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— Supplementary Material —

1 Preconditioning Algorithms

In this section we briefly show how to express PBHT and HJ in a framework that runs Lasso on
modified variables PXX and Pyy.

1.1 Huang and Jojic [1] (HJ)

Consider the SVD X = UDV >, where U is n× n, V is p× p and D is an n× p “diagonal” matrix
with entries d1 < . . . < dn

1. Define two groups of left and right singular vectors associated with the
q smallest and n − q largest singular values. Let the groups be defined by Uq, Un−q and Vq, Vn−q .
Suppose HJ chooses as its row-basis the n−q largest right singular vectors, Vn−q . Then, from Table
1 of Huang and Jojic [1] we find that

Z = XVn−q = Un−qdiag({dj}j>q) (1)

X̄ = R = X − ZV >n−q (2)

= X − Un−qdiag({dj}j>q)V >n−q (3)

= Uqdiag({di}i≤q)V >q (4)

= UqU
>
q X (5)

ȳ = y − Z(Z>Z)−1Z>y (6)

= y − Un−qU
>
n−qy (7)

= UqU
>
q y (8)

So HJ sets PX = Py = UAU
>
A for a suitably estimated subspace UA

1.2 Paul et al. [2] (PBHT)

Suppose PBHT identifies as Xq the q columns of X that are most correlated with y (i.e., where
|X>j y|/||Xj ||2 is largest). Consider the SVD Xq = UDV >, where U is n× n, V is q × q and D is
n× q. Paul et al. [2] use V to find the projection matrix Pq . Let the columns of V be denoted by vq′
and those of U by uq′ . From Section 4.5 and Eq. (13) in Paul el al. [2]2.

Pq =

q∑
q′=1

1

||Xqvq′ ||22
Xqvq′v

>
q′X

>
q (9)

=

q∑
q′=1

1

d2q′
uq′d

2
q′u
>
q′ = UqU

>
q (10)

X̄ = X (11)

ȳ = Pqy = UqU
>
q y, (12)

where Uq consists of the first q columns of U . Thus, PBHT sets PX = In×n and Py = UAU
>
A for a

suitably estimated subspace UA
1For ease of presentation, we let the di be distinct.
2Note that they switch V with U relative to our notation.
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2 Proof of Lemma 1

Lemma 1. Suppose that X>S XS is invertible, |µj | < 1 ∀j ∈ Sc and sgn(β∗i )γi > 0 ∀i ∈ S. Then
the Lasso has a unique solution β̂ which recovers the signed support (i.e., S±(β̂) = S±(β∗)) if and
only if λl < λ < λu, where

λl = max
j∈Sc

ηj
(2Jηj > 0K− 1)− µj

λu = min
i∈S

∣∣∣∣β∗i + εi
γi

∣∣∣∣
+

, (13)

J·K denotes the indicator function and | · |+ = max(0, ·) denotes the hinge function. On the other
hand, if X>S XS is not invertible, then the signed support cannot in general be recovered.

Proof. For a particular choice of λ, and instances X,β∗, w, Lemmas 2 and 3 of Wainwright give
conditions under which Lasso produces a unique β̂ which recovers the signed support. If X>S XS is
invertible, then by Lemmas 2 and 3

S±(β̂) = S±(β∗) ⇐⇒ ∀j ∈ Sc |Zj | < 1 and ∀i ∈ S sgn(β∗i + ∆i) = sgn(β∗i ), (14)

where

Zj , µj +
1

λ
ηj (15)

µj = X>j XS(X>S XS)−1sgn(β∗S) (16)

ηj = X>j
(
In×n −XS(X>S XS)−1X>S

) w
n

(17)

∆i , εi − λγi (18)

εi = e>i

(
1

n
X>S XS

)−1
1

n
X>S w (19)

γi = e>i

(
1

n
X>S XS

)−1
sgn(β∗S) (20)

We can invert Lemmas 2 and 3 and derive from them conditions on λ so that signed support recovery
can be guaranteed.

Ensure ∀j ∈ Sc, |Zj | < 1

For this to hold, we need ∀j ∈ Sc,

|Zj | =
∣∣∣∣µj +

1

λ
ηj

∣∣∣∣ < 1. (21)

Since we assumed that |µj | < 1 ∀j ∈ Sc, we have:

Case 1a: ηj ≥ 0

We need for every j ∈ Sc

µj +
1

λ
ηj < 1 (22)

1

λ
ηj < 1− µj (23)

λ >
ηj

1− µj
(24)
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Case 1b: ηj ≤ 0

We need for every j ∈ Sc

µj +
1

λ
ηj > −1 (25)

1

λ
ηj > −1− µj (26)

λ > − ηj
1 + µj

=
ηj

−1− µj
. (27)

Combining, we need

λ > λl = max
j∈Sc

ηj
(2Jηj > 0K− 1)− µj

≥ 0. (28)

Ensure ∀i ∈ S, sgn(β∗i + ∆i) = sgn(β∗i )

Since we assumed sgn(β∗i )γi > 0 ∀i ∈ S, we have in particular that γi 6= 0. Then

Case 2a: β∗i > 0

Since sgn(β∗i )γi > 0, we have γi > 0. Then we need

β∗i + ∆i = β∗i + εi − λγi > 0 (29)
λγi < β∗i + εi (30)

