A Proofs for Section 4

A.1 Proof of the Initialization Step

Proof of Theorem 4.1. Recall that x© is the top singular vector of S = % Do la,Tx*|?asa,”. As ay
are rotationally invariant random variables, wlog, we can assume that x* = e; where ey is the first
canonical basis vector. Also note that E [|(a, e1)[?aa”| = D, where D is a diagonal matrix with

Dy = ]E(LNNC(OJ)HQ‘LI] =8and D;; = E,J,NNC(OJ),[,NNC(OJ)Ha|2|b‘2} =1,Vi>1.

We break our proof of the theorem into two steps:
(1): Show that, with probability > 1 — -4 ||S — Dl < ¢/4.
(2): Use (1) to prove the theorem.

2
Proof of Step (2): We have (x°,Sx%) < ¢/4 + 3 ((xo)Tel) + 30, (x%)2 = ¢/4 +

2

2 ((XO)T el) + 1. On the other hand, since x° is the top singular value of S, by using tri-
angle inequality, we have (x°,Sx%) > 3 — c/4. Hence, (x°e;)? > 1 — ¢/2. This yields
X0 —x*||3 =2—-2(x%e)? <ec

Proof of Step (1): We now complete our proof by proving (1). To this end, we use the following
matrix concentration result from [26]:

Theorem A.1 (Theorem 1.5 of [26]). Consider a finite sequence Xj of self-adjoint independent
random matrices with dimensions n x n. Assume that E[X;] = 0 and || X;||2 < R, Vi, almost surely.
Let 0 := || 3, E[X]||2. Then the following holds Vv > 0:

1 m —m2V2
P — X;lla > <2 _ .
(Imz ||2_V> = Snexp (02+Rmu/3>

i=1

Note that Theorem A.1 assumes max; |a1¢|?||as||? to be bounded, where a1 is the first component
of a,. However, a, is a normal random variable and hence can be unbounded. We address this issue
by observing that probability that Pr(|jas||> > 2n OR |ai,|* > 2logm) < 2exp(—n/2) + 5.
Hence, for large enough n, ¢ and m > ¢n, w.p. 1 — %,

max a1 |*ac||* < 4nlog(m). (6)

Now, consider truncated random variable a, s.t. a, = ay if |a10|? < 2log(m)&||as||?> < 2n and
a, = 0 otherwise. Now, note that a, is symmetric around origin and also E[a;ca;¢] = 0,Vi # j.

Also, E[|ai¢|?] < 1. Hence, ||[E[|ay|?||ac]|?a,al]|la < 4nlog(m). Now, applying Theorem A.1
given above, we get (w.p. > 1 — 1/m?)

1 o ~ o~ 4nlog®?*(m
IS e ]~ Bl aca < T2,

: vm
4 .

Furthermore, a;, = a, with probability larger than 1 — % Hence, w.p. > 1 — —5:

4nlog®?(m)
vmo

Now, the remaining task is to show that |[E[|a} |?a,a}] — E[|a}[>asal]|ls < L

— m’

IS — Ella;*acaj)ll: <

This follows easily
by observing that E[a}aj] = 0 and by bounding E[[a}|?|a}|* — |a}|?|a}|* < 1/m by using a simple
second and fourth moment calculations for the normal distribution.

O

A.2 Proof of per step reduction in error

In all the lemmas in this section, ¢ is a small numerical constant (can be taken to be 0.01).
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Lemma A.2. Assume the hypothesis of Theorem 4.2 and let x* be as defined in (3). Then,
there exists an absolute numerical constant c such that the following holds (w.p. > 1 — 1):

|(AAT)T'A(D - 1) AT

< edist (x*,x).
2

Proof. Using (4) and the fact that ||x*|| = 1, x*Txt = 1 4+ x*7 (AAT)f1 A(D-1)ATx".
. B -1 . .

That is, [x*"x| > 1 — || (&, AAT) ||2H\/%AH2||\/% (D —I) ATx*||5. Now, using standard

bounds on the singular values of Gaussian matrices [27] and assuming m > ¢log %n we have

wp. > 1= | (5 AAT) |y < 1/(1—2/v/@)? and ||A |z < 1+ 2/v/@ Note that both the

quantities can be bounded by constants that are close to 1 by selecting a large enough ¢. Also note

that ﬁAAT converges to I (the identity matrix), or equivalently %AAT converges to 21 since the

elements of A are standard normal complex random variables and not standard normal real random
variables.

The key challenge now is to bound H (D-1)ATx* H2 by ¢y/mdist (x*,x%) for a global constant
‘|

¢ > 0. Note that since (4) is invariant with respect to ||x 5> We can assume that th H2 = 1. Note
further that, since the distribution of A is rotationally invariant and is independent of x* and xt,
wlog, we can assume that x* = e; and x* = ae; + V1 — a2ea, where o = (x*, x*).

Hence, ||(D —1) ATelui = > |lay|? |Ph ((a@y + V1 — a2ay) ay) — 1|2 = S, U,
where U, is given by,

U, def \a1l|2 }Ph ((aau +1— 0[2621) au) — 1‘2 . (7

Using Lemma A.3 finishes the proof. O

The following lemma, Lemma A.3 shows that if U, are as defined in Lemma A.2 then, the sum of
Ur,1 < ¢ < m concentrates well around E [U,] and also E [U] < ¢y/mdist (x*,x*). The proof of
Lemma A.3 requires careful analysis as it provides tail bound and expectation bound of a random
variable that is a product of correlated sub-exponential complex random variables.

