
A Proofs of Section 3

Consider a basic full information problem with N experts. Let RT (SD, i) be the regret of the SD
algorithm with respect to expert i up to time T . We have the following results for the SD algorithm.
Lemma 8. For any expert i ∈ {1, . . . , N}, RT (SD, i) ≤ 4

√
T logN + logN , and also for any

1 ≤ t ≤ T , P (Switch at time t) ≤
√

logN
T .

Proof. The proof of the regret bound can be found in [17, Theorem 3]. The proof of the bound on
the probability of switch is similar to the proof of Lemma 2 in [17] and is as follows: As shown
in [17, Lemma 2], the probability of switch at time t is αt = (Wt−1 −Wt)/Wt−1. Thus, Wt =
(1− αt)Wt−1. Because the loss function is bounded in [0, 1], we have that

Wt =

N∑
i=1

wi,t =

N∑
i=1

wi,t−1(1− η)ct(i) ≥
N∑
i=1

wi,t−1(1− η) = (1− η)Wt−1 .

Thus, 1− αt ≥ 1− η, and thus, αt ≤ η ≤
√

(logN)/T .

A.1 Proof of Theorem 1

In the rest of this section, we write A to denote the OMDP algorithm. For the proof we use the
regret decomposition (1):

RT (A, π) = BT (A) + CT (A, π) .

Lemma 9. For any policy π ∈ Π,

E [CT (A, π)] = E

[
T∑
t=1

`t(x
πt
t , πt)−

T∑
t=1

`t(x
π
t , π)

]
≤ 4
√
T log |Π|+ log |Π| .

Proof. Consider the following imaginary game between a learner and an adversary: we have a
set of experts (policies) Π = {π1, . . . , π|Π|}. At round t, the adversary chooses a loss vector
ct ∈ [0, 1]Π, whose ith element determines the loss of expert πi at this round. The learner chooses a
distribution over experts qt (defined by the SD algorithm), from which it draws an expert πt. Next,
the learner observes the loss function ct. From the regret bound for the SD algorithm (Lemma 8), it
is guaranteed that for any expert π,

T∑
t=1

〈ct, qt〉 −
T∑
t=1

ct(π) ≤ 4
√
T log |Π|+ log |Π| .

Next, we determine how the adversary chooses the loss vector. At time t, the adversary chooses
a loss function `t and sets ct(πi) = E

[
`t(x

πi

t , π
i)
]
. Noting that 〈ct, qt〉 = E [`t(x

πt
t , πt)] and

ct(π) = E [`t(x
π
t , π)] finishes the proof.

Lemma 10. We have that

E [BT (A)] = E

[
T∑
t=1

`t(x
A
t , at)−

T∑
t=1

`t(x
πt
t , πt)

]
≤ 2τ2

√
log |Π|T .

First, we state the following two lemmas.
Lemma 11 (Lemma 5.1 of Even-Dar et al. [12]). For any state distribution d, any transition kernel
m, and any policies π and π′,

‖dP (π,m)− dP (π′,m)‖1 ≤ ‖π − π
′‖∞,1 .

Note that matrix P (π,m) was defined for finite state spaces, but with appropriate modifications the
same argument works for continuous state spaces as well.

Lemma 12. Let αt be the probability of a policy switch at time t. Then, αt ≤
√

log |Π|/T .
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Proof. Proof is identical to the proof of Lemma 8.

Proof of Lemma 10. Let Ft = σ(π1, . . . , πt). Notice that the choice of policies are independent of
the state variables. We can write

E [BT (A)] = E

[
T∑
t=1

`t(x
A
t , at)−

T∑
t=1

`t(x
πt
t , πt)

]

= E

[
T∑
t=1

∑
x∈X

(
I{xAt =x} − I{xπtt =x}

)
`t(x, πt(x))

]

= E

[
T∑
t=1

∑
x∈X

E
[(

I{xAt =x} − I{xπtt =x}

)
`t(x, πt(x))

∣∣∣FT ]]

= E

[
T∑
t=1

∑
x∈X

`t(x, πt(x))E
[(

I{xAt =x} − I{xπtt =x}

) ∣∣∣FT ]]

