
Stochastic Optimization of PCA with Capped MSG

Raman Arora
TTI-Chicago

Chicago, IL USA
arora@ttic.edu

Andrew Cotter
TTI-Chicago

Chicago, IL USA
cotter@ttic.edu

Nathan Srebro
Technion, Haifa, Israel

and TTI-Chicago
nati@ttic.edu

Abstract

We study PCA as a stochastic optimization problem and propose a novel stochas-
tic approximation algorithm which we refer to as “Matrix Stochastic Gradient”
(MSG), as well as a practical variant, Capped MSG. We study the method both
theoretically and empirically.

1 Introduction

Principal Component Analysis (PCA) is a ubiquitous tool used in many data analysis, machine learn-
ing and information retrieval applications. It is used to obtain a lower dimensional representation of
a high dimensional signal that still captures as much of the original signal as possible. Such a low di-
mensional representation can be useful for reducing storage and computational costs, as complexity
control in learning systems, or to aid in visualization.

PCA is typically phrased as a question about a fixed data set: given n vectors in Rd, what is the
k-dimensional subspace that captures most of the variance in the data (or equivalently, that is best in
reconstructing the vectors, minimizing the sum squared distances, or residuals, from the subspace)?
It is well known that this subspace is the span of the leading k components of the singular value
decomposition of the data matrix (or equivalently of the empirical second moment matrix). Hence,
the study of computational approaches for PCA has mostly focused on methods for finding the SVD
(or leading components of the SVD) for a given n×dmatrix (Oja & Karhunen, 1985; Sanger, 1989).

In this paper we approach PCA as a stochastic optimization problem, where the goal is to optimize
a “population objective” based on i.i.d. draws from the population. In this setting, we have some
unknown source (“population”) distribution D over Rd, and the goal is to find the k-dimensional
subspace maximizing the (uncentered) variance of D inside the subspace (or equivalently, minimiz-
ing the average squared residual in the population), based on i.i.d. samples from D. The main point
here is that the true objective is not how well the subspace captures the sample (i.e. the “training
error”), but rather how well the subspace captures the underlying source distribution (i.e. the “gen-
eralization error”). Furthermore, we are not concerned with capturing some “true” subspace, and so
do not, for example, try to minimize the angle to such a subspace, but rather attampt to find a “good”
subspace, i.e. one that is almost as good as the optimal one in terms of reconstruction error.

Of course, finding the subspace that best captures the sample is a very reasonable approach to PCA
on the population. This is essentially an Empirical Risk Minimization (ERM) approach. However,
when comparing it to alternative, perhaps computationally cheaper, approaches, we argue that one
should not compare the error on the sample, but rather the population objective. Such a view can jus-
tify and favor computational approaches that are far from optimal on the sample, but are essentially
as good as ERM on the population.

Such a population-based view of optimization has recently been advocated in machine learning,
and has been used to argue for crude stochastic approximation approaches (online-type methods)
over sophisticated deterministic optimization of the empirical (training) objective (i.e. “batch” meth-
ods) (Bottou & Bousquet, 2007; Shalev-Shwartz & Srebro, 2008). A similar argument was also

1



made in the context of stochastic optimization, where Nemirovski et al. (2009) argues for stochastic
approximation (SA) approaches over ERM. approaches (a.k.a. ERM). Accordingly, SA approaches,
mostly variants of Stochastic Gradient Descent, are often the methods of choice for many learning
problems, especially when very large data sets are available (Shalev-Shwartz et al., 2007; Collins
et al., 2008; Shalev-Shwartz & Tewari, 2009). We take the same view in order to advocate for, study,
and develop stochastic approximation approaches for PCA.

In an empirical study of stochastic approximation methods for PCA, a heuristic “incremental”
method showed very good empirical performance (Arora et al., 2012). However, no theoretical
guarantees or justification were given for incremental PCA. In fact, it was shown that for some dis-
tributions it can converge to a suboptimal solution with high probability (see Section 5.2 for more
about this “incremental” algorithm). Also relevant is careful theoretical work on online PCA by
Warmuth & Kuzmin (2008), in which an online regret guarantee was established. Using an online-
to-batch conversion, this online algorithm can be converted to a stochastic approximation algorithm
with good iteration complexity, however the runtime for each iteration is essentially the same as that
of ERM (i.e. of PCA on the sample), and thus senseless as a stochastic approximation method (see
Section 3.3 for more on this algorithm).

