
Appendix

A Proof of Theorem 1

This theorem can be understood as the extension of Proposition 2 in [9]. We follow the proof policy
of that paper: Define Q(y|x) as

Q(y|x) := log(P (y|x)/P (0|x)),
for any y = (y

1

, . . . , y

p

) 2 Yp given x where 0 indicates a zero vector (The number of zeros vary
appropriately in the context below). For any y, also denote ¯y

s

:= (y

1

, . . . , y

s�1

, 0, y

s+1

, . . . , y

p

).

Now, consider the following general form for Q(y|x):
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since the joint distribution on Y given X has factors of size k at most. It can then be seen that

exp(Q(y|x)�Q(

¯y
s

|x)) = P (y|x)/P (

¯y
s

|x)

=

P (y

s

|y
1

, . . . , y
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, y
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, . . . , y

p

, x)
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1

, . . . , y

s�1

, y

s+1

, . . . , y

p

, x)

, (13)

where the first equality follows from the definition of Q, and the second equality follows from some
algebra. Now, consider simplifications of both sides of (13). Given the form of Q(y|x) in (12), we
have

Q(y|x)�Q(

¯y
1

|x) = (14)

y
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G

1
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p

X
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, x) + . . .+
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.

Also, given the exponential family form of the node-conditional distribution specified in the theorem,

log
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Setting y

t

= 0 for all t 6= s in (13), and using the expressions for the left and right hand sides in
(14) and (15), we obtain,
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, x)

= E

s

(0, x)(B
s

(y

s

)�B
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Setting y

r

= 0 for all r 62 {s, t},

y
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s
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Combining these two equations yields
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Similarly, from the same reasoning for node t, we have
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and at the same time,

y

s

y
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=
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Therefore, from (16) and (17), we obtain
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=
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Since (18) should hold for all possible combinations of y
s

, y
t

and x, for any fixed y
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6= 0,
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where ✓

st

(·) is a function on x. Plugging (19) back into (17),
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More generally, by considering non-zero triplets, and setting y

r

= 0 for all r 62 {s, t, u}, we obtain,

y

s

G

s

(y

s

, x) + y

s

y

t

G

st

(y

s

, y

t

, x)

+ y

s

y

u

G

su

(y

s

, y

u

, x) + y

s

y

t

y

u

G

stu

(y

s

, y

t

, y

u

, x)

=E

s

(0, y
t

,0, y
u

,0, x)(B
s

(y

s

)�B

s

(0))

+ (C

s

(y

s

)� C

s

(0)),

so that by a similar reasoning we can obtain
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More generally, we can show that
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. . . y
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Thus, the k-th order factors in the joint distribution as specified in (12) are tensor products of
(B

s

(y

s

)�B

s

(0)), thus proving the statement of the theorem.

B Proof of Theorem 3

B.1 Conditions

A key quantity in the analysis is the Fisher Information matrix, Q⇤
= r2

`

�

✓⇤
;Z
�

, the Hessian
of the node-conditional log-likelihood where the reference node s should be understood implicitly.
We use S = {(s, t) : t 2 N(s)} to denote the true neighborhood of node s, and S

c to denote its
complement. Similarly, we also use T to denote non-zero element of ✓x, and T

c for its complement.
Q

⇤
SS

indicates d
y

⇥ d

y

sub-matrix indexed by S where d

y

is the maximum node degree. Q⇤
TT

can
be defined in a similar way, and so on. Our conditions mirror those in [10]:
Condition 1 (Dependency condition). There exists a constant ⇢

min

> 0 such that
min{�

min

(Q

⇤
SS

),�

min

(Q

⇤
TT

)} � ⇢

min

so that the sub-matrix of Fisher Information matrix cor-
responding to true neighborhood has bounded eigenvalues. Moreover, there exists a constant
⇢

max

< 1 such that �
max

(

bE
⇥

[Y

V \s;X][Y\s;X]

T

⇤

)  ⇢

max

.

These condition can be understood as ensuring that variables do not become overly dependent. We
will also need an incoherence or irrepresentable condition on the Fisher information matrix as in
[13].
Condition 2 (Incoherence condition). There exists a constant ↵ > 0, such that
max

�

max

t2S

c kQ⇤
tS

(Q

⇤
SS

)

�1k
1

, max

v2T

c kQ⇤
vT

(Q

⇤
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)

�1k
1

 

 1� ↵.
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This condition, standard in high-dimensional analyses, can be understood as ensuring that irrelevant
variables do not exert an overly strong effect on the true neighboring variables.