λ <
β∗i + εi
γi

(31)

Case 2b: β∗i < 0

Since sgn(β∗i )γi > 0, we have γi < 0. We need

β∗i + ∆i = β∗i + εi − λγi < 0 (32)
λγi > β∗i + εi (33)

λ <
β∗i + εi
γi

(34)

Hence, overall we need

λ < min
i∈S

β∗i + εi
γi

. (35)

Although the previous equation could be used to make a definition for λu, it will be beneficial later
if λu ≥ 0. Because λl ≥ 0, signed support recovery will not be possible whenever mini∈S(β∗i +
εi)/γi ≤ 0. Thus, we will define

λu = min
i∈S

∣∣∣∣β∗i + εi
γi

∣∣∣∣
+

, (36)

where | · |+ = max(0, ·) is the hinge function. Signed support recovery occurs iff λl < λ < λu.
On the other hand, if X>S XS is not invertible, the columns of XS are linearly dependent and so the
signed support cannot be recovered in general.
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3 Proofs of Section 4

To simplify the proofs of Section 4, we will make repeated use of the following lemma.
Lemma 2. Suppose U, V are orthonormal bases for subspaces lying in Rn. That is, U is n × q,
with q ≤ n and U>U = Iq×q , and V is n × r, with r ≤ n and V >V = Ir×r. Suppose the matrix
B has a column space spanned by U . If span(U) ⊆ span(V ))

V V >B = B (37)

Proof. Because B has a column space spanned by U , we can write B = UR for some matrix R.
Furthermore, because span(U) ⊆ span(V )), we may write U = V T , for some r× q matrix T , with
q ≤ r. Indeed we know that T has orthonormal columns, since U>U = T>V >V T = T>T =
Iq×q . Hence, we can write B = V TR, where T is some orthonormal matrix. Now

V V >B = V V >V TR = V TR = B. (38)
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3.1 Proof of Theorem 1

Theorem 1. Suppose that the conditions of Lemma 1 are met for a fixed instance of X,β∗. If
span(US) ⊆ span(UA), then after preconditioning using HJ the conditions continue to hold, and

λu
λl
� λ̄u
λ̄l
, (39)

where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
X>S P

>
XPXXS is not invertible then HJ cannot in general recover the signed support.

Proof. We have PX = Py = UAU
>
A . With this, w̄ = UAU

>
Aw. First, consider the case that

span(US) ⊆ span(UA). Using Lemmas 1 and 2 we have

µ̄j = X>j UAU
>
AUAU

>
AXS(X>S UAU

>
AUAU

>
AXS)−1sgn(β∗S) (40)

= X>j XS(X>S XS)−1sgn(β∗S) = µj (41)

γ̄i = e>i

(
1

n
X>S UAU

>
AUAU

>
AXS

)−1
sgn(β∗S) (42)

= e>i

(
1

n
X>S XS

)−1
sgn(β∗S) = γi (43)

η̄j = X>j UAU
>
A
(
In×n − UAU>AXS(X>S UAU

>
AUAU

>
AXS)−1X>S UAU

>
A
)
UAU

>
A
w

n
(44)

= X>j UAU
>
A

(
In×n −XS

(
X>S XS

)−1
X>S

)
UAU

>
A
w

n
(45)

= X>j UAU
>
A
(
In×n − USU

>
S

)
UAU

>
A
w

n
(46)

= X>j
(
UAU

>
A − USU

>
S UAU

>
A
) w
n

(47)

= X>j
(
In×n − USU

>
S

)
UAU

>
A
w

n
(48)

ε̄i = e>i

(
1

n
X>S UAU

>
AUAU

>
AXS

)−1
X>S UAU

>
AUAU

>
A
w

n
(49)

= e>i

(
1

n
X>S XS

)−1
X>S

w

n
= εi. (50)

We immediately see that if the conditions of Lemma 1 hold for the original problem (i.e., X>S XS

is invertible, |µj | < 1 ∀j ∈ Sc and sgn(β∗i )γi > 0 ∀i ∈ S), they continue to hold after precon-
ditioning using HJ (i.e., X̄>S X̄S is invertible, |µ̄j | < 1 ∀j ∈ Sc and sgn(β∗i )γ̄i > 0 ∀i ∈ S).
Furthermore, we have λ̄u = λu. Next, we must show that λ̄l � λl. We will simplify this task as
follows. Note that

λ̄l = max
j∈Sc

η̄j
(2Jη̄j > 0K− 1)− µ̄j

= max

(
max
j∈Sc

η̄j
−1− µ̄j

,max
j∈Sc

η̄j
1− µ̄j

)
(51)

= max

({
η̄j

−1− µ̄j
,

η̄j
1− µ̄j

}
j∈Sc

)
(52)

λl = max
j∈Sc

ηj
(2Jηj > 0K− 1)− µj

= max

(
max
j∈Sc

ηj
−1− µj

,max
j∈Sc

ηj
1− µj

)
(53)