In this paper we borrow from these two approaches and present a novel algorithm for stochastic
PCA—the Matrix Stochastic Gradient (MSG) algorithm. MSG enjoys similar iteration complex-
ity to Warmuth’s and Kuzmin’s algorithm, and in fact we present a unified view of both algo-
rithms as different instantiations of Mirror Descent for the same convex relaxation of PCA. We
then present the capped MSG algorithm, which is a more practical variant of MSG, has very similar
updates to those of the “incremental” method, works well in practice, and does not get stuck like
the “incremental” method. The Capped MSG algorithm is thus a clean, theoretically well founded
method, with interesting connections to other stochastic/online PCA methods, and excellent practi-
cal performance—a “best of both worlds” algorithm.

2 Problem Setup
We consider PCA as the problem of finding the maximal (uncentered) variance k-dimensional sub-
space with respect to an (unknown) distribution D over x ∈ Rd. We assume without loss of gener-
ality that the data are scaled in such a way that Ex∼D[‖x‖2] ≤ 1. For our analysis, we also require
that the fourth moment be bounded: Ex∼D[‖x‖4] ≤ 1. We represent a k-dimensional subspace by
an orthonormal basis, collected in the columns of a matrix U . With this parametrization, PCA is
defined as the following stochastic optimization problem:

maximize : Ex∼D[xTUUTx] (2.1)

subject to : U ∈ Rd×k, UTU = I.

In a stochastic optimization setting we do not have direct knowledge of the distribution D, and
instead may access it only through i.i.d. samples—these can be thought of as “training examples”.
As in other studies of stochastic approximation methods, we are less concerned with the number
of required samples, and instead care mostly about the overall runtime required to obtain an ε-
suboptimal solution.

The standard approach to Problem 2.1 is empirical risk minimization (ERM): given samples {xt}Tt=1

drawn from D, we compute the empirical covariance matrix Ĉ = 1
T

∑T
t=1 xtx

T
t , and take the

columns of U to be the eigenvectors of Ĉ corresponding to the top-k eigenvalues. This approach
requires O(d2) memory and O(d2) operations just in order to compute the covariance matrix, plus
some additional time for the SVD. We are interested in methods with much lower sample time and
space complexity, preferably linear rather than quadratic in d.

3 MSG and MEG
A natural stochastic approximation (SA) approach to PCA is projected stochastic gradient descent
(SGD) on Problem 2.1, with respect to U . This leads to the stochastic power method, for which, at
each iteration, the following update is performed:

U (t+1) = Porth

(
U (t) + ηxtx

T
t

)
(3.1)

2



Here, xtxTt is the gradient of the PCA objective w.r.t. U , η is a step size, and Porth (·) projects its
argument onto the set of matrices with orthonormal columns. Unfortunately, although SGD is well
understood for convex problems, Problem 2.1 is non-convex. Consequently, obtaining a theoretical
understanding of the stochastic power method, or of how the step size should be set, has proved
elusive. Under some conditions, convergence to the optimal solution can be ensured, but no rate is
known (Oja & Karhunen, 1985; Sanger, 1989; Arora et al., 2012).

Instead, we consider a re-parameterization of the PCA problem where the objective is convex. In-
stead of representing a linear subspace in terms of its basis matrix U , we parametrize it using the
corresponding projection matrix M = UUT . We can now reformulate the PCA problem as:

maximize : Ex∼D[xTMx] (3.2)

subject to : M ∈ Rd×d, λi (M) ∈ {0, 1} , rankM = k

where λi (M) is the ith eigenvalue of M .

We now have a convex (linear, in fact) objective, but the constraints are not convex. This prompts us
relax the objective by taking the convex hull of the feasible region:

maximize : Ex∼D[xTMx] (3.3)

subject to : M ∈ Rd×d, 0 �M � I, trM = k

Since the objective is linear, and the feasible regiuon is the convex hull of that of Problem 3.2,
an optimal solution is always attained at a “vertex”, i.e. a point on the boundary of the original
constraints. The optima of the two objectives are thus the same (strictly speaking—every optimum
of Problem 3.2 is also an optimum of Problem 3.3), and solving Problem 3.3 is equivalent to solving
Problem 3.2.

