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Abstract

Dropout is a relatively new algorithm for training neural networks which relies
on stochastically “dropping out” neurons during training in order to avoid the
co-adaptation of feature detectors. We introduce a general formalism for study-
ing dropout on either units or connections, with arbitrary probability values, and
use it to analyze the averaging and regularizing properties of dropout in both lin-
ear and non-linear networks. For deep neural networks, the averaging properties
of dropout are characterized by three recursive equations, including the approx-
imation of expectations by normalized weighted geometric means. We provide
estimates and bounds for these approximations and corroborate the results with
simulations. Among other results, we also show how dropout performs stochastic
gradient descent on a regularized error function.

1 Introduction

Dropout is an algorithm for training neural networks that was described at NIPS 2012 [7]. In its
most simple form, during training, at each example presentation, feature detectors are deleted with
probability q = 1− p = 0.5 and the remaining weights are trained by backpropagation. All weights
are shared across all example presentations. During prediction, the weights are divided by two.
The main motivation behind the algorithm is to prevent the co-adaptation of feature detectors, or
overfitting, by forcing neurons to be robust and rely on population behavior, rather than on the
activity of other specific units. In [7], dropout is reported to achieve state-of-the-art performance on
several benchmark datasets. It is also noted that for a single logistic unit dropout performs a kind of
“geometric averaging” over the ensemble of possible subnetworks, and conjectured that something
similar may occur also in multilayer networks leading to the view that dropout may be an economical
approximation to training and using a very large ensemble of networks.

In spite of the impressive results that have been reported, little is known about dropout from a
theoretical standpoint, in particular about its averaging, regularization, and convergence properties.
Likewise little is known about the importance of using q = 0.5, whether different values of q can
be used including different values for different layers or different units, and whether dropout can be
applied to the connections rather than the units. Here we address these questions.

2 Dropout in Linear Networks

It is instructive to first look at some of the properties of dropout in linear networks, since these can
be studied exactly in the most general setting of a multilayer feedforward network described by an
underlying acyclic graph. The activity in unit i of layer h can be expressed as:

Shi (I) =
∑
l<h

∑
j

whlij S
l
j with S0

j = Ij (1)
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where the variables w denote the weights and I the input vector. Dropout applied to the units can be
expressed in the form

Shi =
∑
l<h

∑
j

whlij δ
l
jS

l
j with S0

j = Ij (2)

where δlj is a gating 0-1 Bernoulli variable, with P (δlj = 1) = plj . Throughout this paper we assume
that the variables δlj are independent of each other, independent of the weights, and independent of
the activity of the units. Similarly, dropout applied to the connections leads to the random variables

Shi =
∑
l<h

∑
j

δhlijw
hl
ij S

l
j with S0

j = Ij (3)

For brevity in the rest of this paper, we focus exclusively on dropout applied to the units, but all the
results remain true for the case of dropout applied to the connections with minor adjustments.

For a fixed input vector, the expectation of the activity of all the units, taken over all possible real-
izations of the gating variables hence all possible subnetworks, is given by:

E(Shi ) =
∑
l<h

∑
j

whlij p
l
jE(Slj) for h > 0 (4)

with E(S0
j ) = Ij in the input layer. In short, the ensemble average can easily be computed by

feedforward propagation in the original network, simply replacing the weights whlij by whlij p
l
j .

3 Dropout in Neural Networks

3.1 Dropout in Shallow Neural Networks

Consider first a single logistic unit with n inputs O = σ(S) = 1/(1 + ce−λS) and S =
∑n

1 wjIj .
To achieve the greatest level of generality, we assume that the unit produces different outputs
O1, . . . , Om, corresponding to different sums S1 . . . , Sm with different probabilities P1, . . . , Pm
(
∑
Pm = 1). In the most relevant case, these outputs and these sums are associated with the

m = 2n possible subnetworks of the unit. The probabilities P1, . . . , Pm could be generated, for
instance, by using Bernoulli gating variables, although this is not necessary for this derivation. It is
useful to define the following four quantities: the mean E =

∑
PiOi; the mean of the complements

E′ =
∑
Pi(1 − Oi) = 1 − E; the weighted geometric mean (WGM ) G =

∏
iO

Pi
i ; and the

weighted geometric mean of the complements G′ =
∏
i(1− Oi)Pi . We also define the normalized

weighted geometric mean NWGM = G/(G+G′). We can now prove the key averaging theorem
for logistic functions:

NWGM(O1, . . . , Om) =
1

1 + ce−λE(S)
= σ(E(S)) (5)

To prove this result, we write

NWGM(O1, . . . , Om) =
1

1 +

∏
(1−Oi)Pi∏
O

Pi
i

=
1

1 +

∏
(1−σ(Si))Pi∏
σ(Si)Pi

(6)

