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Abstract

We investigate two new optimization problems — minimizing a submodular
function subject to a submodular lower bound constraint (submodular cover)
and maximizing a submodular function subject to a submodular upper bound
constraint (submodular knapsack). We are motivated by a number of real-world
applications in machine learning including sensor placement and data subset
selection, which require maximizing a certain submodular function (like coverage
or diversity) while simultaneously minimizing another (like cooperative cost).
These problems are often posed as minimizing the difference between submodular
functions [9, 25] which is in the worst case inapproximable. We show, however,
that by phrasing these problems as constrained optimization, which is more natural
for many applications, we achieve a number of bounded approximation guarantees.
We also show that both these problems are closely related and an approximation
algorithm solving one can be used to obtain an approximation guarantee for
the other. We provide hardness results for both problems thus showing that
our approximation factors are tight up to log-factors. Finally, we empirically
demonstrate the performance and good scalability properties of our algorithms.

1 Introduction

A set function f : 2V → R is said to be submodular [4] if for all subsets S, T ⊆ V , it holds that
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Defining f(j|S) , f(S ∪ j)− f(S) as the gain of j ∈ V
in the context of S ⊆ V , then f is submodular if and only if f(j|S) ≥ f(j|T ) for all S ⊆ T and
j /∈ T . The function f is monotone iff f(j|S) ≥ 0,∀j /∈ S, S ⊆ V . For convenience, we assume
the ground set is V = {1, 2, · · · , n}. While general set function optimization is often intractable,
many forms of submodular function optimization can be solved near optimally or even optimally
in certain cases. Submodularity, moreover, is inherent in a large class of real-world applications,
particularly in machine learning, therefore making them extremely useful in practice.

In this paper, we study a new class of discrete optimization problems that have the following form:

Problem 1 (SCSC): min{f(X) | g(X) ≥ c}, and Problem 2 (SCSK): max{g(X) | f(X) ≤ b},
where f and g are monotone non-decreasing submodular functions that also, w.l.o.g., are normalized
(f(∅) = g(∅) = 0)1, and where b and c refer to budget and cover parameters respectively. The
corresponding constraints are called the submodular cover [29] and submodular knapsack [1]
respectively and hence we refer to Problem 1 as Submodular Cost Submodular Cover (henceforth
SCSC) and Problem 2 as Submodular Cost Submodular Knapsack (henceforth SCSK). Our motivation
stems from an interesting class of problems that require minimizing a certain submodular function
f while simultaneously maximizing another submodular function g. We shall see that these naturally

1A monotone non-decreasing normalized (f(∅) = 0) submodular function is called a polymatroid function.
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occur in applications like sensor placement, data subset selection, and many other machine learning
applications. A standard approach used in literature [9, 25, 15] has been to transform these problems
into minimizing the difference between submodular functions (also called DS optimization):

Problem 0: min
X⊆V

(
f(X)− g(X)

)
. (1)

While a number of heuristics are available for solving Problem 0, in the worst-case it is NP-hard
and inapproximable [9], even when f and g are monotone. Although an exact branch and bound
algorithm has been provided for this problem [15], its complexity can be exponential in the worst case.
On the other hand, in many applications, one of the submodular functions naturally serves as part of a
constraint. For example, we might have a budget on a cooperative cost, in which case Problems 1 and
2 become applicable. The utility of Problems 1 and 2 become apparent when we consider how they
occur in real-world applications and how they subsume a number of important optimization problems.

Sensor Placement and Feature Selection: Often, the problem of choosing sensor locations can
be modeled [19, 9] by maximizing the mutual information between the chosen variables A and the
unchosen set V \A (i.e.,f(A) = I(XA;XV \A)). Alternatively, we may wish to maximize the mutual
information between a set of chosen sensors XA and a quantity of interest C (i.e., f(A) = I(XA;C))
assuming that the set of features XA are conditionally independent given C [19, 9]. Both these
functions are submodular. Since there are costs involved, we want to simultaneously minimize the
cost g(A). Often this cost is submodular [19, 9]. For example, there is typically a discount when
purchasing sensors in bulk (economies of scale). This then becomes a form of either Problem 1 or 2.