Furthermore, if a suboptimal solution for Problem 3.3 is not rank-k, i.e. is not a feasible point
of Problem 3.2, we can easily sample from it to obtain a rank-k solution with the same objective
function value (in expectation). This is shown by the following result of Warmuth & Kuzmin (2008):
Lemma 3.1 (Rounding (Warmuth & Kuzmin, 2008)). Any feasible solution of Problem 3.3 can be
expressed as a convex combination of at most d feasible solutions of Problem 3.2.

Algorithm 2 of Warmuth & Kuzmin (2008) shows how to efficiently find such a convex combination.
Since the objective is linear, treating the coefficients of the convex combination as defining a discrete
distribution, and sampling according to this distribution, yields a rank-k matrix with the desired
expected objective function value.

3.1 Matrix Stochastic Gradient

Performing SGD on Problem 3.3 (w.r.t. the variable M ) yields the following update rule:

M (t+1) = P
(
M (t) + ηxtx

T
t

)
, (3.4)

The projection is now performed onto the (convex) constraints of Problem 3.3. This gives the Matrix
Stochastic Gradient (MSG) algorithm, which, in detail, consists of the following steps:

1. Choose a step-size η, iteration count T , and starting point M (0).
2. Iterate the update rule (Equation 3.4) T times, each time using an independent sample
xt ∼ D.

3. Average the iterates as M̄ = 1
T

∑T
t=1M

(t).
4. Sample a rank-k solution M̃ from M̄ using the rounding procedure discussed in the previ-

ous section.

Analyzing MSG is straightforward using a standard SGD analysis:

Theorem 1. After T iterations of MSG (on Problem 3.3), with step size η =
√

k
T , and starting at

M (0) = 0,

E[Ex∼D[xT M̃x]] ≥ Ex∼D[xTM∗x]− 1

2

√
k

T
,

where the expectation is w.r.t. the i.i.d. samples x1, . . . , xT ∼ D and the rounding, and M∗ is the
optimum of Problem 3.2.

3



Algorithm 1 Matrix stochastic gradient (MSG) update: compute an eigendecomposition ofM ′+ηxxT from a
rank-m eigendecomposition M ′=U ′diag(σ′)(U ′)T and project the resulting solution onto the constraint set.
The computational cost is dominated by the matrix multiplication on lines 4 or 7 costing O(m2d) operations.

msg-step
(
d, k,m : N, U ′ : Rd×m, σ′ : Rm, x : Rd, η : R

)
1 x̂← √η(U ′)Tx; x⊥ ←

√
ηx− U ′x̂; r ← ‖x⊥‖;

2 if r > 0
3 V, σ ← eig([diag(σ′) + x̂x̂T , rx̂; rx̂T , r2]);
4 U ← [U ′, x⊥/r]V ;
5 else
6 V, σ ← eig(diag(σ′) + x̂x̂T );
7 U ← U ′V ;
8 σ ← distinct eigenvalues in σ; κ← corresponding multiplicities;
9 σ ← project (d, k,m, σ, κ);

10 return U, σ;

Proof. The SGD analysis of Nemirovski & Yudin (1983) yields that:

E[xTM∗x− xT M̄x] ≤ η

2
Ex∼D[‖g‖2F ] +

‖M∗ −M (0)‖2F
2ηT

(3.5)

where g = xxT is the gradient of the PCA objective. Now, Ex∼D[‖g‖2F ] = Ex∼D[‖x‖4] ≤ 1 and∥∥M∗ −M (0)
∥∥2
F

= ‖M∗‖2F = k. In the last inequality, we used the fact that M∗ has k eigenvalues
of value 1 each, and hence ‖M∗‖F =

√
k.