≤ E

[
T∑
t=1

‖`t‖∞
∥∥∥E [(I{xAt =x} − I{xπtt =x}

) ∣∣∣FT ]∥∥∥
1

]

= E

[
T∑
t=1

‖`t‖∞ ‖ut − vt,t‖1

]

≤ E

[
T∑
t=1

‖ut − vt,t‖1

]
, (2)

where us = E
[
I{xAs =x}

∣∣FT ] is the distribution of xAs for s ≤ t and vs,t = E
[
I{xπts =x}

∣∣∣FT ] is the

distribution of xπts for s ≤ t.5 Let Et be the event of a policy switch at time t. From inequality

‖πt−k − πt‖∞,1 ≤ ‖πt−k − πt−k+1‖∞,1 + · · ·+ ‖πt−1 − πt‖∞,1 ≤ 2

t∑
s=t−k+1

I{Es} ,

and Lemma 12, we get that

E
[
‖πt−k − πt‖∞,1

]
≤ 2

√
log |Π|
T

k . (3)

5Notice that FT contains only policies, which are independent of the state variables.
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Let Pπt = P (π,mt). We have that

E
[
‖ut − vt,t‖1

]
= E

[∥∥ut−1P
πt−1

t−1 − vt−1,tP
πt
t−1

∥∥
1

]
= E

[∥∥ut−1P
πt−1

t−1 − ut−1P
πt
t−1 + ut−1P

πt
t−1 − vt−1,tP

πt
t−1

∥∥
1

]
≤ E

[∥∥ut−1P
πt−1

t−1 − ut−1P
πt
t−1

∥∥
1

+
∥∥ut−1P

πt
t−1 − vt−1,tP

πt
t−1

∥∥
1

]
≤ E

[
‖πt−1 − πt‖∞,1 + e−1/τ ‖ut−1 − vt−1,t‖1

]
≤ E

[
‖πt−1 − πt‖∞,1 + e−1/τ (

∥∥ut−2P
πt−2

t−2 − ut−2P
πt
t−2

∥∥
1

+
∥∥ut−2P

πt
t−2 − vt−2,tP

πt
t−2

∥∥
1
)
]

≤ E
[
‖πt−1 − πt‖∞,1 + e−1/τ ‖πt−2 − πt‖∞,1 + e−2/τ ‖ut−2 − vt−2,t‖1

]
≤ . . .

≤
t∑

k=0

e−k/τE
[
‖πt−k − πt‖∞,1

]
+ e−t/τ ‖u0 − v0,t‖1

≤
t∑

k=0

2e−k/τ
√

log |Π|
T

k + 0 By (3)

≤ 2

√
log |Π|
T

τ2 , (4)

where we have used the fact that ‖u0 − v0,t‖1 = 0, because the initial distributions are identical. By
(4) and (2), we get that

E [BT (A)] ≤ 2τ2
T∑
t=1

√
log |Π|
T

= 2τ2
√

log |Π|T .

What makes the analysis possible is the fact that all policies mix no matter what transition kernel is
played by the adversary.

Proof of Theorem 1. The result is obvious by Lemmas 9 and 10.

A.2 Proof of Corollary 2

Proof of Corollary 2. Let LT (π) = E
[∑T

t=1 `t(x
π
t , π)

]
be the value of policy π. Let uπ,t(x) =

P (xπt = x). First, we prove that the value function is Lipschitz with Lipschitz constant τT . The
argument is similar to the argument in the proof of Lemma 10. For any π1 and π2,

|LT (π1)− LT (π2)| =

∣∣∣∣∣E
[
T∑
t=1

`t(x
π1
t , π1)−

T∑
t=1

`t(x
π2
t , π2)