Data subset selection: A data subset selection problem in speech and NLP involves finding a limited
vocabulary which simultaneously has a large coverage. This is particularly useful, for example in
speech recognition and machine translation, where the complexity of the algorithm is determined
by the vocabulary size. The motivation for this problem is to find the subset of training examples
which will facilitate evaluation of prototype systems [23]. Often the objective functions encouraging
small vocabulary subsets and large acoustic spans are submodular [23, 20] and hence this problem
can naturally be cast as an instance of Problems 1 and 2.

Privacy Preserving Communication: Given a set of random variables X1, · · · , Xn, denote I as
an information source, and P as private information that should be filtered out. Then one way
of formulating the problem of choosing a information containing but privacy preserving set of
random variables can be posed as instances of Problems 1 and 2, with f(A) = H(XA|I) and
g(A) = H(XA|P), where H(·|·) is the conditional entropy.

Machine Translation: Another application in machine translation is to choose a subset of training
data that is optimized for given test data set, a problem previously addressed with modular functions
[24]. Defining a submodular function with ground set over the union of training and test sample
inputs V = Vtr ∪ Vte, we can set f : 2Vtr → R+ to f(X) = f(X|Vte), and take g(X) = |X|, and
b ≈ 0 in Problem 2 to address this problem. We call this the Submodular Span problem.

Apart from the real-world applications above, both Problems 1 and 2 generalize a number of well-
studied discrete optimization problems. For example the Submodular Set Cover problem (henceforth
SSC) [29] occurs as a special case of Problem 1, with f being modular and g is submodular. Similarly
the Submodular Cost Knapsack problem (henceforth SK) [28] is a special case of problem 2 again
when f is modular and g submodular. Both these problems subsume the Set Cover and Max k-Cover
problems [3]. When both f and g are modular, Problems 1 and 2 are called knapsack problems [16].

The following are some of our contributions. We show that Problems 1 and 2 are intimately
connected, in that any approximation algorithm for either problem can be used to provide guarantees
for the other problem as well. We then provide a framework of combinatorial algorithms based
on optimizing, sometimes iteratively, subproblems that are easy to solve. These subproblems
are obtained by computing either upper or lower bound approximations of the cost functions or
constraining functions. We also show that many combinatorial algorithms like the greedy algorithm
for SK [28] and SSC [29] also belong to this framework and provide the first constant-factor
bi-criterion approximation algorithm for SSC [29] and hence the general set cover problem [3]. We
then show how with suitable choices of approximate functions, we can obtain a number of bounded
approximation guarantees and show the hardness for Problems 1 and 2, which in fact match some
of our approximation guarantees. Our guarantees and hardness results depend on the curvature of
the submodular functions [2]. We observe a strong asymmetry in the results that the factors change
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polynomially based on the curvature of f but only by a constant-factor with the curvature of g, hence
making the SK and SSC much easier compared to SCSK and SCSC.

2 Background and Main Ideas

We first introduce several key concepts used throughout the paper. This paper includes only the
main results and we defer all the proofs and additional discussions to the extended version [11].
Given a submodular function f , we define the total curvature, κf as2: κf = 1−minj∈V

f(j|V \j)
f(j) [2].

Intuitively, the curvature 0 ≤ κf ≤ 1 measures the distance of f from modularity and κf = 0
if and only if f is modular (or additive, i.e., f(X) =

∑
j∈X f(j)). A number of approx-

imation guarantees in the context of submodular optimization have been refined via the cur-
vature of the submodular function [2, 13, 12]. In this paper, we shall witness the role
of curvature also in determining the approximations and the hardness of problems 1 and 2.