3.2 Efficient Implementation and Projection
A naı̈ve implementation of the MSG update requires O(d2) memory and O(d2) operations per iter-
ation. In this section, we show how to perform this update efficiently by maintaining an up-to-date
eigendecomposition of M (t). Pseudo-code for the update may be found in Algorithm 1. Consider
the eigendecomposition M (t) = U ′diag(σ)(U ′)T at the tth iteration, where rank(M (t)) = kt and
U ′ ∈ Rd×kt . Given a new observation xt, the eigendecomposition of M (t) + ηxtx

T
t can be updated

efficiently using a (kt+1)×(kt+1) SVD (Brand, 2002; Arora et al., 2012) (steps 1-7 of Algorithm 1).
This rank-one eigen-update is followed by projection onto the constraints of Problem 3.3, invoked as
project in step 8 of Algorithm 1, discussed in the following paragraphs and given as Algorithm 2.
The projection procedure is based on the following lemma1. See supplementary material for a proof.
Lemma 3.2. Let M ′ ∈ Rd×d be a symmetric matrix, with eigenvalues σ′1, . . . , σ

′
d and associated

eigenvectors v′1, . . . , v
′
d. Its projection M = P (M ′) onto the feasible region of Problem 3.3 with

respect to the Frobenius norm, is the unique feasible matrix which has the same eigenvectors as M ′,
with the associated eigenvalues σ1, . . . , σd satisfying:

σi = max (0,min (1, σ′i + S))

with S ∈ R being chosen in such a way that
∑d

i=1 σi = k.

This result shows that projecting onto the feasible region amounts to finding the value of S such that,
after shifting the eigenvalues by S and clipping the results to [0, 1], the result is feasible. Importantly,
the projection operates only on the eigenvalues. Algorithm 2 contains pseudocode which finds S
from a list of eigenvalues. It is optimized to efficiently handle repeated eigenvalues—rather than
receiving the eigenvalues in a length-d list, it instead receives a length-n list containing only the
distinct eigenvalues, with κ containing the corresponding multiplicities. In Sections 4 and 5, we will
see why this is an important optimization. The central idea motivating the algorithm is that, in a
sorted array of eigenvalues, all elements with indices below some threshold i will be clipped to 0,
and all of those with indices above another threshold j will be clipped to 1. The pseudocode simply
searches over all possible pairs of such thresholds until it finds the one that works.

The rank-one eigen-update combined with the fast projection step yields an efficient MSG update
that requires O(dkt) memory and O(dk2t ) operations per iteration (recall that kt is the rank of the

1Our projection problem onto the capped simplex, even when seen in the vector setting, is substantially
different from Duchi et al. (2008). We project onto the set {0 ≤ σ ≤ 1, ‖σ‖1 = k} in Problem 3.3 and {0 ≤
σ ≤ 1, ‖σ‖1 = k, ‖σ‖0 ≤ K} in Problem 5.1 whereas Duchi et al. (2008) project onto {0 ≤ σ, ‖σ‖1 = k}.

4



Algorithm 2 Routine which finds the S of Lemma 3.2. It takes as parameters the dimension d, “target” sub-
space dimension k, and the number of distinct eigenvalues n of the current iterate. The length-n arrays σ′ and
κ′ contain the distinct eigenvalues and their multiplicities, respectively, ofM ′ (with

∑n
i=1 κ

′
i = d). Line 1 sorts

σ′ and re-orders κ′ so as to match this sorting. The loop will be run at most 2n times (once for each possible
increment to i or j on lines 12–15), so the computational cost is dominated by that of the sort: O(n logn).

project (d, k, n : N, σ′ : Rn, κ′ : Nn)
1 σ′, κ′ ← sort(σ′, κ′);
2 i← 1; j ← 1; si ← 0; sj ← 0; ci ← 0; cj ← 0;
3 while i ≤ n
4 if (i < j)
5 S ← (k − (sj − si)− (d− cj))/(cj − ci);
6 b← (
7 (σ′i + S ≥ 0) and (σ′j−1 + S ≤ 1)
8 and ((i ≤ 1) or (σ′i−1 + S ≤ 0))
9 and ((j ≥ n) or (σ′j+1 ≥ 1))

10 );
11 return S if b;
12 if (j ≤ n) and (σ′j − σ′i ≤ 1)
13 sj ← sj + κ′jσ

′
j ; cj ← cj + κ′j ; j ← j + 1;

14 else
15 si ← si + κ′iσ

′
i; ci ← ci + κ′i; i← i+ 1;

16 return error;

iterate M (t)). This is a significant improvement over the O(d2) memory and O(d2) computation
required by a standard implementation of MSG, if the iterates have relatively low rank.