For notational simplicity, let Y 0 be the random vector including all random variables Y as well as
covariates X , and G

00
= (V

00
, E

00
) be the graph corresponding to the combined variables X and

Y . By Theorem 1 and the the node-conditional distributions specified in (10), the joint distribution
P (X,Y ) and the node-conditional distributions should have the form:

P (Y

0
; ✓) = exp

⇢

X

s2V

00
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s

B

s

(Y
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s

) +

X
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✓
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C
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�

✓

�

�

, (20)

P (Y

0
s

|Y 0
V
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⇢

B

s
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0
s
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s

(Y

0
s

)�D

s

(⌘)

�

(21)

where ⌘ = ✓

s

+

P

t2V

00\s ✓st Bt

(Y

0
t

).

The following two conditions are on the log-partitions of (20) and (21):

Condition 3. The log-partition function A(·) of the joint distribution of P (X,Y ) (20) satisfies:
For all s 2 V [ V

0, (i) there exist constants 

m

, 
v

such that the first and the second moment
satisfy E[Y 0

s

]  

m

and E[Y 02
s

]  

v

, respectively. Additionally, we have a constant 
h

for which
max

u:|u|1

@

2

A(✓)

@✓

2

s

�

{✓⇤
s

+ u, ✓

⇤}
�

 

h

, and (ii) for scalar variable ⌘, we define a function which
is slightly different from (5):

¯

A

s

(⌘; ✓) := log

Z

Y0p
exp

n

⌘B

s

(Y

0
s

)

2

+

X

s2V

00

✓

s

B
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✓
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)

o

,

(22)

where ⌫ is an underlying measure with respect to which the density is taken. Then, there exists a
constant 

h

such that max

u:|u|1

@

2

¯

A

s

(⌘;✓

⇤
)

@⌘

2

(u)  

h

.

Condition 4. For all s 2 V , the log-partition function D(·) of the node-wise conditional dis-
tribution (21) satisfies: there exist functions 

1

(n, p) and 

2

(n, p) (that depend on the expo-
nential family) such that, for all feasible pairs of ✓ and X , |D00

(a)|  

1

(n, p) where a 2
⇥

b, b+4

2

(n, p)max{log n, log p}
⇤

for b := ✓

s

+ h✓\s, XV

00\si. Additionally, |D000
(b)|  

3

(n, p)

for all feasible pairs of ✓ and X . Note that 
1

(n, p),
2

(n, p) and 

3

(n, p) are functions that might
be dependent on n and p, which affect our main theorem below.

Conditions 3 and 4 are the key technical components enabling us to generalize the analyses in
[11, 12, 13] to the general GLM case.

Armed with the conditions above, we can show that the random vectors Y given X following the
conditional graphical model distribution in (10) are suitably well-behaved (the proof can be trivially
extended from [10]):

Proposition 1. Suppose Y is a random vector with the distribution specified in (10). Further, we
assume that the node-conditional distribution of X

u

has the exponential family form (6). Then, for
�  min{2

v

/3,

h

+ 

v

}, and some constant c > 0,

P

✓
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n

n

X
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B

s

�

Y

(i)

s

�

2 � �

◆
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�
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2

�
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✓

1

n

n

X

i=1

B

u

�

X

(i)

u

�

2 � �

◆

 exp

�

�c n �

2

�

.

Furthermore, For any positive constant �, and some constant c > 0,

P

⇣

|B
s

(Y

s

)| � � log ⌘

⌘

 c⌘

��

, and P

⇣

|B
u

(X

u

)| � � log ⌘

⌘

 c⌘

��

.

This proposition plays a key role in the proof of sparsistency result below.
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B.2 Proof of Theorem 3

Since two regularizers in the optimization problem (11) separately concern two distinct sets of pa-
rameters, the subgradient optimality condition from the convex objective can be written as

r`(

b✓;Z) +

2

4

0

�

x,n

b

Z

x

�

y,n

b

Z

y

3

5

= 0, (23)

where bZx is a subgradient vector corresponding to the parameter ✓x; if b✓
si

6= 0, then the corre-
sponding element in bZx has sign(

b

✓

si

), and its absolute value is smaller than 1 otherwise. bZy is
defined in a similar way. In the high-dimensional regime with p, q � n, the objective function is not
necessarily strictly convex, as a result, it might be the case that there are multiple optimal solutions
satisfying (23). Nonetheless, we can complete the proof simply by using the primal-dual witness
techniques used in the several past works [13, 25]; We only need to show the strict dual feasibility
holds with high probability, for the optimal parameters solving the optimization problem with the
knowledge of unknown support set.

