
A Appendix: Supplementary Material

A.1 High-Level Description of the Ellipsoid Method

Very roughly, the method works as follows. First, the optimization problem is reduced to a feasibility
problem by adding the constraint cTx ≥ Z to P and binary searching on Z in an outer loop. For the
feasibility problem, the method maintains an ellipsoid E that is an outer bound (i.e., superset of) P .
At every iteration i, the method uses the separation oracle to check if the centroid of the current
ellipsoid Ei is feasible. If so, the method stops. If not, the separation oracle furnishes a violated
constraint; intersecting this with Ei yields a “ partial ellipsoid” E′i that excludes the centroid of Ei.
The next ellipsoid Ei+1 is taken to be the minimum-volume one that encloses E′i. A technical
argument shows that the volume of Ei+1 is significantly less than that of Ei, and this leads to the
convergence bound. See [10, 11] for details.

A.2 The Ellipsoid Method for Convex Programming

As is well known, the MAX ENTROPY problem is a convex optimization problem. The ellipsoid
method can be adapted to such problems under mild technical conditions. The following guarantee,
which can be derived from more general results (e.g. [10, 11]), is sufficient for our purposes. It
states that, provided the relevant magnitudes of feasible solutions and objective function values are
at most exponential, then given polynomial-time oracles for evaluating the objective function of a
convex program and its gradient, the ellipsoid method can solve the program in time polynomial in
the input size and the desired precision.

Theorem A.1 (The Ellipsoid Method for Convex Programs) Consider an unconstrained mini-
mization problem of the form {infy f(y) : y ∈ Rn} and suppose that:

1. For an a priori known bound R, there is an optimal solution y∗ with ||y||∞ ≤ R.

2. For every pair y1,y2 with ||y1||∞, ||y2||∞ ≤ R, |f(y1)− f(y2)| ≤ K.

3. For every point y, the objective function value f(y) and its gradient ∇f(y) can be evalu-
ated in time polynomial in n and description length of y.

Then, given ε > 0, the ellipsoid method computes a point ỹ such that f(ỹ) < f(y∗) + ε in time
polynomial in n, logR, logK, and log 1

ε .

A.3 MAX ENTROPY Reduces to GENERALIZED PARTITION

This section describes a reduction from the MAX ENTROPY (G) problem to the GENERALIZED
PARTITION (G) problem that is based on the ellipsoid method for convex programming (Theo-
rem A.1). Before explaining the precise technical conditions that enable this reduction, we first
ignore computational complexity issues and review some well-known theory about the MAX EN-
TROPY (G) problem (see e.g. [12, 3] for more details).

The standard convex programming formulation of the MAX ENTROPY problem, subject to
marginals {µ}, is simply the linear program (P) of Lemma 3.2, augmented with the entropy ob-
jective function:

(P −ME) sup
p

∑
a∈A pa ln

1
pa

subject to: ∑
a∈A:ai=s

pa = µis for all (i, s) ∈M1∑
a∈A:ai=s,aj=t

pa = µijst for all (i, j, s, t) ∈M2∑
a∈A pa = 1

pa ≥ 0 for all a ∈ A.
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Using the notation in (1) and (2), we can write the dual program to (P-ME) as:

(D −ME) inf
y

µTy + ln
∑
a∈A exp{−y(a)}

subject to:
y unrestricted.

Assuming there is a feasible solution to (P-ME) with full support (i.e., pa > 0 for all a ∈ A, a form of
the Slater condition), strong duality holds and both convex programs have identical optimal objective
function values. Moreover, in this case the maximum entropy distribution can be exactly represented
as a Markov networkN with underlying graph equal to the data graphG of the marginals µ, with the
negative of the log-potentials ofN corresponding to the optimal dual solution, similar to the mapping
in the proof of Lemma 3.4. (Missing marginals from µ are defined to have zero log-potential.)

Under what conditions can we implement this approach with an algorithm with running time poly-
nomial in the size of the MAX ENTROPY input? To see why convexity is not obviously enough,
observe that the number of decision variables in the programs (P-ME) and (D-ME) is proportional
to the number (k + 1)n of variable assignments, with is typically exponential in the input size. We
can, however, apply the ellipsoid method (Theorem A.1) to the dual program (D-ME) provided con-
ditions 1.-3. are met by the problem. The next lemma connects the third condition in Theorem A.1
to the GENERALIZED PARTITION problem.

Lemma A.2 (Generalized Partition as a Gradient Oracle) Let G be a set of graphs and suppose
that the GENERALIZED PARTITION (G) problem can be solved in polynomial time. Consider an
instance of the MAX ENTROPY problem with a data graph G ∈ G, with corresponding dual convex
program (D-ME). Then, there are algorithms for evaluating the objective function f of (D-ME) and
its gradient ∇f that run in time polynomial in the size of the MAX ENTROPY instance and the
magnitude of the evaluation point y.

Proof (sketch): Consider an evaluation point y. Let N denote the Markov network for which y is
the negative of the log-potentials, as above. The graph of N is identical to the data graph G of the
given MAX ENTROPY instance. The term

∑
a exp{−y(a)} in the objective function of (D-ME) is

precisely the Partition function of N . Given this quantity, which by assumption can be computed in
polynomial time, the rest of the objective function is straightforward to compute.