3.3 Matrix Exponentiated Gradient
Since M is constrained by its trace, and not by its Frobenius norm, it is tempting to consider mirror
descent (MD) (Beck & Teboulle, 2003) instead of SGD updates for solving Problem 3.3. Recall that
Mirror Descent depends on a choice of “potential function” Ψ(·) which should be chosen according
to the geometry of the feasible set and the subgradients (Srebro et al., 2011). Using the squared
Frobenius norm as a potential function, i.e. Ψ(M) = ‖M‖2F , yields SGD, i.e. the MSG updates
Equation 3.4. The trace-norm constraint suggests using the von Neumann entropy as the potential
function, i.e. Ψh(M) =

∑
i λi (M) log λi (M). This leads to multiplicative updates, yielding what

we refer to as the Matrix Exponentiated Gradient (MEG) algorithm, which is similar to that of (War-
muth & Kuzmin, 2008). In fact, Warmuth and Kuzmin’s algorithm exactly corresponds to online
Mirror Descent on Problem 3.3 with this potential function, but takes the optimization variable to
be M⊥ = I −M (with the constraints trM⊥ = d− k and 0 � M⊥ � I). In either case, using the
entropy potential, despite being well suited for the trace-geometry, does not actually lead to a better
dependence2 on d or k, and a Mirror Descent-based analysis again yields an excess loss of

√
k/T .

Warmuth and Kuzmin present an “optimistic” analysis, with a dependence on the “reconstruction

error” L∗ = E[xT (I − M∗)x], which yields an excess error of O
(√

L∗k log(d/k)
T + k log(d/k)

T

)
(their logarithmic term can be avoided by a more careful analysis).

4 MSG runtime and the rank of the iterates
As we saw in Sections 3.1 and 3.2, MSG requires O(k/ε2) iterations to obtain an ε-suboptimal
solution, and each iteration costs O(k2t d) operations, where kt is the rank of iterate M (t). This
yields a total runtime of O(k̄2dk/ε2), where k̄2 =

∑T
t=1 k

2
t . Clearly, the runtime for MSG depends

critically on the rank of the iterates. If kt is as large as d, then MSG achieves a runtime that is cubic
in the dimensionality. On the other hand, if the rank of the iterates is O(k), the runtime is linear in
the dimensionality. Fortunately, in practice, each kt is typically much lower than d. The reason for
this is that the MSG update performs a rank-1 update followed by a projection onto the constraints.
Since M ′ = M (t) + ηxtx

T
t will have a larger trace than M (t) (i.e. trM ′ ≥ k), the projection, as is

2This is because in our case, due to the other constraints, ‖M∗‖F =
√
trM∗. Furthermore, the SGD analysis

depends on the Frobenius norm of the stochastic gradients, but since all stochastic gradients are rank one, this
is the same as their spectral norm, which comes up in the entropy-case analysis, and again there is no benefit.

5



shown by Lemma 3.2, will subtract a quantity S from every eigenvalue of M ′, clipping each to 0 if
it becomes negative. Therefore, each MSG update will increase the rank of the iterate by at most 1,
and has the potential to decrease it, perhaps significantly. It’s very difficult to theoretically quantify
how the rank of the iterates will evolve over time, but we have observed empirically that the iterates
do tend to have relatively low rank.

We explore this issue in greater detail experimentally, on a distribution which we expect to be diffi-
cult for MSG. To this end, we generated data from known 32-dimensional distributions with diagonal
covariance matrices Σ = diag(σ/ ‖σ‖), where σi = τ−i/

∑32
j=1 τ

−j , for i = 1, . . . , 32 and for
some τ > 1. Observe that Σ(k) has a smoothly-decaying set of eigenvalues and the rate of decay is
controlled by τ . As τ → 1, the spectrum becomes flatter resulting in distributions that present chal-
lenging test cases for MSG. We experimented with τ = 1.1 and k ∈ {1, 2, 4}, where k is the desired
subspace dimension used by each algorithm. The data is generated by sampling the ith standard unit
basis vector ei with probability

√
Σii. We refer to this as the “orthogonal distribution”, since it is a

discrete distribution over 32 orthogonal vectors.
kt Spectrum

10
1

10
2

10
3

10
40

5

10

15

20

25

30

35

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

Iterations Iterations

Figure 1: The ranks kt (left) and the eigenvalues
(right) of the MSG iterates M (t).