Algorithm 1: General algorithmic framework to
address both Problems 1 and 2

1: for t = 1, 2, · · · , T do
2: Choose surrogate functions f̂t and ĝt for f

and g respectively, tight at Xt−1.
3: Obtain Xt as the optimizer of Problem 1 or

2 with f̂t and ĝt instead of f and g.
4: end for

The main idea of this paper is a framework of
algorithms based on choosing appropriate sur-
rogate functions for f and g to optimize over.
This framework is represented in Algorithm 1.
We would like to choose surrogate functions f̂t
and ĝt such that using them, Problems 1 and 2
become easier. If the algorithm is just single
stage (not iterative), we represent the surrogates
as f̂ and ĝ. The surrogate functions we consider
in this paper are in the forms of bounds (upper or lower) and approximations.

Modular lower bounds: Akin to convex functions, submodular functions have tight modular lower
bounds. These bounds are related to the subdifferential ∂f (Y ) of the submodular set function f at
a set Y ⊆ V [4]. Denote a subgradient at Y by hY ∈ ∂f (Y ). The extreme points of ∂f (Y ) may
be computed via a greedy algorithm: Let π be a permutation of V that assigns the elements in Y
to the first |Y | positions (π(i) ∈ Y if and only if i ≤ |Y |). Each such permutation defines a chain
with elements Sπ0 = ∅, Sπi = {π(1), π(2), . . . , π(i)} and Sπ|Y | = Y . This chain defines an extreme
point hπY of ∂f (Y ) with entries hπY (π(i)) = f(Sπi )− f(Sπi−1). Defined as above, hπY forms a lower
bound of f , tight at Y — i.e., hπY (X) =

∑
j∈X h

π
Y (j) ≤ f(X),∀X ⊆ V and hπY (Y ) = f(Y ).

Modular upper bounds: We can also define superdifferentials ∂f (Y ) of a submodular function
[14, 10] at Y . It is possible, moreover, to provide specific supergradients [10, 13] that define the
following two modular upper bounds (when referring either one, we use mf

X ):

mf
X,1(Y ) , f(X)−

∑
j∈X\Y

f(j|X\j) +
∑

j∈Y \X

f(j|∅), mf
X,2(Y ) , f(X)−

∑
j∈X\Y

f(j|V \j) +
∑

j∈Y \X

f(j|X).

Then mf
X,1(Y ) ≥ f(Y ) and mf

X,2(Y ) ≥ f(Y ),∀Y ⊆ V and mf
X,1(X) = mf

X,2(X) = f(X).

MM algorithms using upper/lower bounds: Using the modular upper and lower bounds above in
Algorithm 1, provide a class of Majorization-Minimization (MM) algorithms, akin to the algorithms
proposed in [13] for submodular optimization and in [25, 9] for DS optimization (Problem 0 above).
An appropriate choice of the bounds ensures that the algorithm always improves the objective values
for Problems 1 and 2. In particular, choosing f̂t as a modular upper bound of f tight at Xt, or ĝt as a
modular lower bound of g tight at Xt, or both, ensures that the objective value of Problems 1 and
2 always improves at every iteration as long as the corresponding surrogate problem can be solved
exactly. Unfortunately, Problems 1 and 2 are NP-hard even if f or g (or both) are modular [3], and
therefore the surrogate problems themselves cannot be solved exactly. Fortunately, the surrogate
problems are often much easier than the original ones and can admit log or constant-factor guarantees.
In practice, moreover, these factors are almost 1. Furthermore, with a simple modification of the
iterative procedure of Algorithm 1, we can guarantee improvement at every iteration [11]. What
is also fortunate and perhaps surprising, as we show in this paper below, is that unlike the case of
DS optimization (where the problem is inapproximable in general [9]), the constrained forms of
optimization (Problems 1 and 2) do have approximation guarantees.

