13] A. Moore, J. Schneider, J. Boyan, and M. S. Lee, “Q2: Memory-based active learning for optimizing
noisy continuous functions.,” in ICML, pp. 386–394, 1998. 4

[14] A. Moore and J. Schneider, “Memory-based stochastic optimization.,” in NIPS, 1995. 4

[15] D. Lewis and W. Gale, “A sequential algorithm for training text classifiers.,” in In Proc. ACM
SIGIR Conference on Research and Development in Information Retreival, 1994. 4

[16] H. J. Kushner, “A new method of locating the maximum of an arbitrary multipeak curve in the
presence of noise.,” J. Basic Engineering, vol. 86, pp. 97–106, 1964. 4

[17] J. Elder, “Global rd optimization when probes are expensive: the grope algorithm,” in IEEE
International Conference on Systems, Man and Cybernetics, 1992. 4

[18] B. E. Stuckman, “A global search method for optimizing nonlinear systems.,” IEEE transactions
on systems, man, and cybernetic, vol. 18, pp. 965–977, 1998. 4

[19] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian methods for seeking the
extremum.,” in Towards Global Optimization. (L. Dixon and E. Szego, eds.), 1978. 5

[20] M. Locatelli, “Bayesian algorithms for one-dimensional global optimization.,” Journal of Global
Optimization., vol. 10, pp. 57–76, 1997. 5

[21] D. D. Cox and S. John, “A statistical method for global optimization,” in In Proc. IEEE Conference
on Systems, Man and Cybernetics, 1992. 5

[22] D. D. Cox and S. John, “Sdo: A statistical method for global optimization,” in In M. N. Alexandrov
and M. Y. Hussaini, editors, Multidisciplinary Design Optimization: State of the Art. SIAM, 1997,
1997. 5

[23] S. K. N. Srinivas, A. Krause and M. Seeger, “Gaussian process optimization in the bandit setting:
No regret and experimental design.,” in ICML, 2010. 5

[24] M. Osborne, R. Garnett, and S. Roberts, “Gaussian processes for global optimization,” in LION3,
2009. 5

7