In Figure 1, we show the results with k = 4. We
can see from the left-hand plot that MSG main-
tains a subspace of dimension around 15. The
plot on the right shows how the set of nonzero
eigenvalues of the MSG iterates evolves over
time, from which we can see that many of the ex-
tra dimensions are “wasted” on very small eigen-
values, corresponding to directions which leave
the state matrix only a handful of iterations after
they enter. This suggests that constraining kt can
lead to significant speedups and motivates capped
MSG updates discussed in the next section.

5 Capped MSG
While, as was observed in the previous section, MSG’s iterates will tend to have ranks kt smaller
than d, they will nevertheless also be larger than k. For this reason, we recommend imposing a hard
constraint K on the rank of the iterates:

maximize : Ex∼D[xTMx] (5.1)

subject to : M ∈ Rd×d, 0 �M � I
trM = k, rankM ≤ K

We will refer to MSG where the projection is replaced with a projection onto the constraints of
Problem 5.1 (i.e. where the iterates are SGD iterates on Problem 5.1) as “capped MSG”. As before,
as long as K ≥ k, Problem 5.1 and Problem 3.3 have the same optimum, it is achieved at a rank-k
matrix, and the extra rank constraint in Problem 5.1 is inactive at the optimum. However, the rank
constraint does affect the iterates, especially since Problem 5.1 is no longer convex. Nonetheless
if K > k (i.e. the hard rank-constraint K is strictly larger than the target rank k), then we can
easily check if we are at a global optimum of Problem 5.1, and hence of Problem 3.3: if the capped
MSG algorithm converges to a solution of rank K, then the upper bound K should be increased.
Conversely, if it has converged to a rank-deficient solution, then it must be the global optimum.
There is thus an advantage in using K > k, and we recommend setting K = k + 1, as we do in our
experiments, and increasing K only if a rank deficient solution is not found in a timely manner.

If we takeK = k, then the only way to satisfy the trace constraint is to have all non-zero eigenvalues
equal to one, and Problem 5.1 becomes identical to Problem 3.2. The detour through the convex
objective of Problem 3.3 allows us to increase the search rank K, allowing for more flexibility in
the iterates, while still forcing each iterate to be low-rank, and each update to therefore be efficient,
through the rank constraint.

5.1 Implementing the projection
The only difference between the implementation of MSG and capped MSG is in the projection step.
Similar reasoning to that which was used in the proof of Lemma 3.2 shows that if M (t+1) =P (M ′)

6



k = 1 k = 2 k = 4

Su
bo

pt
im

al
ity

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

Incremental
Warmuth & Kuzmin
MSG
Capped MSG

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations Iterations Iterations

Figure 2: Comparison on simulated data for different values of parameter k.

with M ′ = M (t) + ηxtx
T
t , then M (t) and M ′ are simultaneously diagonalizable, and therefore

we can consider only how the projection acts on the eigenvalues. Hence, if we let σ′ be the vector
of the eigenvalues of M ′, and suppose that more than K of them are nonzero, then there will be
a a size-K subset of σ′ such that applying Algorithm 2 to this set gives the projected eigenvalues.
Since we perform only a rank-1 update at every iteration, we must check at most K possibilities,
at a total cost of O(K2 logK) operations, which has no effect on the asymptotic runtime because
Algorithm 1 requires O(K2d) operations.

5.2 Relationship to the incremental PCA method

The capped MSG algorithm with K = k is similar to the incremental algorithm of Arora et al.
(2012), which maintains a rank-k approximation of the covariance matrix and updates according to:

M (t+1) = Prank-k

(
M (t) + xtx

T
t

)
where the projection is onto the set of rank-k matrices. Unlike MSG, the incremental algorithm does
not have a step-size. Updates can be performed efficiently by maintaining an eigendecomposition
of each iterate, just as was done for MSG (see Section 3.2).