2We can assume, w.l.o.g that f(j) > 0, g(j) > 0,∀j ∈ V
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Ellipsoidal Approximation: We also consider ellipsoidal approximations (EA) of f . The main
result of Goemans et. al [6] is to provide an algorithm based on approximating the submodular
polyhedron by an ellipsoid. They show that for any polymatroid function f , one can compute
an approximation of the form

√
wf (X) for a certain modular weight vector wf ∈ RV , such

that
√
wf (X) ≤ f(X) ≤ O(

√
n log n)

√
wf (X),∀X ⊆ V . A simple trick then provides a

curvature-dependent approximation [12] — we define the κf -curve-normalized version of f as
follows: fκ(X) ,

[
f(X)− (1− κf )

∑
j∈X f(j)

]
/κf . Then, the submodular function f ea(X) =

κf
√
wfκ(X) + (1− κf )

∑
j∈X f(j) satisfies [12]:

f ea(X) ≤ f(X) ≤ O
( √

n log n

1 + (
√
n log n− 1)(1− κf )

)
f ea(X),∀X ⊆ V (2)

f ea is multiplicatively bounded by f by a factor depending on
√
n and the curvature. We shall use

the result above in providing approximation bounds for Problems 1 and 2. In particular, the surrogate
functions f̂ or ĝ in Algorithm 1 can be the ellipsoidal approximations above, and the multiplicative
bounds transform into approximation guarantees for these problems.

3 Relation between SCSC and SCSK

In this section, we show a precise relationship between Problems 1 and 2. From the formu-
lation of Problems 1 and 2, it is clear that these problems are duals of each other. Indeed,
in this section we show that the problems are polynomially transformable into each other.
Algorithm 2: Approx. algorithm for SCSK us-
ing an approximation algorithm for SCSC.

1: Input: An SCSK instance with budget b, an
[σ, ρ] approx. algo. for SCSC, & ε ∈ [0, 1).

2: Output: [(1− ε)ρ, σ] approx. for SCSK.
3: c← g(V ), X̂c ← V .
4: while f(X̂c) > σb do
5: c← (1− ε)c
6: X̂c ← [σ, ρ] approx. for SCSC using c.
7: end while

Algorithm 3: Approx. algorithm for SCSC us-
ing an approximation algorithm for SCSK.

1: Input: An SCSC instance with cover c, an
[ρ, σ] approx. algo. for SCSK, & ε > 0.

2: Output: [(1 + ε)σ, ρ] approx. for SCSC.
3: b← argminj f(j), X̂b ← ∅.
4: while g(X̂b) < ρc do
5: b← (1 + ε)b

6: X̂b ← [ρ, σ] approx. for SCSK using b.
7: end while

We first introduce the notion of bicriteria algorithms. An algorithm is a [σ, ρ] bi-criterion algorithm for
Problem 1 if it is guaranteed to obtain a set X such that f(X) ≤ σf(X∗) (approximate optimality)
and g(X) ≥ c′ = ρc (approximate feasibility), where X∗ is an optimizer of Problem 1. Similarly, an
algorithm is a [ρ, σ] bi-criterion algorithm for Problem 2 if it is guaranteed to obtain a set X such that
g(X) ≥ ρg(X∗) and f(X) ≤ b′ = σb, whereX∗ is the optimizer of Problem 2. In a bi-criterion algo-
rithm for Problems 1 and 2, typically σ ≥ 1 and ρ ≤ 1. A non-bicriterion algorithm for Problem 1 is
when ρ = 1 and a non-bicriterion algorithm for Problem 2 is when σ = 1. Algorithms 2 and 3 provide
the schematics for using an approximation algorithm for one of the problems for solving the other.

Theorem 3.1. Algorithm 2 is guaranteed to find a set X̂c which is a [(1 − ε)ρ, σ] approximation
of SCSK in at most log1/(1−ε)[g(V )/minj g(j)] calls to the [σ, ρ] approximate algorithm for SCSC.
Similarly, Algorithm 3 is guaranteed to find a set X̂b which is a [(1 + ε)σ, ρ] approximation of SCSC
in log1+ε[f(V )/minj f(j)] calls to a [ρ, σ] approximate algorithm for SCSK.