= max

({
ηj

−1− µj
,

ηj
1− µj

}
j∈Sc

)
(54)

where the µ̄j = µj are fixed because X,β∗ are fixed. By our derivation in Eq. (48), the effect of
preconditioning on ηj can be viewed as further restricting the subspace in which the noise w lies,
while keeping Xj and µj fixed. Specifically, in ηj , w is pre-multiplied by

(
In×n − USU

>
S

)
, while

in η̄j it is pre-multiplied by
(
In×n − USU

>
S

)
UAU

>
A . Whatever UA, the latter projection eliminates
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at least as large a subspace as the former. Because the Xj and µ̄j = µj are fixed, it follows by
symmetry of the Gaussian that

λ̄l = max

({
η̄j

−1− µ̄j
,

η̄j
1− µ̄j

}
j∈Sc

)
� max

({
ηj

−1− µj
,

ηj
1− µj

}
j∈Sc

)
= λl, (55)

where the stochasticity is due to the noisew. Rewriting some of the variables, we observe that λ̄l and
λl are both independent of λ̄u = λu. Specifically, if span(US) ⊆ span(UA) then using Lemma 2

ηj =
1

n
X>j

(
In×n − USU

>
S

)
w (56)

η̄j =
1

n
X>j

(
In×n − USU

>
S

)
UAU

>
Aw (57)

εi =
1

n
e>i

(
1

n
X>S XS

)−1
X>S USU

>
S w (58)

= ε̄i =
1

n
e>i

(
1

n
X>S XS

)−1
X>S USU

>
S UAU

>
Aw (59)

Since the variables
(
In×n − USU

>
S

)
w and USU

>
S w are jointly Gaussian distributed with zero

covariance, they are independent. Thus, ηj and εi = ε̄i are independent, and because ran-
domness is only due to the noise w, therefore also λl and λu = λ̄u. By the same reasoning,(
In×n − USU

>
S

)
UAU

>
Aw and USU

>
S UAU

>
Aw are independent. This in turn implies that λ̄l and

λ̄u = λu are independent. We now combine these results: Recall that we defined 1/λ̄l = ∞ and
1/λl = ∞ if λ̄l = 0 or λl = 0. Because λ̄l � λl and λ̄l ≥ 0, λl ≥ 0, we have that 1/λl � 1/λ̄l.
Next, because both 1/λ̄l, 1/λl are independent of λ̄u = λu ≥ 0, we have

λu
λl
� λ̄u
λ̄l
. (60)

On the other hand, if X>S P
>
XPXXS is not invertible, the conditions of Lemma 1 are not met, and so

signed support recovery is in general not possible.
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3.2 Proof of Theorem 2

Theorem 2. Suppose that the conditions of Lemma 1 are met for a fixed instance of X,β∗. If
span(US) ⊆ span(UA), then after preconditioning using PBHT the conditions continue to hold,
and

λu
λl
� λ̄u
λ̄l
, (61)

where the stochasticity on both sides is due to independent noise vectors w. On the other hand, if
span(USc) = span(UA), then PBHT cannot recover the signed support.

Proof. We have PX = In×n, Py = UAU
>
A . With this, w̄ = (UAU

>
A −In×n)Xβ∗+UAU

>
Aw. Now

let us consider the case that span(US) ⊆ span(UA). Using Lemma 2 we have

µ̄j = X>j XS(X>S XS)−1sgn(β∗S) = µj (62)

γ̄i = e>i

(
1

n
X>S XS

)−1
sgn(β∗S) = γi (63)

η̄j =
1

n
X>j

(
In×n − USU

>
S

) (
(UAU

>
A − In×n)Xβ∗ + UAU

>
Aw
)

(64)

= X>j
(
In×n − USU

>
S

)
UAU

>
A
w

n
(65)

ε̄i =
1

n
e>i

(
1

n
X>S XS

)−1
X>S

(
(UAU

>
A − In×n)Xβ∗ + UAU

>
Aw
)

(66)

=
1

n
e>i

(
1

n
X>S XS

)−1
X>S UAU

>
Aw = εi. (67)

Since PX = In×n, we immediately see that if the conditions of Lemma 1 hold for the original
problem, they continue to hold after preconditioning using PBHT. Furthermore, we see that λ̄u =
λu. Next, we must show that λ̄l � λl. We will approach this task in a similar manner as in
Theorem 1. For completeness we repeat the main steps here. Note that

λ̄l = max

({
η̄j

−1− µ̄j
,

η̄j
1− µ̄j

}
j∈Sc

)
λl = max

({
ηj

−1− µj
,

ηj
1− µj

}
j∈Sc

)
. (68)

As before, the effect of preconditioning on ηj can be viewed as further restricting the subspace in
which the noise w lies, while keeping Xj and µj fixed. Specifically, in ηj , w is pre-multiplied by(
In×n − USU

>
S

)
, while in η̄j it is pre-multiplied by

(
In×n − USU

>
S

)
UAU

>
A . Whatever UA, the

latter projection eliminates at least as large a subspace as the former and so because the Xj and
µ̄j = µj are fixed, it follows that

λ̄l = max

({
η̄j

−1− µ̄j
,

η̄j
1− µ̄j

}
j∈Sc

)
� max

({
ηj

−1− µj
,

ηj
1− µj

}
j∈Sc

)
= λl, (69)

where the stochasticity is due to the noise w. The remaining part of the theorem again mirrors that
of Theorem 1, which we repeat here for completeness. Rewriting some of the variables we observe
that λ̄l and λl are both independent of λ̄u = λu. Specifically, if span(US) ⊆ span(UA) then using
Lemma 2