In a recent survey of stochastic algorithms for PCA (Arora et al., 2012), the incremental algorithm
was found to perform extremely well in practice–it was the best, in fact, among the compared algo-
rithms. However, there exist cases in which it can get stuck at a suboptimal solution. For example,
If the data are drawn from a discrete distribution D which samples [

√
3, 0]T with probability 1/3

and [0,
√

2]T with probability 2/3, and one runs the incremental algorithm with k = 1, then it will
converge to [1, 0]T with probability 5/9, despite the fact that the maximal eigenvector is [0, 1]T .
The reason for this failure is essentially that the orthogonality of the data interacts poorly with the
low-rank projection: any update which does not entirely displace the maximal eigenvector in one
iteration will be removed entirely by the projection, causing the algorithm to fail to make progress.
The capped MSG algorithm with K > k will not get stuck in such situations, since it will use
the additional dimensions to search in the new direction. Only as it becomes more confident in its
current candidate will the trace of M become increasingly concentrated on the top k directions. To
illustrate this empirically, we generalized this example by generating data using the 32-dimensional
“orthogonal” distribution described in Section 4. This distribution presents a challenging test-case
for MSG, capped MSG and the incremental algorithm. Figure 2 shows plots of individual runs of
MSG, capped MSG with K = k + 1, the incremental algorithm, and Warmuth and Kuzmin’s al-
gorithm, all based on the same sequence of samples drawn from the orthogonal distribution. We
compare algorithms in terms of the suboptimality on the population objective based on the largest
k eigenvalues of the state matrix M (t). The plots show the incremental algorithm getting stuck for
k ∈ {1, 4}, and the others intermittently plateauing at intermediate solutions before beginning to
again converge rapidly towards the optimum. This behavior is to be expected on the capped MSG
algorithm, due to the fact that the dimension of the subspace stored at each iterate is constrained.
However, it is somewhat surprising that MSG and Warmuth and Kuzmin’s algorithm behaved simi-
larly, and barely faster than capped MSG.

6 Experiments
We also compared the algorithms on the real-world MNIST dataset, which consists of 70, 000 binary
images of handwritten digits of size 28×28, resulting in a dimensionality of 784. We pre-normalized
the data by mean centering the feature vectors and scaling each feature by the product of its standard

7



k = 1 k = 4 k = 8

Su
bo

pt
im

al
ity

10
0

10
1

10
2

10
3

10
4

10
50

0.5

1

1.5

2

2.5

3

 

 

Incremental
Warmuth & Kuzmin
MSG
Capped MSG
Grassmannian

10
0

10
1

10
2

10
3

10
4

10
50

1

2

3

4

5

6

7

8

10
0

10
1

10
2

10
3

10
4

10
50

2

4

6

8

10

12

Iterations Iterations Iterations

Su
bo

pt
im

al
ity

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
80

0.5

1

1.5

2

2.5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
80

1

2

3

4

5

6

7

8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
80

2

4

6

8

10

12

Est. runtime Est. runtime Est. runtime

Figure 3: Comparison on the MNIST dataset. The top row of plots shows suboptimality as a function of
iteration count, while the bottom row suboptimality as a function of estimated runtime

∑t
s=1(k

′
s)

2.

deviation and the data dimension, so that each feature vector is zero mean and unit norm in expec-
tation. In addition to MSG, capped MSG, the incremental algorithm and Warmuth and Kuzmin’s
algorithm, we also compare to a Grassmannian SGD algorithm (Balzano et al., 2010). All algo-
rithms except the incremental algorithm have a step-size parameter. In these experiments, we ran
each algorithm with decreasing step sizes ηt = c/

√
t for c ∈ {2−12, 2−11, . . . , 25} and picked the

best c, in terms of the average suboptimality over the run, on a validation set. Since we cannot eval-
uate the true population objective, we estimate it by evaluating on a held-out test set. We use 40%
of samples in the dataset for training, 20% for validation (tuning step-size), and 40% for testing.
We are interested in learning a maximum variance subspace of dimension k ∈ {1, 4, 8} in a single
“pass” over the training sample. In order to compare MSG, capped MSG, the incremental algo-
rithm and Warmuth and Kuzmin’s algorithm in terms of runtime, we calculate the dominant term
in the computational complexity:

∑t
s=1(k

′
s)