Theorem 3.1 implies that the complexity of Problems 1 and 2 are identical, and a solution to one of
them provides a solution to the other. Furthermore, as expected, the hardness of Problems 1 and 2 are
also almost identical. When f and g are polymatroid functions, moreover, we can provide bounded ap-
proximation guarantees for both problems, as shown in the next section. Alternatively we can also do a
binary search instead of a linear search to transform Problems 1 and 2. This essentially turns the factor
ofO(1/ε) intoO(log 1/ε). Due to lack of space, we defer this discussion to the extended version [11].
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4 Approximation Algorithms

We consider several algorithms for Problems 1 and 2, which can all be characterized by the framework
of Algorithm 1, using the surrogate functions of the form of upper/lower bounds or approximations.

4.1 Approximation Algorithms for SCSC

We first describe our approximation algorithms designed specifically for SCSC, leaving to §4.2 the
presentation of our algorithms slated for SCSK. We first investigate a special case, the submodular
set cover (SSC), and then provide two algorithms, one of them (ISSC) is very practical with a weaker
theoretical guarantee, and another one (EASSC) which is slow but has the tightest guarantee.

Submodular Set Cover (SSC): We start by considering a classical special case of SCSC (Problem
1) where f is already a modular function and g is a submodular function. This problem occurs
naturally in a number of problems related to active/online learning [7] and summarization [21, 22].
This problem was first investigated by Wolsey [29], wherein he showed that a simple greedy algorithm
achieves bounded (in fact, log-factor) approximation guarantees. We show that this greedy algorithm
can naturally be viewed in the framework of our Algorithm 1 by choosing appropriate surrogate
functions f̂t and ĝt. The idea is to use the modular function f as its own surrogate f̂t and choose the
function ĝt as a modular lower bound of g. Akin to the framework of algorithms in [13], the crucial
factor is the choice of the lower bound (or subgradient). Define the greedy subgradient as:

π(i) ∈ argmin

{
f(j)

g(j|Sπi−1)

∣∣∣∣ j /∈ Sπi−1, g(Sπi−1 ∪ j) < c

}
. (3)

Once we reach an i where the constraint g(Sπi−1 ∪ j) < c can no longer be satisfied by any j /∈ Sπi−1,
we choose the remaining elements for π arbitrarily. Let the corresponding subgradient be referred
to as hπ . Then we have the following lemma, which is an extension of [29], and which is a simpler
description of the result stated formally in [11].
Lemma 4.1. The greedy algorithm for SSC [29] can be seen as an instance of Algorithm 1 by
choosing the surrogate function f̂ as f and ĝ as hπ (with π defined in Eqn. (3)).

When g is integral, the guarantee of the greedy algorithm is Hg , H(maxj g(j)), where
H(d) =

∑d
i=1

1
i [29] (henceforth we will use Hg for this quantity). This factor is tight up to lower-

order terms [3]. Furthermore, since this algorithm directly solves SSC, we call it the primal greedy.
We could also solve SSC by looking at its dual, which is SK [28]. Although SSC does not admit any
constant-factor approximation algorithms [3], we can obtain a constant-factor bi-criterion guarantee:
Lemma 4.2. Using the greedy algorithm for SK [28] as the approximation oracle in Algorithm 3
provides a [1 + ε, 1− e−1] bi-criterion approximation algorithm for SSC, for any ε > 0.

We call this the dual greedy. This result follows immediately from the guarantee of the submodular
cost knapsack problem [28] and Theorem 3.1. We remark that we can also use a simpler version
of the greedy iteration at every iteration [21, 17] and we obtain a guarantee of (1 + ε, 1/2(1− e−1)).
In practice, however, both these factors are almost 1 and hence the simple variant of the greedy
algorithm suffices.

Iterated Submodular Set Cover (ISSC): We next investigate an algorithm for the general SCSC
problem when both f and g are submodular. The idea here is to iteratively solve the submodular
set cover problem which can be done by replacing f by a modular upper bound at every iteration.
In particular, this can be seen as a variant of Algorithm 1, where we start with X0 = ∅ and
choose f̂t(X) = mf

Xt(X) at every iteration. The surrogate problem at each iteration becomes
min{mf

Xt(X)|g(X) ≥ c}. Hence, each iteration is an instance of SSC and can be solved nearly
optimally using the greedy algorithm. We can continue this algorithm for T iterations or until
convergence. An analysis very similar to the ones in [9, 13] will reveal polynomial time convergence.
Since each iteration is only the greedy algorithm, this approach is also highly practical and scalable.