In order to show the dual feasibility holds, i.e., k bZxk1 < 1 and k bZyk1 < 1 with high probability,
we rewrite a subgradient condition (23) into a form easier to analyze:

r2

`(✓⇤
;Z)(

b✓ � ✓⇤
) +

2

4

0

�

x,n

b

Z

x

�

y,n

b

Z

y

3

5

=

2

4

W

n

1

W

n

x

W

n

y

3

5

+

2

4

R

n

1

R

n

x

R

n

y

3

5

, (24)

where W

n represented as the vector form in the right-hand side is defined as �r`(

b✓;Z), and
similarly R

n is the remainder after the coordinate-wise application of the mean value theorems;
R

n

j

= [r2

`(✓⇤
;Z) � r2

`(

¯✓
(j)

;Z)]

T

j

(

b✓ � ✓⇤
), for some ¯✓

(j) on the line between b✓ and ✓⇤, and
with [·]T

j

being the j-th row of a matrix.

In the sequel, we provide three lemmas that control the right-hand side of (24):
Lemma 1. Suppose that we set �

x,n

and �

y,n

to satisfy:

�

x,n

� 8(2� ↵)

↵

p



1

(n, p)

4

r

log q

n

, �

y,n

� 8(2� ↵)

↵

p



1

(n, p)

4

r

log p

n

and

max{�
x,n

,�

y,n

}  4(2� ↵)

↵



1

(n, p)

2

(n, p)

4

,

for some constant 
4

 min{2
v

/3, 2

h

+ 

v

}. Suppose also that n � 8

2

h



2

4

(log p + log q). Then,
given the mutual incoherence parameter ↵ 2 (0, 1], and p

0
:= max{n, p+ q},

P

✓

2� ↵

�

x,n

kWn

x

k1  ↵

4

,

2� ↵

�

y,n

kWn

y

k1  ↵

4

◆

� 1� c

1

p

0�2 � exp(�c

2

n)� exp(�c

3

n). (25)

Lemma 2. Suppose that
p

d

x

+ d

y

max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

 ⇢

2

min

72⇢

max



3

(n,p) log p

0 and

kWnk1  �

n

4

. Then, we have

P

✓

kb✓
S

� ✓⇤
S

k
2

+ kb✓
T

� ✓⇤
T

k
2

 9

⇢

min

max

�

p

d

x

�

x,n

,

p

d

y

�

y,n

 

◆

� 1� c

1

p

0�2

,

for some constant c
1

> 0.

Lemma 3. If
max

�

d

x

�

2

x,n

,d

y

�

2

y,n

 

min{�
x,n

,�

y,n

}  ⇢

2

min

1296⇢

max



3

(n,p) log p

0
↵

2�↵

,
p

d

x

+ d

y

max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

 ⇢

2

min

40⇢

max



3

(n,p) log p

0 , and kWnk1  �

n

4

, then we have

P

✓

kRnk1
min{�

x,n

,�

y,n

}  ↵

4(2� ↵)

◆

� 1� c

1

p

0�2

,

for some constant c
1

> 0.

13



Armed with these lemmas, the proof of Theorem 3 is straightforward: Consider the choice of regu-
larization parameters

�

x,n

=

8(2� ↵)

↵

p



1

(n, p)

4

r

log q

n

, and �

y,n

=

8(2� ↵)

↵

p



1

(n, p)

4

r

log p

n

.

Then for n � max

n

4



1

(n,p)

2

(n,p)

2



4

,

16

2

h



2

4

o

log p

0, the conditions of Lemma 1 are satisfied, hence
(25) holds with high probability. Moreover, given (25) holds, with a sufficiently large sample size
n � L

0 � 2�↵

↵

�

4

(d

x

+ d

y

)

2



1

(n, p)

3

(n, p)

2

(log p + log q)(log p

0
)

2 for some constant L0
> 0, the

conditions of Lemma 2 and 3 are also satisfied, and therefore, the resulting statements in Lemma 2
and 3 also hold with high probability.

Strict dual feasibility. By some algebra, we obtain

�

x,n

b

Z

x

T

c

= Q

⇤
T

c

T

(Q

⇤
TT

)

�1

[�W

n

T

+R

n

T

� �

x,n

b

Z

x

T

] +W

n

T

c

�R

n

T

c

�

y,n

b

Z

y

S

c

= Q

⇤
S

c

S

(Q

⇤
SS

)

�1

[�W

n

S

+R

n

S

� �

y,n

b

Z

y

S

] +W

n

S

c

�R

n

S

c

.