ηj =
1

n
X>j

(
In×n − USU

>
S

)
w (70)

η̄j =
1

n
X>j

(
In×n − USU

>
S

)
UAU

>
Aw (71)

εi =
1

n
e>i

(
1

n
X>S XS

)−1
X>S USU

>
S w (72)

= ε̄i =
1

n
e>i

(
1

n
X>S XS

)−1
X>S USU

>
S UAU

>
Aw (73)
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Since
(
In×n − USU

>
S

)
w and USU

>
S w are jointly Gaussian with zero covariance, they are indepen-

dent. Thus, ηj and εi = ε̄i are independent and so are λl and λu = λ̄u. By similar reasoning,(
In×n − USU

>
S

)
UAU

>
Aw and USU

>
S UAU

>
Aw are independent, hence so are λ̄l and λ̄u = λu. We

now combine these results: Because λ̄l � λl and λ̄l ≥ 0, λl ≥ 0, we have that 1/λl � 1/λ̄l. Next,
because both 1/λ̄l, 1/λl are independent of λ̄u = λu ≥ 0, we have

λu
λl
� λ̄u
λ̄l
, (74)

On the other hand, if span(USc) = span(UA)

µ̄j = X>j XS(X>S XS)−1sgn(β∗S) = µj (75)

γ̄i = e>i

(
1

n
X>S XS

)−1
sgn(β∗S) = γi (76)

η̄j =
1

n
X>j

(
In×n − USU

>
S

) (
(UAU

>
A − In×n)Xβ∗ + UAU

>
Aw
)

(77)

=
1

n
X>j

(
In×n − USU

>
S

)
w = ηj (78)

ε̄i =
1

n
e>i

(
1

n
X>S XS

)−1
X>S

(
(UAU

>
A − In×n)Xβ∗ + UAU

>
Aw
)

(79)

=
1

n
e>i

(
1

n
X>S XS

)−1
X>S

(
UAU

>
Aw −Xβ∗

)
(80)

= −e>i
(
X>S XS

)−1
X>S Xβ

∗ (81)

= −e>i
(
X>S XS

)−1
X>S XSβ

∗
S (82)

= −β∗i (83)

Thus the conditions of Lemma 1 continue to hold and we have λ̄l = λl and

λ̄u = min
i∈S

∣∣∣∣β∗i + ε̄i
γ̄i

∣∣∣∣
+

= min
i∈S

∣∣∣∣β∗i − β∗iγ̄i

∣∣∣∣
+

= 0 (84)

Recall that in Section 3.2 of the main paper we defined λ̄u/λ̄l , 0 if λ̄u = λ̄l = 0. Because λ̄l is
with probability 1 non-negative, this means that with probability 1, λ̄u/λ̄l = 0 and signed support
recovery is not possible.
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4 Proofs of Section 5

Lemma 3. Assume that the spectra ΣS ,ΣSc are derived by normalizing unconstrained spectra Σ̂S

and Σ̂Sc as

ΣS =
Σ̂S

||Σ̂S ||F

√
kn (85)

ΣSc =
Σ̂Sc

||Σ̂Sc ||F

√
(p− k)n. (86)

Then the squared column norms of X are on expectation n.

Proof. We have ∀i ∈ S,

E(X>i Xi) = E(vS,i,·Σ
>
SU
>UΣSv

>
S,i,·) (87)

= knE

(
vS,i,·

Σ̂>S Σ̂S

||Σ̂S ||2F
v>S,i,·

)
(88)

= kn

k∑
i′=1

E
(
v2S,i,i′

) σ̂2
S,i′

||Σ̂S ||2F
= n, (89)

and ∀j ∈ Sc,

E(X>j Xj) = E(vSc,j−k,·Σ
>
ScU>UΣScv>Sc,j−k,·) (90)

= (p− k)nE

(
vSc,j−k,·

Σ̂>ScΣ̂Sc

||Σ̂Sc ||2F
v>Sc,j−k,·

)
(91)

= (p− k)n

p−k∑
j′=1

E
(
v2Sc,j−k,j′

) σ̂2
Sc,j′

||Σ̂Sc ||2F
= n. (92)
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4.1 Proof of Theorem 3

Theorem 3. Assume the Lasso problem was generated according to the generative model of Section
5.1 in the main paper with ∀i ∈ σ(S), σ̂S,i = 1, σ̂Sc,i = κ and ∀j ∈ σ(Sc), σ̂Sc,j = 1 and that κ <√
n− k/

√
k(p− k − 1). Then the conditions of Lemma 1 hold before and after preconditioning

using JR. Moreover,

λ̄u
λ̄l

=
(p− k)

n+ pκ2 − k
λu
λl
. (93)

Proof. Normalizing Σ̂S and Σ̂Sc to yield ΣS , ΣSc , as required by the model for X ,

σS,i =

√
kn√
k

=
√
n ∀i ∈ σ(S) (94)