Theorem 4.3. ISSC obtains an approximation factor of KgHg
1+(Kg−1)(1−κf ) ≤

n
1+(n−1)(1−κf )Hg where

Kg = 1 + max{|X| : g(X) < c} and Hg is the approximation factor of the submodular set cover
using g.
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From the above, it is clear that Kg ≤ n. Notice also that Hg is essentially a log-factor. We also
see an interesting effect of the curvature κf of f . When f is modular (κf = 0), we recover the
approximation guarantee of the submodular set cover problem. Similarly, when f has restricted
curvature, the guarantees can be much better. Moreover, the approximation guarantee already holds
after the first iteration, so additional iterations can only further improve the objective.

Ellipsoidal Approximation based Submodular Set Cover (EASSC): In this setting, we use the
ellipsoidal approximation discussed in §2. We can compute the κf -curve-normalized version of f
(fκ, see §2), and then compute its ellipsoidal approximation

√
wfκ . We then define the function

f̂(X) = f ea(X) = κf
√
wfκ(X) + (1 − κf )

∑
j∈X f(j) and use this as the surrogate function f̂

for f . We choose ĝ as g itself. The surrogate problem becomes:

min

κf
√
wfκ(X) + (1− κf )

∑
j∈X

f(j)

∣∣∣∣ g(X) ≥ c

 . (4)

While function f̂(X) = f ea(X) is not modular, it is a weighted sum of a concave over modular
function and a modular function. Fortunately, we can use the result from [26], where they show
that any function of the form of

√
w1(X) + w2(X) can be optimized over any polytope P with an

approximation factor of β(1 + ε) for any ε > 0, where β is the approximation factor of optimizing
a modular function over P . The complexity of this algorithm is polynomial in n and 1

ε . We use
their algorithm to minimize f ea(X) over the submodular set cover constraint and hence we call this
algorithm EASSC.

Theorem 4.4. EASSC obtains a guarantee of O(
√
n lognHg

1+(
√
n logn−1)(1−κf )

), where Hg is the approxima-
tion guarantee of the set cover problem.

If the function f has κf = 1, we can use a much simpler algorithm. In particular, we can minimize
(f ea(X))2 = wf (X) at every iteration, giving a surrogate problem of the form min{wf (X)|g(X) ≥
c}. This is directly an instance of SSC, and in contrast to EASSC, we just need to solve SSC once.
We call this algorithm EASSCc.
Corollary 4.5. EASSCc obtains an approximation guarantee of O(

√
n log n

√
Hg).

4.2 Approximation Algorithms for SCSK

In this section, we describe our approximation algorithms for SCSK. We note the dual nature of
the algorithms in this current section to those given in §4.1. We first investigate a special case, the
submodular knapsack (SK), and then provide three algorithms, two of them (Gr and ISK) being
practical with slightly weaker theoretical guarantee, and another one (EASK) which is not scalable
but has the tightest guarantee.

Submodular Cost Knapsack (SK): We start with a special case of SCSK (Problem 2), where f is
a modular function and g is a submodular function. In this case, SCSK turns into the SK problem for
which the greedy algorithm with partial enumeration provides a 1− e−1 approximation [28]. The
greedy algorithm can be seen as an instance of Algorithm 1 with ĝ being the modular lower bound of
g and f̂ being f , which is already modular. In particular, define:

π(i) ∈ argmax

{
g(j|Sπi−1)

f(j)

∣∣∣∣ j /∈ Sπi−1, f(Sπi−1 ∪ {j}) ≤ b
}
, (5)

where the remaining elements are chosen arbitrarily. The following is an informal description of the
result described formally in [11].

Lemma 4.6. Choosing the surrogate function f̂ as f and ĝ as hπ (with π defined in eqn (5)) in
Algorithm 1 with appropriate initialization obtains a guarantee of 1− 1/e for SK.