Therefore, by Hölder’s inequality and the fact that k bZy

S

k1  1,

k bZy

S

c

k1  |||Q⇤
S

c

S

(Q

⇤
SS

)

�1|||1
hkWn

S

k1
�

y,n

+

kRn

S

k1
�

y,n

+ 1

i

+

kWn

S

c

k1
�

y,n

+

kRn

S

c

k1
�

y,n

 (1� ↵) + (2� ↵)

hkWn

y

k1
�

y,n

+

kRnk1
�

y,n

i

 (1� ↵) + (2� ↵)

hkWn

y

k1
�

y,n

+

kRnk1
min{�

x,n

,�

y,n

}

i

 (1� ↵) +

↵

4

+

↵

4

= 1� ↵

2

< 1.

Similarly, we have

k bZx

T

c

k1  (1� ↵) + (2� ↵)

hkWn

x

k1
�

x,n

+

kRnk1
min{�

x,n

,�

y,n

}

i

 (1� ↵) +

↵

4

+

↵

4

= 1� ↵

2

< 1.

Correct sign recovery. To guarantee that the support of b✓ is not strictly within the true support S, it
suffices to show that max

�

kb✓
S

� ✓⇤
S

k1, kb✓
T

� ✓⇤
T

k1
 

 ✓

⇤
min

2

. From Lemma 2, we have

max

�

kb✓
S

� ✓⇤
S

k1 , kb✓
T

� ✓⇤
T

k1
 

 kb✓
S

� ✓⇤
S

k
2

+ kb✓
T

� ✓⇤
T

k
2

 5

⇢

min

max

�

p

d

x

�

x,n

,

p

d

y

�

y,n

 

 ✓

⇤
min

2

as long as ✓⇤
min

� 10

⇢

min

max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

, which completes the proof.

B.3 Proof of Lemma 1

For the proof, we first define two events that would be useful even in the proofs of the remaining
lemmas:

⇠

1

:=

h

max

i,s,u

�

|B
s

(Y

(i)

s

)| , |B
u

(X

(i)

u

)|
 

 4 log p

0
i

and

⇠

2

:=

h

max

s,u

n

1

n

n

X

i=1

B

s

�

Y

(i)

s

�

2

,

1

n

n

X

i=1

B

u

�

X

(i)

u

�

2

o

 

4

i

.

Then, by Proposition 1, the probabilities with which each event occurs are at least

P [⇠

c

1

]  c

1

n(p+ q)p

0�4  c

1

p

0�2

,

P [⇠

c

2

]  exp(� 

2

4

4

2

h

n+ log(p+ q))  exp(�c

2

n),

as long as n � 8

2

h



2

4

log(p+ q).
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Now, for a fixed t 2 V \s, we define V

(i)

t

for notational convenience so that

W

n

t

=

1

n

n

X

i=1

B

s

(Y

(i)

s

)B

t

(Y

(i)

t

)�B

t

(Y

(i)

t

)D

0
⇣

✓

⇤
s

+

X

u2V

0

✓

⇤
su

B

u

(X

u

) +

X

t2V \s

✓

⇤
st

B

t

(Y

t

)

⌘

=

1

n

n

X

i=1

V

(i)

t

.

Conditioned on the events ⇠
1

and ⇠

2

, by the definition of the moment generating function and stan-
dard Chernoff bound technique, we obtain

P

h

1

n

n

X

i=1

|V (i)

t

| > ↵

2� ↵

�

n

4

| ⇠
1

, ⇠

2

i

 2 exp

 

� ↵

2

(2� ↵)

2

n�

2

y,n

32

1

(n, p)

4

!

,

as long as ↵

2�↵

�

y,n

4

 

1

(n, p)

2

(n, p)

4

for large enough n (For details, see the proof of Lemma
2 in [10]). By a union bound over V \s, we obtain

P

h

kWn

y

k1 >

↵

2� ↵

�

n

4

| ⇠
1

, ⇠

2

i

 2 exp

 

� ↵

2

(2� ↵)

2

n�

2

y,n

32

1

(n, p)

4

+ log p

!

.

Therefore, provided that �
y,n

� 8(2�↵)

↵

p



1

(n, p)

4

q

log p

n

, we obtain

P

h

kWn

y

k1 >

↵

2� ↵

�

y,n

4

| ⇠
1

, ⇠

2

i

 exp(�c

0
3

n).