σSc,i =

√
n(p− k)κ√
kκ2 + n− k

∀i ∈ σ(S) σSc,j =

√
n(p− k)√

kκ2 + n− k
∀j ∈ σ(Sc). (95)

Because ΣS has constant spectrum, it is easy to see that X>S XS = cIk×k, for some c > 0. This
means that X>S XS is invertible and sgn(β∗i )γi > 0. Let’s look at the variables µj :

|µj | =
∣∣X>j XS(X>S XS)−1sgn(β∗S)

∣∣ (96)

=
∣∣vSc,j−k,·Σ

>
ScU>UΣSV

>
S (VSΣ>SU

>UΣSV
>
S )−1sgn(β∗S)

∣∣ (97)

=
∣∣vSc,j−k,·Σ

>
ScΣSV

>
S VS(Σ>S ΣS)−1V >S sgn(β∗S)

∣∣ (98)

=
∣∣vSc,j−k,·Σ

>
ScΣS(Σ>S ΣS)−1V >S sgn(β∗S)

∣∣ (99)

=
∣∣∣[vSc,j−k,·Σ

>
Sc

]
(1:k)

Σ−1S,(1:k),(1:k)V
>
S sgn(β∗S)

∣∣∣ (100)

=

∣∣∣∣∣∣
[
vSc,j−k,·

√
n(p− k)κ√
kκ2 + n− k

]
(1:k)

1√
n
V >S sgn(β∗S)

∣∣∣∣∣∣ (101)

=

√
(p− k)κ√

kκ2 + n− k

∣∣∣[vSc,j−k,·](1:k) V
>
S sgn(β∗S)

∣∣∣ (102)

Cauchy
≤

√
(p− k)κ√

kκ2 + n− k

∣∣∣∣∣∣VS [vSc,j−k,·]
>
(1:k)

∣∣∣∣∣∣
2
||sgn(β∗S)||2 (103)

=

√
k(p− k)κ√
kκ2 + n− k

∣∣∣∣∣∣VS [vSc,j−k,·]
>
(1:k)

∣∣∣∣∣∣
2

(104)

≤
√
k(p− k)κ√
kκ2 + n− k

||VS ||2
∣∣∣∣∣∣[vSc,j−k,·](1:k)

∣∣∣∣∣∣
2

(105)

≤
√
k(p− k)κ√
kκ2 + n− k

. (106)

Because κ <
√

(n− k)/(k(p− k − 1)),

√
k(p− k)κ√
kκ2 + n− k

<

√
k(p− k)

√
n−k

k(p−k−1)√
k n−k
k(p−k−1) + n− k

(107)

=

√
(p−k)(n−k)

p−k−1√
n−k+(n−k)(p−k−1)

p−k−1

=

√
(p−k)(n−k)

p−k−1√
(n−k)(p−k)

p−k−1

= 1, (108)
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and so the conditions of Lemma 1 are met. We can then apply Lemma 1 and simplify the resulting
upper and lower bounds λu, λl on λ. Plugging in ΣS and ΣSc we see that the data matrixX satisfies

XX> = U
[
ΣSV

>
S ,ΣScV >Sc

] [
ΣSV

>
S ,ΣScV >Sc

]>
U> (109)

= U
[
ΣSΣ>S + ΣScΣ>Sc

]
U> (110)

, UDD>U>. (111)

From this we see that X = UDV > has left eigenvectors U and singular values

di =
√
σ2
S,i + σ2

Sc,i =

√
n+

n(p− k)κ2

kκ2 + n− k
∀i ∈ σ(S) (112)

dj =

√
n(p− k)

kκ2 + n− k
∀j ∈ σ(Sc). (113)

Recall that for JR, PX = Py = U
(
DD>

)−1/2
U>. After projecting, we find that

µ̄j = X>j P
>
XPXXS(X>S P

>
XPXXS)−1sgn(β∗S) (114)

=
∣∣vSc,j−k,·Σ

>
ScU>P>XPXUΣSV

>
S (VSΣ>SU

>P>XPXUΣSV
>
S )−1sgn(β∗S)

∣∣ (115)

=

∣∣∣∣vSc,j−k,·Σ
>
Sc

(
DD>

)−1
ΣSV

>
S

(
VSΣ>S

(
DD>

)−1
ΣSV

>
S

)−1
sgn(β∗S)

∣∣∣∣ (116)

=

∣∣∣∣vSc,j−k,·Σ
>
Sc

(
DD>

)−1
ΣS

(
Σ>S
(
DD>

)−1
ΣS

)−1
V >S sgn(β∗S)

∣∣∣∣ (117)

=
∣∣∣vSc,j−k,·Σ

>
ScΣS

(
Σ>S ΣS

)−1
V >S sgn(β∗S)

∣∣∣ = µj (118)

γ̄i = e>i

(
1

n
X>S P

>
XPXXS

)−1
sgn(β∗S) (119)

=

(
n+

n(p− k)κ2

kκ2 + n− k

)
e>i

(
1

n
X>S XS

)−1
sgn(β∗S) (120)

=

(
n+

n(p− k)κ2

kκ2 + n− k

)
γi (121)
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η̄j = X>j P
>
X

(
In×n − PXXS(X>S P

>
XPXXS)−1X>S P

>
X

) w̄
n

(122)