Greedy (Gr): A similar greedy algorithm can provide approximation guarantees for the general
SCSK problem, with submodular f and g. Unlike the knapsack case in (5), however, at iteration
i we choose an element j /∈ Si−1 : f(Sπi−1 ∪ {j}) ≤ b which maximizes g(j|Si−1). In terms of
Algorithm 1, this is analogous to choosing a permutation, π such that:

π(i) ∈ argmax{g(j|Sπi−1)|j /∈ Sπi−1, f(Sπi−1 ∪ {j}) ≤ b}. (6)
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Theorem 4.7. The greedy algorithm for SCSK obtains an approx. factor of 1
κg

(1− (
Kf−κg
Kf

)kf ) ≥
1
Kf

, whereKf = max{|X| : f(X) ≤ b} and kf = min{|X| : f(X) ≤ b& ∀j ∈ X, f(X∪j) > b}.

In the worst case, kf = 1 and Kf = n, in which case the guarantee is 1/n. The bound above
follows from a simple observation that the constraint {f(X) ≤ b} is down-monotone for a monotone
function f . However, in this variant, we do not use any specific information about f . In particular
it holds for maximizing a submodular function g over any down monotone constraint [2]. Hence
it is conceivable that an algorithm that uses both f and g to choose the next element could provide
better bounds. We do not, however, currently have the analysis for this.

Iterated Submodular Cost Knapsack (ISK): Here, we choose f̂t(X) as a modular upper bound
of f , tight at Xt. Let ĝt = g. Then at every iteration, we solve max{g(X)|mf

Xt(X) ≤ b}, which is
a submodular maximization problem subject to a knapsack constraint (SK). As mentioned above,
greedy can solve this nearly optimally. We start with X0 = ∅, choose f̂0(X) =

∑
j∈X f(j) and then

iteratively continue this process until convergence (note that this is an ascent algorithm). We have the
following theoretical guarantee:

Theorem 4.8. Algorithm ISK obtains a setXt such that g(Xt) ≥ (1−e−1)g(X̃), where X̃ is the opti-

mal solution of max
{
g(X) | f(X) ≤ b(1+(Kf−1)(1−κf )

Kf

}
and where Kf = max{|X| : f(X) ≤ b}.

It is worth pointing out that the above bound holds even after the first iteration of the algorithm. It is
interesting to note the similarity between this approach and ISSC. Notice that the guarantee above is
not a standard bi-criterion approximation. We show in the extended version [11] that with a simple
transformation, we can obtain a bicriterion guarantee.

Ellipsoidal Approximation based Submodular Cost Knapsack (EASK): Choosing the Ellip-
soidal Approximation fea of f as a surrogate function, we obtain a simpler problem:

max

g(X)

∣∣∣∣ κf√wfκ(X) + (1− κf )
∑
j∈X

f(j) ≤ b

 . (7)

In order to solve this problem, we look at its dual problem (i.e., Eqn. (4)) and use Algorithm 2 to
convert the guarantees. We call this procedure EASK. We then obtain guarantees very similar to
Theorem 4.4.

Lemma 4.9. EASK obtains a guarantee of
[
1 + ε, O(

√
n lognHg

1+(
√
n logn−1)(1−κf )

)
]
.

In the case when the submodular function has a curvature κf = 1, we can actually provide a simpler
algorithm without needing to use the conversion algorithm (Algorithm 2). In this case, we can
directly choose the ellipsoidal approximation of f as

√
wf (X) and solve the surrogate problem:

max{g(X) : wf (X) ≤ b2}. This surrogate problem is a submodular cost knapsack problem, which
we can solve using the greedy algorithm. We call this algorithm EASKc. This guarantee is tight up to
log factors if κf = 1.

Corollary 4.10. Algorithm EASKc obtains a bi-criterion guarantee of [1− e−1, O(
√
n log n)].