Second, a simple computation shows that the gradient component ∇fis(y) at y corresponding
to (i, s) ∈M1 is

µis −
∑
a : ai=s

y(a)∑
a∈A y(a)

,

and similarly for components of the form µijst. There are a polyomial number of components, and
each is straightforward to compute given the assumed polynomial-time algorithm for the GENER-
ALIZED PARTITION problem. �

Singh and Vishnoi [13] studied entropy maximization over combinatorial structures subject to single
marginals, and in their context identified an additional condition, essentially a quantitative strength-
ening of the Slater condition, that implies the first two conditions of Theorem A.1 for the dual pro-
gram (D-ME). To adapt it to our settings, consider a set µ of marginal values defined on M1 ∪M2.
Let P(M1,M2) denote the set of all marginal vectors ν induced by probability distributions over A.
For example, a set of marginals µ is consistent if and only if µ ∈ P(M1,M2). More strongly, we
say that µ is η-strictly feasible if the intersection of the ball with center µ and radius η with the
set P(M1,M2) is contained in the relative interior of P(M1,M2). Our results below are interesting
when η is at least some inverse polynomial function of the input size.

Following the proof in [13, Theorem 2.7] shows that, in every η-strictly feasible instance of MAX
ENTROPY, there is an optimal dual solution y∗ to (D-ME) with ||y||∞ ≤ m

η , where m = |M1| +
|M2| is the number of marginal values. We can therefore take the constant R in Theorem A.1
to be m

η . Plugging this bound into the objective function of (D-ME) shows that we can take the
constantK in Theorem A.1 to be exponential in m

η . Applying Theorem A.1 then gives the following
reduction from the MAX ENTROPY problem to the GENERALIZED PARTITION problem.
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Theorem A.3 (Main Result 3) Let G be a set of graphs. If the GENERALIZED PARTITION (G)
problem can be solved in polynomial time, then every η-strictly feasible instance of the MAX EN-
TROPY (G) problem can be solved up to error ε in time polynomial in the input size, 1

η , and log 1
ε .

A.4 Proof of Theorem 4.1:
CLOSEST CONSISTENCY and SMALL SUPPORT Reduce to MAP INFERENCE

Lemma A.4 (LP Formulation for CLOSEST CONSISTENCY) The consistent marginals {ν} that
minimize the `1 distance ||ν − µ||1 to the given marginals {µ} correspond to optimal solutions
to the following linear program:

(P − close) min
p,ν,σ

∑
(i,s)∈M1

σis +
∑

(i,j,s,t)∈M2
σijst

subject to:
σi,s ≥ νis − µis for all (i, s) ∈M1

σi,s ≥ µis − νis for all (i, s) ∈M1

σi,j,s,t ≥ νijst − µijst for all (i, j, s, t) ∈M2

σi,j,s,t ≥ µijst − νijst for all (i, j, s, t) ∈M2∑
a∈A:ai=s

pa = νis for all (i, s) ∈M1∑
a∈A:ai=s,aj=t

pa = νijst for all (i, j, s, t) ∈M2∑
a∈A pa = 1

pa ≥ 0 for all a ∈ A.

Proof: The constraints enforce the inequality σi,s ≥ |νi,s − µi,s| for all (i, s) ∈ M1, and similarly
for the pariwise constraints and M2, at every feasible solution. The minimization objective ensures
that equality holds for every such constraint at every optimal solution. Thus, optimal solutions to this
linear program are in correpondence with those of the more straightforward nonlinear formulation.
�

We next need to pass to the linear programming dual to (P-close) to enable application of the ellip-
soid method. The negative of this dual is, after some simplifications, as follows.

(D − close) max
y,z

µTy + z

subject to:
y(a) + z ≤ 0 for all a ∈ A
−1 ≤ yis ≤ 1 for all (i, s) ∈M1

−1 ≤ yijst ≤ 1 for all (i, j, s, t) ∈M2

z unrestricted.

Our proof of Theorem 4.1 now follows the same outline as that of Theorem 3.1.

Proof of Theorem 4.1: Assume that there is a polynomial-time algorithm for the MAP INFERENCE
(G) problem with the family G of graphs, and consider an instance of the CLOSEST CONSISTENCY
problem with data graph in G ∈ G. The ellipsoid method can be used to solve the dual linear pro-
gram (D-close) in polynomial time, provided the constraint set admits a polynomial-time separation
oracle. Given a candidate dual solution y, z, the polynomially many constraints that enforce |y| ≤ 1
can be checked explicitly, and the rest can be checked by computing the MAP assignment of a
Markov network with graph G, as in Lemma 3.4. By assumption, this MAP inference problem can
be solved in polynomial time.

To recover an optimal solution for the CLOSEST CONSISTENCY instance, and to solve the SMALL
SUPPORT problem, we proceed as in the proof of Theorem 3.5. We form a reduced version of (P-
close), with variables corresponding to the (polynomially many) inequalities of (D-close) that were
generated by the ellipsoid method. This reduced linear program has the same optimal objective
function value as (P-close) and has polynomial size. The algorithm concludes by returning an op-
timal solution of this reduced linear program. Since this linear program has at most 3m + 1 con-
straints other than the non-negativity constraints, every optimal vertex solution has support size at
most 3m+ 1. �
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