= vSc,j−k,·Σ
>
ScU>P>X(

In×n − PXUΣSV
>
S (VSΣ>SU

>P>XPXUΣSV
>
S )−1VSΣ>SU

>P>X
) PXw

n
(123)

= vSc,j−k,·Σ
>
Sc

(
DD>

)−1/2
U>(

In×n − U
(
DD>

)−1/2
ΣS

(
Σ>S
(
DD>

)−1
ΣS

)−1
Σ>S
(
DD>

)−1/2
U>
)
PXw

n
(124)

= vSc,j−k,·Σ
>
Sc

(
DD>

)−1/2
U>

(
In×n − USU

>
S

) PXw

n
(125)

= vSc,j−k,·Σ
>
Sc

(
DD>

)−1/2(
U> −

[
Ik×k

0

]
U>S

)
PXw

n
(126)

= vSc,j−k,·Σ
>
Sc

(
DD>

)−1/2 [ 0
U>Sc

]
PXw

n
(127)

=
[
vSc,j−k,·Σ

>
Sc

(
DD>

)−1/2]
(k+1:n)

U>Sc

PXw

n
(128)

=
[
vSc,j−k,·Σ

>
Sc

(
DD>

)−1/2]
(k+1:n)

[ 0 In−k×n−k ]
(
DD>

)−1/2
U>

w

n
(129)

=
[
vSc,j−k,·Σ

>
Sc

(
DD>

)−1/2]
(k+1:n)

[
0 D−1(k+1:n),(k+1:n)

]
U>

w

n
(130)

=
[
vSc,j−k,·Σ

>
Sc

(
DD>

)−1/2]
(k+1:n)

D−1(k+1:n),(k+1:n)U
>
Sc

w

n
(131)

=
[
vSc,j−k,·Σ

>
Sc

]
(k+1:n)

D−2(k+1:n),(k+1:n)U
>
Sc

w

n
(132)

=
1

n(p− k)/(kκ2 + n− k)

[
vSc,j−k,·Σ

>
Sc

]
(k+1:n)

U>Sc

w

n
(133)

=
1

n(p− k)/(kκ2 + n− k)
ηj (134)

ε̄i = e>i

(
1

n
X>S P

>
XPXXS

)−1
X>S P

>
XPX

w

n
(135)

= e>i

(
1

n
X>S XS

)−1
X>S

w

n
= εi (136)

(137)

Immediately we see that the conditions of Lemma 1 continue to hold after preconditioning using JR.
Note that by the above derivation (2Jη̄j > 0K− 1)− µ̄j = (2Jηj > 0K− 1)− µj , and so

λ̄l = max
j∈Sc

η̄j
(2Jη̄j > 0K− 1)− µ̄j

=
1

n(p− k)/(kκ2 + n− k)
max
j∈Sc

ηj
(2Jηj > 0K− 1)− µj

(138)

=
1

n(p− k)/(kκ2 + n− k)
λl (139)

λ̄u = min
i∈S

∣∣∣∣β∗i + ε̄i
γ̄i

∣∣∣∣
+

=
1

n+ (n(p− k)κ2/(kκ2 + n− k))
min
i∈S

∣∣∣∣β∗i + εi
γi

∣∣∣∣
+

(140)

=
1

n+ (n(p− k)κ2/(kκ2 + n− k))
λu. (141)
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The new ratio λ̄u/λ̄l of upper and lower bounds then becomes

λ̄u
λ̄l

=
n(p− k)/(kκ2 + n− k)

n+ (n(p− k)κ2/(kκ2 + n− k))

λu
λl

(142)

=
n(p− k)

n(kκ2 + n− k) + n(p− k)κ2
λu
λl

(143)

=
p− k

(kκ2 + n− k) + (p− k)κ2
λ

λl
(144)

=
p− k

n+ pκ2 − k
λu
λl
. (145)
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4.2 Gaussian Designs with Piecewise Constant Spectra

The generative model presented in Section 5.1 of the paper uses an orthonormal column basis U to
generate X . The question arises whether a more natural Gaussian design X exists that is in a sense
equivalent to the orthonormal construction of Section 5.1. In this section we present a generative
model that uses a Gaussian column “basis” that achieves this. As before, let VS and VSc be random
orthonormal bases of sizes k× k and p− k× p− k respectively and let ΣS and ΣSc be rectangular
matrices that are derived from matrices Σ̂S , Σ̂Sc as in Section 5.1 of the paper. LetWm be anm×n
matrix of independent Gaussians with marginal distribution N (0, 1). Then we let

Xm =
1√
n
Wm

[
ΣSV

>
S ,ΣScV >Sc

]
. (146)

We note that all columns of X are mean zero, and their squared norms are on expectation m:

E(Xm
i ) = E(Xei) =

1√
n
E(Wm

[
ΣSV

>
S ,ΣScV >Sc

]
ei) (147)

=
1√
n
E(Wm)E(

[
ΣSV

>
S ,ΣScV >Sc

]
ei) = 0 (148)

E(Xm
i
>Xm

i ) = E(e>i X
>Xei) (149)

=
1

n
E(e>i

[
ΣSV

>
S ,ΣScV >Sc

]>
Wm>Wm

[
ΣSV

>
S ,ΣScV >Sc

]
ei) (150)