4.3 Extensions beyond SCSC and SCSK

SCSC and SCSK can in fact be extended to more flexible and complicated constraints which can arise
naturally in many applications [18, 8]. These include multiple covering and knapsack constraints –
i.e., min{f(X)|gi(X) ≥ ci, i = 1, 2, · · · k} and max{g(X)|fi(X) ≤ bi, i = 1, 2, · · · k}, and robust
optimization problems like max{mini gi(X)|f(X) ≤ b}, where the functions f, g, fi’s and gi’s are
submodular. We also consider SCSC and SCSK with non-monotone submodular functions. Due to
lack of space, we defer these discussions to the extended version of this paper [11].

4.4 Hardness

In this section, we provide the hardness for Problems 1 and 2. The lower bounds serve to show that
the approximation factors above are almost tight.
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Theorem 4.11. For any κ > 0, there exists submodular functions with curvature κ such that
no polynomial time algorithm for Problems 1 and 2 achieves a bi-criterion factor better than
σ
ρ = n1/2−ε

1+(n1/2−ε−1)(1−κ) for any ε > 0.

The above result shows that EASSC and EASK meet the bounds above to log factors. We see an
interesting curvature-dependent influence on the hardness. We also see this phenomenon in the
approximation guarantees of our algorithms. In particular, as soon as f becomes modular, the
problem becomes easy, even when g is submodular. This is not surprising since the submodular
set cover problem and the submodular cost knapsack problem both have constant factor guarantees.

5 Experiments

In this section, we empirically compare the performance of the various algorithms discussed in this
paper. We are motivated by the speech data subset selection application [20, 23] with the submodular
function f encouraging limited vocabulary while g tries to achieve acoustic variability. A natural
choice of the function f is a function of the form |Γ(X)|, where Γ(X) is the neighborhood function
on a bipartite graph constructed between the utterances and the words [23]. For the coverage function
g, we use two types of coverage: one is a facility location function g1(X) =

∑
i∈V maxj∈X sij

while the other is a saturated sum function g2(X) =
∑
i∈V min{

∑
j∈X sij , α

∑
j∈V sij}. Both

these functions are defined in terms of a similarity matrix S = {sij}i,j∈V , which we define on the
TIMIT corpus [5], using the string kernel metric [27] for similarity. Since some of our algorithms, like
the Ellipsoidal Approximations, are computationally intensive, we restrict ourselves to 50 utterances.
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Figure 1: Comparison of the algorithms in the text.

We compare our different algorithms on
Problems 1 and 2 with f being the bipartite
neighborhood and g being the facility location
and saturated sum respectively. Furthermore,
in our experiments, we observe that the neigh-
borhood function f has a curvature κf = 1.
Thus, it suffices to use the simpler versions
of algorithm EA (i.e., algorithm EASSCc and
EASKc). The results are shown in Figure 1. We observe that on the real-world instances, all our
algorithms perform almost comparably. This implies, moreover, that the iterative variants, viz. Gr,
ISSC and ISK, perform comparably to the more complicated EA-based ones, although EASSC and
EASK have better theoretical guarantees. We also compare against a baseline of selecting random
sets (of varying cardinality), and we see that our algorithms all perform much better. In terms of
the running time, computing the Ellipsoidal Approximation for |Γ(X)| with |V | = 50 takes about 5
hours while all the iterative variants (i.e., Gr, ISSC and ISK) take less than a second. This difference
is much more prominent on larger instances (for example |V | = 500).

6 Discussions

In this paper, we propose a unifying framework for problems 1 and 2 based on suitable surrogate
functions. We provide a number of iterative algorithms which are very practical and scalable (like
Gr, ISK and ISSC), and also algorithms like EASSC and EASK, which though more intensive,
obtain tight approximation bounds. Finally, we empirically compare our algorithms, and show that
the iterative algorithms compete empirically with the more complicated and theoretically better
approximation algorithms. For future work, we would like to empirically evaluate our algorithms on
many of the real world problems described above, particularly the limited vocabulary data subset
selection application for speech corpora, and the machine translation application.

Acknowledgments: Special thanks to Kai Wei and Stefanie Jegelka for discussions, to Bethany
Herwaldt for going through an early draft of this manuscript and to the anonymous reviewers for
useful reviews. This material is based upon work supported by the National Science Foundation
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