]∣∣∣∣∣ ≤ 2

∣∣∣∣∣
T∑
t=1

‖uπ1,t − uπ2,t‖1 ‖`t‖∞

∣∣∣∣∣
≤ 2

∣∣∣∣∣
T∑
t=1

‖uπ1,t − uπ2,t‖1

∣∣∣∣∣ .
With an argument similar to the one in the proof of Lemma 10, we can show that ‖uπ1,t − uπ2,t‖1 ≤
τ ‖π1 − π2‖∞,1. Thus, |LT (π1)− LT (π2)| ≤ τT ‖π1 − π2‖∞,1. Given this and the fact that for
any policy π ∈ Π, there is a policy π′ ∈ C(ε) such that ‖π − π′‖∞,1 ≤ ε, we get that

E [RT (OMDP, π)] ≤ (4 + 2τ2)
√
T logN (ε) + logN (ε) + τT ε .
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B Proof of Theorem 7

Let xt,l and at,l denote the state and the action at step l of episode t. Let xπt,l denote the state at stage
l of round t if we run policy π. As c(x, a) = c(n(x), a), we can write that

RT (π) =

T∑
t=1

L∑
l=1

ct(x
πt
t,l, πt)−

T∑
t=1

L∑
l=1

ct(x
π
t,l, π) .

We have the following regret decomposition:

RT (π) = BT + CT ,

where

BT =

T∑
t=1

L∑
l=1

(
ct(x

πt
t,l, πt)−Qt(s, πt)/L

)
, CT =

T∑
t=1

L∑
l=1

(
Qt(s, πt)/L− ct(xπt,l, π)

)
.

We bound these terms in the following sections.

B.1 Bounding E [CT ]

First, we prove the following lemma.
Lemma 13. Let π be a policy. Let x = (s, a0, n1, a1, . . . , nl−1, al−1, nl). We have that∑

x∈Xl

π(a0|s) . . . π(al−1|nl−1) ≤ |G| .

Proof. For any graph g, ∑
x:g∈C(x)

π(a0|s) . . . π(al−1|nl−1) = 1 .

We get the result by summing over the graphs.

Lemma 14. We have that

E [CT ] ≤ L |G|
√
T log

|A|
2

+ L
√

8T log(2T ) + L .

Proof. For any step l during an episode t, we have that Qt(x
π
t,l, π) = ct(x

π
t,l, π) +

E
[
Qt(x

π
t,l+1, πt) |xπt,l

]
. Thus,

Qt(x
π
t,l, π) = ct(x

π
t,l, π) + E

[
Qt(x

π
t,l+1, πt) |xπt,l

]
− E

[
Qt(x

π
t,l, πt) |xπt,l−1

]
+ E

[
Qt(x

π
t,l, πt) |xπt,l−1

]
−Qt(xπt,l, πt) +Qt(x

π
t,l, πt) .

For episode t,
L∑
l=1

(
Qt(x

π
t,l, π)−Qt(xπt,l, πt)

)
=

L∑
l=1

ct(x
π
t,l, π)

+

L∑
l=1

(
E
[
Qt(x

π
t,l+1, πt) |xπt,l

]
− E

[
Qt(x

π
t,l, πt) |xπt,l−1

])
+

L∑
l=1

(
E
[
Qt(x

π
t,l, πt) |xπt,l−1

]
−Qt(xπt,l, πt)

)
= −Qt(s, πt) +

L∑
l=1

ct(x
π
t,l, π)

+

L∑
l=1

(
E
[
Qt(x

π
t,l, πt) |xπt,l−1

]
−Qt(xπt,l, πt)

)
.
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Thus,

T∑
t=1

L∑
l=1

(
Qt(s, πt)/L− ct(xπt,l, π)

)
=

T∑
t=1

L∑
l=1

(
Qt(x

π
t,l, πt)−Qt(xπt,l, π)

)
+

L∑
l=1

(
E
[
Qt(x

π
t,l, πt) |xπt,l−1

]
−Qt(xπt,l, πt)

)
(5)

Let µπ,t,l(.) be the state distribution at stage l of round t under policy π. For x =
(s, a0, n1, a1, . . . , nl), we can write

µπ,t,l(x) = π(a0|s) I{gt(s,a0)=n1} . . . π(al−1|nl−1)I{gt(nl−1,al−1)=nl} .

