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In this document, we give an example of a case where direct restriction of the predictive distribution
of an exchangeable matrix yields a distribution over exchangeable matrices, and we give expanded
details of the inference methods described in the main paper.

1 Direct restriction of the predictive distribution

Example 4 in the main paper gives an example of a situation where restricting the predictive distri-
bution of an exchangeable model does not yield an exchangeable model. This example can be ex-
tended to general exchangeable matrices based on CRMs where we restrict the number of non-zero
features, since we can interpret the probabilities of obtaining a non-zero entry as being described
by a Bernoulli process. However, other forms of restriction can yield exchangeable matrices, as the
following example shows:

Example 5 (Restricting the row sums in the infinite gamma-Poisson process). Consider restricting
the predictive distribution of the infinite gamma-Poisson distribution such that each row sums to
S. In the predictive distribution for the iGaP, for each previously observed feature &, we sample an
element X,,;; ~ NegBinom(mg, n/(n+1)). We then sample a value N, ~ NegBinom(d,n/(n+1))
and assign N, counts to new features according to a Chinese restaurant process. If we restrict this
model such that each row sums to 1, we have:
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In other words, the infinite gamma-Poisson process restricted to sum to one is a Chinese restaurant
process. If we restrict the iGaP to sum to S, we have S samples per data point from a Chinese
restaurant process.

2 Metropolis Hastings proposals for Z

Our inference algorithm supplements the Gibbs sampling moves described by Equations 9 and 10 in

the main paper with Metropolis Hastings steps. These steps allow us to propose larger moves, which
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can improve mixing. Let z;” be the value of the ¢th row of Z at iteration . We propose a new row
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