=
m

n
E(e>i

[
ΣSV

>
S ,ΣScV >Sc

]> [
ΣSV

>
S ,ΣScV >Sc

]
ei) (151)

=

{
m
n

∑k
i′=1E(v2S,i,i′)σ

2
S,i′ = m if i ∈ S

m
n

∑n
i′=1E(v2Sc,i−k,i′)σ

2
Sc,i′ = m if i ∈ Sc . (152)

Moreover, if VS , VSc are fixed, then the rows of X are jointly Gaussian and

E
(
Xm>Xm

)
=

1

n

[
ΣSV

>
S ,ΣScV >Sc

]>
E
(
Wm>Wm

) [
ΣSV

>
S ,ΣScV >Sc

]
(153)

=
m

n

[
ΣSV

>
S ,ΣScV >Sc

]> [
ΣSV

>
S ,ΣScV >Sc

]
. (154)

So if m = n, the covariance matches empirical covariance of X constructed in Section 5.1 with
VS , VSc fixed. The standard Lasso application considers problems in which the noise vector has
fixed variance: w ∼ N (0, σ2In×n). In the next section we let the variance grow as σ2m/n (i.e., we
use noise vectors wm ∼ N (0, (σ2m/n)Im×m)) and see how the induced ratio of penalty parameter
bounds behaves asm→∞. Growing the number of observations and noise variance simultaneously
ensures that the problem doesn’t become too easy.
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4.3 Convergence of bounds ratios

For some fixed VS , VSc , ΣS , ΣSc , and β∗ generate the following two independent Lasso problems.

y = Xβ∗ + w X = U
[
ΣSV

>
S ,ΣScV >Sc

]
w ∼ N (0, σ2In×n) (155)

ym = Xmβ∗ + wm Xm =
1√
n
Wm

[
ΣSV

>
S ,ΣScV >Sc

]
wm ∼ N

(
0,
σ2m

n
Im×m

)
,

(156)

where U is a randomly chosen n×n orthonormal basis,Wm is a randomm×n Gaussian ensemble,
and the noise vectors w and wm are independent. Now, let λu/λl be the ratio of penalty parameter
bounds induced by Lemma 1 for the orthonormal construction in Eq. (155) and λmu /λ

m
l the ratio of

penalty parameter bounds for the Gaussian construction in Eq. (156). We will show the following.
Theorem 4. Let VS , VSc , ΣS , ΣSc and β∗ be fixed. If the conditions of Lemma 1 hold for X,β∗,
then for m large enough they will hold for Xm, β∗. Furthermore, as m→∞

λmu
λml

d→ λu
λl
, (157)

where the stochasticity on the left is due to Wm, wm and on the right is due to w.

Proof. Let the variables introduced by Lemma 1 for the orthogonal model in Eq. (155) be λ,
λl, λu, εi, γi, µj and ηj . Let the corresponding variables for the Gaussian model of Eq. (156) be
λm, λml , λ

m
u , ε

m
i , γ

m
i , µ

m
j and ηmj . Similarly, let the counterparts to XS and Xj be Xm

S and Xm
j .

Since we assumed that VS , VSc ,ΣS ,ΣSc , β∗ are fixed, we first show that γmi and µm
j converge to the

constants γi, µj . Using the Strong Law of Large Numbers and the Continuous Mapping Theorem,

lim
m→∞

1

m
Xm>Xm = lim

m→∞

1

mn

[
ΣSV

>
S ,ΣScV >Sc

]>
Wm>Wm

[
ΣSV

>
S ,ΣScV >Sc

]
(158)

a.s.
=

1

n
X>X (159)

This means that all inner products of columns ofXm/
√
m converge. Then, assuming the conditions

of Lemma 1 hold,

lim
m→∞

γmi = lim
m→∞

e>i

(
1

m
Xm

S
>Xm

S

)−1
sgn(β∗S) (160)

a.s.
= e>i

(
1

n
X>S XS

)−1
sgn(β∗S) = γi (161)

lim
m→∞

µm
j = lim

m→∞
Xm

j
>Xm

S (Xm
S
>Xm

S )−1sgn(β∗S) (162)

= lim
m→∞

Xm
j
>Xm

S

m

(
1

m
Xm

S
>Xm

S

)−1
sgn(β∗S) (163)

a.s.
=

X>j XS

n

(
1

n
X>S XS

)−1
sgn(β∗S) = µj (164)

Thus, if the conditions of Lemma 1 hold for X,β∗, there is an m0 so that if m > m0 the conditions
are also met by Xm, β∗. Assume from now on the conditions are met. By Lemma 1, signed support
recovery requires that

λm < λmu = min
i∈S

∣∣∣∣β∗i + εmi
γmi

∣∣∣∣
+

(165)

λm > λml = max
j∈Sc

ηmj(
2Jηmj > 0K− 1

)
− µm

j

. (166)