The logistic function satisfies the identity [1− σ(x)]/σ(x) = ce−λx and thus

NWGM(O1, . . . , Om) =
1

1 +
∏
[ce−λSi ]Pi

=
1

1 + ce−λ
∑

PiSi

= σ(E(S)) (7)

Thus in the case of Bernoulli gating variables, we can compute the NWGM over all possible
dropout configurations by simple forward propagation by: NWGM = σ(

∑n
1 wjpjIj). A similar

result is true also for normalized exponential transfer functions. Finally, one can also show that
the only class of functions f that satisfy NWGM(f) = f(E) are the constant functions and the
logistic functions [1].
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3.2 Dropout in Deep Neural Networks

We can now deal with the most interesting case of deep feedforward networks of sigmoidal units 1,
described by a set of equations of the form

Ohi = σ(Shi ) = σ(
∑
l<h

∑
j

whlijO
l
j) with O0

j = Ij (8)

where Ohi is the output of unit i in layer h. Dropout on the units can be described by

Ohi = σ(Shi ) = σ(
∑
l<h

∑
j

whlij δ
l
jO

l
j) with O0

j = Ij (9)

using the Bernoulli selector variables δlj . For each sigmoidal unit

NWGM(Ohi ) =

∏
N (O

h
i )
P (N )∏

N (O
h
i )
P (N ) +

∏
N (1−Ohi )P (N )

(10)

where N ranges over all possible subnetworks. Assume for now that the NWGM provides a
good approximation to the expectation (this point will be analyzed in the next section). Then the
averaging properties of dropout are described by the following three recursive equations. First the
approximation of means by NWGMs:

E(Ohi ) ≈ NWGM(Ohi ) (11)

Second, using the result of the previous section, the propagation of expectation symbols:

NWGM(Ohi ) = σhi
[
E(Shi )

]
(12)

And third, using the linearity of the expectation with respect to sums, and to products of independent
random variables:

E(Shi ) =
∑
l<h

∑
j

whlij p
l
jE(Olj) (13)

Equations 11, 12, and 13 are the fundamental equations explaining the averaging properties of the
dropout procedure. The only approximation is of course Equation 11 which is analyzed in the next
section. If the network contains linear units, then Equation 11 is not necessary for those units and
their average can be computed exactly. In the case of regression with linear units in the top layers,
this allows one to shave off one layer of approximations. The same is true in binary classification
by requiring the output layer to compute directly the NWGM of the ensemble rather than the
expectation. It can be shown that for any error function that is convex up (∪), the error of the mean,
weighted geometric mean, and normalized weighted geometric mean of an ensemble is always less
than the expected error of the models [1].

Equation 11 is exact if and only if the numbers Ohi are identical over all possible subnetworks N .
Thus it is useful to measure the consistency C(Ohi , I) of neuron i in layer h for input I by using
the variance V ar

[
Ohi (I)

]
taken over all subnetworks N and their distribution when the input I is

fixed. The larger the variance is, the less consistent the neuron is, and the worse we can expect
the approximation in Equation 11 to be. Note that for a random variable O in [0,1] the variance
cannot exceed 1/4 anyway. This is because V ar(O) = E(O2) − (E(O))2 ≤ E(O) − (E(O))2 =
E(O)(1− E(O)) ≤ 1/4. This measure can also be averaged over a training set or a test set.

1Given the results of the previous sections, the network can also include linear units or normalized expo-
nential units.
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4 The Dropout Approximation

Given a set of numbersO1, . . . , Om between 0 and 1, with probabilities P1, . . . , PM (corresponding
to the outputs of a sigmoidal neuron for a fixed input and different subnetworks), we are primarily
interested in the approximation of E by NWGM . The NWGM provides a good approximation
because we show below that to a first order of approximation: E ≈ NWGM and E ≈ G. Further-
more, there are formulae in the literature for bounding the error E − G in terms of the consistency
(e.g. the Cartwright and Field inequality [6]). However, one can suspect that the NWGM provides
even a better approximation to E than the geometric mean. For instance, if the numbers Oi satisfy
0 < Oi ≤ 0.5 (consistently low), then

G

G′
≤ E

E′
and therefore G ≤ G

G+G′
≤ E (14)

This is proven by applying Jensen’s inequality to the function lnx− ln(1− x) for x ∈ (0, 0.5]. It is
also known as the Ky Fan inequality [2, 8, 9].