Introduce the notation

π(a0...(l−1)|x) = π(a0|s) . . . π(al−1|nl−1) , I{gt(n1...l|x)} = I{gt(s,a0)=n1} . . . I{gt(nl−1,al−1)=nl} .

We have that

E

[
T∑
t=1

L∑
l=1

(Qt(x
π
t,l, πt)−Qt(xπt,l, π))

]
=

T∑
t=1

L∑
l=1

∑
x∈Xl

µπ,t,l(x)(Qt(x, πt)−Qt(x, π))

=

L∑
l=1

∑
x∈Xl

T∑
t=1

µπ,t,l(x)(Qt(x, πt)−Qt(x, π))

=

L∑
l=1

∑
x∈Xl

T∑
t=1

π(a0...(l−1)|x)I{gt(n1...l|x)}(Qt(x, πt)−Qt(x, π))

=

L∑
l=1

∑
x∈Xl

π(a0...(l−1)|x)

T∑
t=1

I{gt(n1...l|x)}(Qt(x, πt)−Qt(x, π)) ,

where the last step follows from the fact that π(a0...(l−1)|x) does not depend on time. Thus, we can
write

E

[
T∑
t=1

L∑
l=1

(Qt(x
π
t,l, πt)−Qt(xπt,l, π))

]
≤
√
T log

|A|
2

L∑
l=1

∑
x∈Xl

π(a0...(l−1)|x)

≤ L |G|
√
T log

|A|
2
, (6)

where the first step follows from the regret bound for the EWA algorithm [16] and the second step
follows from Lemma 13.

Finally, by an application of Azuma’s inequality, we obtain that

L∑
l=1

(
E
[
Qt(x

π
t,l, πt) |xπt,l−1

]
−Qt(xπt,l, πt)

)
≤ L

√
8T log(2T ) + L . (7)

From (5),(6),(7), we obtain the desired result:

E

[
T∑
t=1

L∑
l=1

(Qt(s, πt)/L− ct(xπt,l, π))

]
≤ L |G|

√
T log

|A|
2

+ L
√

8T log(2T ) + L .

B.2 Bounding E [BT ]

Lemma 15. We have that E [BT ] ≤ L
√

8T log(2T ) + L.
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Proof. We have that Qt(xπtt,l, πt) = E
[
ct(x

πt
t,l, πt) +Qt(x

πt
t,l+1, πt)

∣∣∣xπtt,l]. Thus,

Qt(x
πt
t,l, πt)− E

[
Qt(x

πt
t,l, πt)|x

πt
t,l−1

]
= E

[
ct(x

πt
t,l, πt)

∣∣∣xπtt,l]
+ E

[
Qt(x

πt
t,l+1, πt)|x

πt
t,l

]
− E

[
Qt(x

πt
t,l, πt)|x

πt
t,l−1

]
.

For episode t,

L∑
l=1

(
Qt(x

πt
t,l, πt)− E

[
Qt(x

πt
t,l, πt)|x

πt
t,l−1

])
=

L∑
l=1

E
[
ct(x

πt
t,l, πt)

∣∣∣xπtt,l]
+

L∑
l=1

(
E
[
Qt(x

πt
t,l+1, πt)|x

πt
t,l

]
− E

[
Qt(x

πt
t,l, πt)|x

πt
t,l−1

])
= −Qt(s, πt) +

L∑
l=1

E
[
ct(x

πt
t,l, πt)

∣∣∣xπtt,l] .
Thus,

T∑
t=1

L∑
l=1

(
E
[
ct(x

πt
t,l, πt)

∣∣∣xπtt,l]−Qt(s, πt)/L) =

T∑
t=1

L∑
l=1

(
Qt(x

πt
t,l, πt)− E

[
Qt(x

πt
t,l, πt)|x

πt
t,l−1

])
.

Thus, by an application of Azuma’s inequality, we obtain that

E

[
T∑
t=1

L∑
l=1

(ct(x
πt
t,l, πt)−Qt(s, πt)/L)

]
≤ L

√
8T log(2T ) + L .

Proof of Theorem 7. The result is obvious by Lemmas 14 and 15.
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