We will show that λmu /λ
m
l

d→ λu/λl, where the randomness on the left hand side is due toWm, wm

and the randomness in the right limit is due to the noisew in the εi and ηj . To show this convergence,
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observe that we can (with probability 1) write λu/λl as a continuous function of β∗i , εi, γi, i ∈
S, ηj , µj , j ∈ Sc, since we have that γi > 0, µj ∈ (−1,+1), and P(maxj ηj = 0) = 0 if σ2 >
03. By the Continuous Mapping Theorem, convergence in distribution of λmu /λ

m
l could then be

guaranteed if we had the following joint convergence in distribution
{εmi }i∈S
{γmi }i∈S{
ηmj
}
j∈Sc{

µm
j

}
j∈Sc

 d→


{εi}i∈S
{γi}i∈S
{ηj}j∈Sc

{µj}j∈Sc

 . (167)

Because µm
j and γmi converge to constants µj , γi, it remains to be shown that[ {εmi }i∈S{

ηmj
}
j∈Sc

]
d→
[
{εi}i∈S
{ηj}j∈Sc

]
. (168)

To simplify notation, we will show only the marginal convergence, letting it be understood that the
argument holds jointly. Using the Strong Law of Large Numbers and Slutsky’s Lemma,

lim
m→∞

εmi = lim
m→∞

e>i

(
1

m
Xm

S
>Xm

S

)−1
Xm

S
>w

m

m
(169)

d
= lim

m→∞
e>i

(
1

n
X>S XS

)−1
Xm

S
>w

m

m
(170)

d
= lim

m→∞

1√
n
e>i

(
1

n
X>S XS

)−1
VSΣ>SW

m>w
m

m
(171)

lim
m→∞

ηmj = lim
m→∞

Xm
j
>
(
Im×m −Xm

S (Xm
S
>Xm

S )−1Xm
S
>
) wm

m
(172)

d
= lim

m→∞
Xm

j
>

(
Im×m −

1

m
Xm

S

(
1

m
Xm

S
>Xm

S

)−1
Xm

S
>

)
wm

m
(173)

d
= lim

m→∞
Xm

j
>

(
Im×m −

1

m
Xm

S

(
1

n
XS
>XS

)−1
Xm

S
>

)
wm

m
(174)

d
= lim

m→∞
Xm

j
>

(
Im×m −

1

mn
WmΣSV

>
S

(
1

n
VSΣ>S ΣSV

>
S

)−1
VSΣ>SW

m>

)
wm

m

(175)

d
= lim

m→∞
Xm

j
>
(
Im×m −

1

m
WmΣS

(
Σ>S ΣS

)−1
Σ>SW

m>
)
wm

m
(176)

d
= lim

m→∞

1√
n
vSc,j−k,·Σ

>
ScWm>

(
Im×m −

1

m
Wm

S W
m
S
>
)
wm

m
(177)

d
= lim

m→∞

1√
n
vSc,j−k,·Σ

>
Sc

(
Wm> − 1

m
Wm>Wm

S W
m
S
>
)
wm

m
(178)

d
= lim

m→∞

1√
n
vSc,j−k,·Σ

>
Sc

(
Wm> −

[
Ik×k

0

]
Wm

S
>
)
wm

m
(179)

d
= lim

m→∞

1√
n

[
vSc,j−k,·Σ

>
Sc

]
(k+1:n)

Wm
Sc
>w

m

m
(180)

Observe that since VS , VSc ,ΣS ,ΣSc are fixed, the joint limit distribution of
[
{εmi }i∈S , {ηmj }j∈Sc

]
is determined by the limit distribution of the shared random variable Wm>wm/m. The following
lemma allows us to exploit this

Lemma 4. Let U be a (possibly random) n× n orthonormal matrix and w ∼ N (0, σ2In×n). Then

Wm>w
m

m

d→ U>
w√
n
, (181)

3To see this, note that
[
vSc,j−k,·Σ

>
Sc

]
(k+1:n)

cannot be zero for all j ∈ Sc.
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Proof. We show that for an independent z ∼ N (0, σ2Im×m)

Wm>w
m

m

d→ lim
m→∞

Wm>w
m

m

d
= lim

m→∞
Wm> z√

mn

d
= lim

m→∞
Wm> σz

||z||2
√
n

d
= U>

w√
n

(182)

By simple application of the Central Limit Theorem toWm>z/
√
m we see that the marginals of the

third random variable are Gaussian. To clarify the dependency structure between the variables, we
have further modified the statement by explicitly normalizing z on the right. We can do this using
Slutsky’s Lemma, because by the Strong Law of Large Numbers ||z||2/

√
m

a.s.→ σ. Now, since the
elements of Wm are independent standard Gaussians, and z has been normalized to unit length, the
limit distribution on the right consists of independent zero-mean Gaussians with variance σ2/n.

Because VS , VSc , ΣS , ΣSc are fixed, we can use Lemma 4 to conclude that jointly[ {εmi }i∈S{
ηmj
}
j∈Sc

]
d→


{
e>i
(
1
nX
>
S XS

)−1
VSΣ>SU

>w
n

}
i∈S{[

vSc,j−k,·Σ
>
Sc

]
(k+1:n)

U>Sc
w
n

}
j∈Sc

 d
=

[
{εi}i∈S
{ηj}j∈Sc

]
. (183)

Finally, an application of the Continuous Mapping Theorem to εmi , γ
m
i , η

m
j , µ

m
j then establishes that

λmu
λml

d→ λu
λl
. (184)
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