To get even better results, one must consider a second order approximation. For this, we write
Oi = 0.5 + εi with 0 ≤ |εi| ≤ 0.5. Thus we have E(O) = 0.5 + E(ε) and V ar(O) = V ar(ε).
Using a Taylor expansion:

G =
1

2

∏
i

∞∑
n=0

(
pi
n

)
(2εi)

n =
1

2

1 +∑
i

pi2εi +
∑
i

pi(pi − 1)

2
(2εi)

2 +
∑
i<j

4pipjεiεj +R3(εi)


(15)

where R3(εi) is the remainder and

R3(εi) =

(
pi
3

)
(2εi)

3

(1 + ui)3−pi
(16)

where |ui| ≤ 2|εi|. Expanding the product gives

G =
1

2
+
∑
i

piεi+(
∑
i

εi)
2−
∑

piε
2
i+R3(ε) =

1

2
+E(ε)−V ar(ε)+R3(ε) = E(O)−V ar(O)+R3(ε)

(17)
By symmetry, we have

G′ =
∏
i

(1−Oi)pi = 1− E(O)− V ar(O) +R3(ε) (18)

where R3(ε) is the higher order remainder. Neglecting the remainder and writing E = E(O) and
V = V ar(O) we have

G

G+G′
≈ E − V

1− 2V
and

G′

G+G′
≈ 1− E − V

1− 2V
(19)

Thus, to a second order, the differences between the mean and the geometric mean and the normal-
ized geometric means satisfy

E −G ≈ V and E − G

G+G′
≈ V (1− 2E)

1− 2V
(20)

and

1− E −G′ ≈ V and (1− E)− G′

G+G′
≈ V (1− 2E)

1− 2V
(21)

Finally it is easy to check that the factor (1− 2E)/(1− 2V ) is always less or equal to 1. In addition
we always have V ≤ E(1− E), with equality achieved only for 0-1 Bernoulli variables. Thus
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|E − G

G+G′
| ≈ V |1− 2E|

1− 2V
≤ E(1− E)|1− 2E|

1− 2V
≤ 2E(1− E)|1− 2E| (22)

The first inequality is optimal in the sense that it is attained in the case of a Bernoulli variable
with expectation E and, intuitively, the second inequality shows that the approximation error is
always small, regardless of whether E is close to 0, 0.5, or 1. In short, the NWGM provides a
very good approximation to E, better than the geometric mean G. The property is always true to
a second order of approximation and it is exact when the activities are consistently low, or when
NWGM ≤ E, since the latter implies G ≤ NWGM ≤ E. Several additional properties of the
dropout approximation, including the extension to rectified linear units and other transfer functions,
are studied in [1].

5 Dropout Dynamics

Dropout performs gradient descent on-line with respect to both the training examples and the en-
semble of all possible subnetworks. As such, and with the appropriately decreasing learning rates,
it is almost surely convergent like other forms of stochastic gradient descent [11, 4, 5]. To further
understand the properties of dropout, it is again instructive to look at the properties of the gradient
in the linear case.

5.1 Single Linear Unit

In the case of a single linear unit, consider the two error functions EENS and ED associated with
the ensemble of all possible subnetworks and the network with dropout. For a single input I , these
are defined by:

EENS =
1

2
(t−OENS)2 =

1

2
(t−

n∑
i=1

piwiIi)
2 (23)

ED =
1

2
(t−OD)2 =

1

2
(t−

n∑
i=1

δiwiIi)
2 (24)

We use a single training input I for notational simplicity, otherwise the errors of each training
example can be combined additively. The learning gradient is given by

∂EENS
∂wi

= −(t−OENS)
∂OENS
∂wi

= −(t−OENS)piIi (25)

∂ED
∂wi

= −(t−OD)
∂OD
∂wi

= −(t−OD)δiIi = −tλiIi + wiδ
2
i I

2
i +

∑
j 6=i

wjδiδjIiIj (26)

The dropout gradient is a random variable and we can take its expectation. A short calculation yields

E

(
∂ED
∂wi

)
=
∂EENS
∂wi

+ wipi(1− pi)I2i
∂EENS
∂wi

+ wiI
2
i V ar(δi) (27)

Thus, remarkably, in this case the expectation of the gradient with dropout is the gradient of the
regularized ensemble error

E = EENS +
1

2

n∑
i=1

w2
i I

2
i V ar(δi) (28)

The regularization term is the usual weight decay or Gaussian prior term based on the square of the
weights to prevent overfitting. Dropout provides immediately the magnitude of the regularization
term which is adaptively scaled by the inputs and by the variance of the dropout variables. Note that
pi = 0.5 is the value that provides the highest level of regularization.
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5.2 Single Sigmoidal Unit