2. The results are averaged over 100 random splits into
train-validation-test sets.

We can see from Figure 3 that the incremental algorithm makes the most progress per iteration and
is also the fastest of all algorithms. MSG is comparable to the incremental algorithm in terms of the
the progress made per iteration. However, its runtime is slightly worse because it will often keep
a slightly larger representation (of dimension kt). The capped MSG variant (with K = k + 1) is
significantly faster–almost as fast as the incremental algorithm, while, as we saw in the previous
section, being less prone to getting stuck. Warmuth and Kuzmin’s algorithm fares well with k = 1,
but its performance drops for higher k. Inspection of the underlying data shows that, in the k ∈
{4, 8} experiments, it also tends to have a larger kt than MSG in these experiments, and therefore
has a higher cost-per-iteration. Grassmannian SGD performs better than Warmuth and Kuzmin’s
algorithm, but much worse than MSG and capped MSG.

7 Conclusions

In this paper, we presented a careful development and analysis of MSG, a stochastic approximation
algorithm for PCA, which enjoys good theoretical guarantees and offers a computationally efficient
variant, capped MSG. We show that capped MSG is well-motivated theoretically and that it does
not get stuck at a suboptimal solution. Capped MSG is also shown to have excellent empirical per-
formance and it therefore is a much better alternative to the recently proposed incremental PCA
algorithm of Arora et al. (2012). Furthermore, we provided a cleaner interpretation of PCA up-
dates of Warmuth & Kuzmin (2008) in terms of Matrix Exponentiated Gradient (MEG) updates
and showed that both MSG and MEG can be interpreted as mirror descent algorithms on the same
relaxation of the PCA optimization problem but with different distance generating functions.

8



References
Arora, Raman, Cotter, Andrew, Livescu, Karen, and Srebro, Nathan. Stochastic optimization for

PCA and PLS. In 50th Annual Allerton Conference on Communication, Control, and Computing,
2012.

Balzano, Laura, Nowak, Robert, and Recht, Benjamin. Online identification and tracking of sub-
spaces from highly incomplete information. In 48th Annual Allerton Conference on Communica-
tion, Control, and Computing, 2010.

Beck, A. and Teboulle, M. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167–175, 2003.

Bottou, Leon and Bousquet, Olivier. The tradeoffs of large scale learning. In NIPS’07, pp. 161–168,
2007.

Boyd, Stephen and Vandenberghe, Lieven. Convex Optimization. Cambridge University Press, 2004.
Brand, Matthew. Incremental singular value decomposition of uncertain data with missing values.

In ECCV, 2002.
Collins, Michael, Globerson, Amir, Koo, Terry, Carreras, Xavier, and Bartlett, Peter L. Exponen-

tiated gradient algorithms for conditional random fields and max-margin markov networks. J.
Mach. Learn. Res., 9:1775–1822, June 2008.

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and Chandra, Tushar. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th international conference
on Machine learning, ICML ’08, pp. 272–279, New York, NY, USA, 2008. ACM.

Nemirovski, Arkadi and Yudin, David. Problem complexity and method efficiency in optimization.
John Wiley & Sons Ltd, 1983.

Nemirovski, Arkadi, Juditsky, Anatoli, Lan, Guanghui, and Shapiro, Alexander. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, January 2009.

Oja, Erkki and Karhunen, Juha. On stochastic approximation of the eigenvectors and eigenvalues
of the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106:
69–84, 1985.

Sanger, Terence D. Optimal unsupervised learning in a single-layer linear feedforward neural net-
work. Neural Networks, 12:459–473, 1989.

Shalev-Shwartz, Shai and Srebro, Nathan. SVM optimization: Inverse dependence on training set
size. In ICML’08, pp. 928–935, 2008.

Shalev-Shwartz, Shai and Tewari, Ambuj. Stochastic methods for l1 regularized loss minimization.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML’09, pp.
929–936, New York, NY, USA, 2009. ACM.

Shalev-Shwartz, Shai, Singer, Yoram, and Srebro, Nathan. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM. In ICML’07, pp. 807–814, 2007.

Srebro, N., Sridharan, K., and Tewari, A. On the universality of online mirror descent. Advances in
Neural Information Processing Systems, 24, 2011.

Warmuth, Manfred K. and Kuzmin, Dima. Randomized online PCA algorithms with regret bounds
that are logarithmic in the dimension. Journal of Machine Learning Research (JMLR), 9:2287–
2320, 2008.

9