By a very similar process for a set V 0, we have

P

h

kWn

x

k1 >

↵

2� ↵

�

x,n

4

| ⇠
1

, ⇠

2

i

 exp(�c

0
3

n),

for a �

x,n

� 8(2�↵)

↵

p



1

(n, p)

4

q

log q

n

. Finally, we have the resulting statement in the lemma by
utilizing the fact that P (A

1

or A
2

)  P (⇠

c

1

) + P (⇠

c

2

) + P (A

1

|⇠
1

, ⇠

2

) + P (A

2

|⇠
1

, ⇠

2

).

B.4 Proof of Lemma 2

In order to establish the error bound kb✓
S

� ✓⇤
S

k
2

+ kb✓
T

� ✓⇤
T

k
2

 B for some radius B, we can
extend the results in the several previous works (e.g. [26, 13]) and prove that it suffices to show
F (u

T

, u

S

) > 0 for all u
T

:= ✓
T

� ✓⇤
T

and u

S

:= ✓
S

� ✓⇤
S

s.t. ku
T

k
2

+ ku
S

k
2

= B where
F (u

T

, u

S

) := `(✓⇤
T

+ u

T

,✓⇤
S

+ u

S

;Z)� `(✓⇤
T

,✓⇤
S

;Z)

+ �

x,n

(k✓⇤
T

+ u

T

k
1

� k✓⇤
T

k
1

) + �

y,n

(k✓⇤
S

+ u

S

k
1

� k✓⇤
S

k
1

).

Note again that T is the true support set of ✓x and S is that of ✓y . Note also that for û
T

:=

b✓
T

� ✓

⇤
T

and û

S

:=

b✓
S

� ✓

⇤
S

, F (û

T

, û

S

)  0 and F (0, 0) = 0. Below we show that F (u

T

, u

S

) is strictly
positive on the boundary of the ball with radius B = M max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

where M > 0

is a parameter that we will choose later in this proof.

Some algebra yields

F (u

T

, u

S

) �
⇣

max

�

p

d

x

�

x,n

,

p

d

y

�

y,n

 

⌘

2

n

� 1

4

M + q

⇤
M

2 � 2M

o

(26)

where q⇤ is the minimum eigenvalue of r2

`(✓⇤
T

+vu

T

,✓⇤
S

+vu

S

;Z) for some v 2 [0, 1]. Moreover,
by the similar reasoning as in the case of Lemma 3 of [10], we can find the lower bound of q⇤:

q

⇤ � ⇢

min

� 4⇢

max

M

p

d

x

+ d

y

max

�

p

d

x

�

x,n

,

p

d

y

�

y,n

 



3

(n, p) log p

0
,

conditioned on ⇠

1

. From (26), we obtain

F (u

T

, u

S

) � (�

n

p
d)

2

n

� 1

4

M +

⇢

min

2

M

2 � 2M

o

,

as long as
p

d

x

+ d

y

max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

 ⇢

min

8⇢

max

M

3

(n,p) log p

0 .

Finally, we set M =

9

⇢

min

so that F (u

T

, u

S

) is strictly positive, and hence we can conclude that

kb✓
S

� ✓⇤
S

k
2

+ kb✓
T

� ✓⇤
T

k
2

 9

⇢

min

max

�

p

d

x

�

x,n

,

p

d

y

�

y,n

 

,

provided that
p

d

x

+ d

y

max

�p
d

x

�

x,n

,

p

d

y

�

y,n

 

 ⇢

2

min

72⇢

max



3

(n,p) log p

0 .

15



B.5 Proof of Lemma 3

Again from the similar reasoning as in the proof of Lemma 4 of [10], we have

|Rn

t

|  4

3

(n, p)⇢

max

log p

0 kb✓
T ;S

� ✓⇤
T ;S

k2
2

 4

3

(n, p)⇢

max

log p

0 �kb✓
S

� ✓⇤
S

k
2

+ kb✓
T

� ✓⇤
T

k
2

�

2

for all t 2 V \s{1, ..., p� 1} [ V

0. Therefore, if Lemma 2 holds, then

kRnk1  324⇢

max



3

(n, p) log p

0

⇢

2

min

max

�

d

x

�

2

x,n

, d

y

�

2

y,n

 

which is equivalent with

kRnk1
min{�

x,n

,�

y,n

}  324⇢

max



3

(n, p) log p

0

⇢

2

min

max

�

d

x

�

2

x,n

, d

y

�

2

y,n

 

min{�
x,n

,�

y,n

}  ↵

4(2� ↵)

by the assumption of the lemma.
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