The previous result generalizes to a sigmoidal unit O = σ(S) = 1/(1+ ce−λS) trained to minimize
the relative entropy error E = −(t logO + (1− t) log(1−O)). In this case,

∂ED
∂wi

= −λ(t−O)
∂S

∂wi
= −λ(t−O)δiIi (29)

The terms O and Ii are not independent but using a Taylor expansion with the NWGM approxi-
mation gives

E

(
∂ED
∂wi

)
≈ ∂EENS

∂wi
+ λσ′(SENS)wiI

2
i V ar(δi) (30)

with SENS =
∑
j wjpjIj . Thus, as in the linear case, the expectation of the dropout gradient is ap-

proximately the gradient of the ensemble network regularized by weight decay terms with the proper
adaptive coefficients. A similar analysis, can be carried also for a set of normalized exponential
units and for deeper networks [1].

5.3 Learning Phases and Sparse Coding

During dropout learning, we can expect three learning phases: (1) At the beginning of learning, when
the weights are typically small and random, the total input to each unit is close to 0 for all the units
and the consistency is high: the output of the units remains roughly constant across subnetworks
(and equal to 0.5 with c = 1). (2) As learning progresses, activities tend to move towards 0 or 1
and the consistency decreases, i.e. for a given input the variance of the units across subnetworks
increases. (3) As the stochastic gradient learning procedure converges, the consistency of the units
converges to a stable value.

Finally, for simplicity, assume that dropout is applied only in layer h where the units have an output
of the formOhi = σ(Shi ) and Shi =

∑
l<h w

hl
ij δ

l
jO

l
j . For a fixed input,Olj is a constant since dropout

is not applied to layer l. Thus

V ar(Shi ) =
∑
l<h

(whlij )
2(Olj)

2plj(1− plj) (31)

under the usual assumption that the selector variables δlj are independent of each other. Thus
V ar(Shi ) depends on three factors. Everything else being equal, it is reduced by: (1) Small weights
which goes together with the regularizing effect of dropout; (2) Small activities, which shows that
dropout is not symmetric with respect to small or large activities. Overall, dropout tends to favor
small activities and thus sparse coding; and (3) Small (close to 0) or large (close to 1) values of the
dropout probabilities plj . Thus values plj = 0.5 maximize the regularization effect but may also lead
to slower convergence to the consistent state. Additional results and simulations are given in [1].

6 Simulation Results

We use Monte Carlo simulation to partially investigate the approximation framework embodied by
the three fundamental dropout equations 11, 12, and 13, the accuracy of the second-order approxi-
mation and bounds in Equations 20 and 22, and the dynamics of dropout learning. We experiment
with an MNIST classifier of four hidden layers (784-1200-1200-1200-1200-10) that replicates the
results in [7] using the Pylearn2 and Theano software libraries[12, 3]. The network is trained with
a dropout probability of 0.8 in the input, and 0.5 in the four hidden layers. For fixed weights and
a fixed input, 10,000 Monte Carlo simulations are used to estimate the distribution of activity O
in each neuron. Let O∗ be the activation under the deterministic setting with the weights scaled
appropriately.

The left column of Figure 1 confirms empirically that the second-order approximation in Equation
20 and the bound in Equation 22 are accurate. The right column of Figure 1 shows the difference be-
tween the true ensemble average E(O) and the prediction-time neuron activity O∗. This difference
grows very slowly in the higher layers, and only for active neurons.

6



Figure 1: Left: The difference E(O) −NWGM(O), it’s second-order approximation in Equation
20, and the bound from Equation 22, plotted for four hidden layers and a typical fixed input. Right:
The difference between the true ensemble average E(O) and the final neuron prediction O∗.

Next, we examine the neuron consistency during dropout training. Figure 2a shows the three phases
of learning for a typical neuron. In Figure 2b, we observe that the consistency does not decline in
higher layers of the network.

One clue into how this happens is the distribution of neuron activity. As noted in [10] and section 5
above, dropout training results in sparse activity in the hidden layers (Figure 3). This increases the
consistency of neurons in the next layer.

7



(a) The three phases of learning. For a particu-
lar input, a typical active neuron (red) starts out
with low variance, experiences a large increase in
variance during learning, and eventually settles to
some steady constant value. In contrast, a typical
inactive neuron (blue) quickly learns to stay silent.
Shown are the mean with 5% and 95% percentiles.

(b) Consistency does not noticeably decline in the up-
per layers. Shown here are the mean Std(O) for active
neurons (0.1 < O after training) in each layer, along
with the 5% and 95% percentiles.

Figure 2

Figure 3: In every hidden layer of a dropout trained network, the distribution of neuron activations
O∗ is sparse and not symmetric. These histograms were totalled over a set of 100 random inputs.
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