Lemma A.3. Assume the hypothesis of Lemma A.2. Let Uy be as defined in (7) and let each
a1, a9, V1 < I < m be sampled from standard normal distribution for complex numbers. Then,
with probability greater than 1 — %, we have: )" | U; < ¢*m(1—a?), for a global constant ¢ > 0.

Proof of Lemma A.3. We first estimate P [U; > t] so as to:

1. Calculate E [U;] and,

2. Show that U is a subexponential random variable and use that fact to derive concentration
bounds.

Now, P [U; > t] = fg Play|(5)P [VVZ > %

lay| = s} ds, where,

def
W, =

Ph ((aau + 41— a2621> au) - 1‘ .
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o[- ¥

lay| = 8} =P UPh ((a&u + MEQI) all) — 1‘ > g

lay;| = s]

N t
P[Ph<1+a a21>1 >£ aulS}
o s

V1—a? |a21\ c\[
o alau|
cav/t }
V1 —a?

(¢2) < co’t >
S €xXp 1- ’

|| —5]

= ]P |:|(L2[| >

1—a?
where ((7) follows from Lemma A.7 and ({z2) follows from the fact that as; is a sub-gaussian random
variable. So we have:

IP’[U1>t]§/\éZ eXP(l—&)ds:eXp(l—ﬁ)/f se” 2ds—exp(1 1—Ca2)

®)
Using this, we have the following bound on the expected value of Uj:

E[Ul]:/OOIP[Ul>t]dt§/ooexp<1— _Cta2>dt§c(1—a2). 9)

0 0 1

From (8), we see that U; is a subexponential random variable with parameter c (1 — a2). Using
Proposition 5.16 from [27], we obtain:

Z U, — > om (1 - aQ)] < 2exp (_ min <c52m2 (1- a2)27 cdm (1 - a?) ))

(1 a2)2 m 1—a?
n
<2 —cd®m) < =
< exp( ¢ ) <y
So, with probability greater than 1 — 2, we have:
m
Z U < m(1—a?).
=1
This proves the lemma. O

Lemma A.4. Assume the hypothesis of Theorem 4.2 and let X be as defined in (3). Then, Vz s.t.
(z,x*) = 0, the following holds (w.p. > 1 — Ze™™): |(z,x")| < 2dist (x*,x).

Proof. Fix z such that (z,x*) = 0. Since the distribution of A is rotationally invariant, wlog
we can assume that: a) x* = e, b) x = ae; + V1 — a?ey where @ € R and o > 0 and ¢)
z = fea +1/1— | |2e3 for some 5 € C. Note that we first prove the lemma for a fixed z and then
using union bound, we obtain the result Vz € C™. We have:

[(z,x)] < (B [(e2,xT)| + /1= |B8]%|(es, x1)]. (10)
Now,

je2"x*[ = [e2” (AAT) ' A (D~ 1) ATy

1 T 1 T - T 1 T T
<5 le2 ((QmAA> I)A(DI)A e1+%|e2 AD-T)ATe|
-1
LA™Y 1 AL (D -DATe]|, + - |esTA(D — ) ATey|
~ 2m ||\ 2m , 2 2 2m ’
< 2 dist (x*,x*) + L le2” A(D-T)A" (11)
Ve ’ 2m
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where the last inequality follows from the proof of Lemma A.2.

Similarly,
jes"x"| = |es” (AAT) ' A (D ~T) ATy

1 T 1 T - T 1 T T
<5 les <<2mAA > I> AMD-I)ATe; + 5 les” A (D —1)A”e|
-1
1
T T T T
<5 || 2mAA ) - 2 JA[l, [|(D—T)ATey]|, + 5 les” A(D —T)ATe|
1
< 78dist (x*,x*) + 5 les" A(D-1T) (12)
Again, the last inequality follows from the proof of Lemma A.2. The lemma now follows by using
(10), (11), (12) along with Lemmas A.5 and A.6. O

Lemma A.5. Assume the hypothesis of Theorem 4.2 and the notation therein. Then,

le2” A(D-T)ATeq| < 9090 1—a?,

—n

with probability greater than 1 — {5e

Proof. We have:

I
WE

e2’A(D-T)ATe;

ayjasy (Ph ((O[ﬁu +v1-— 042621) a11> — 1)
lay| ab, (Ph (a lay | + V1 — azajl) - 1) ,

-~
Il
—

I
NE

N
Il
—

where a), def a9 Ph (ay;) is identically distributed to as; and is independent of |ay;|. Define the

random variable U; as:
e V1—a?dl
U, ¥ layi] ay, <Ph (1 p Yy a2l> - 1) .

alay]

Similar to Lemma A.2, we will calculate P [U; > ¢] to show that U; is subexponential and use it
to derive concentration bounds. However, using the above estimate to bound E [U;] will result in a
weak bound that we will not be able to use. Lemma 4.3 bounds E [U;] using a different technique
carefully.

V1 |a21\

HUz|>ﬂ<Pllau||am| |a |

P [la, |2 - cat } “e (1 cat )
= — e X —_——_—_—_—_—_—— s
2 Vi—a?| ™~ P V1—a?
where the last step follows from the fact that a/,, is a subgaussian random variable and hence |af,|?
is a subexponential random variable. Using Proposition 5.16 from [27], we obtain:

2,02 (1 _ 2 p)
— o c6*’m? (1 —a?) comvV1 —a
ZUl E[U]| > dmV1— « <2€xp< mln( —am = Vi

< 2exp (—céQm) < % exp (—n).

Using Lemma 4.3, we obtain:
+0)myv1—a?,

with probability greater than 1 — {5 exp(—n). This proves the lemma. O

’egTA (D — I) AT81| =

zm:Ul <(1

=1
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Proof of Lemma 4.3. Let wo = |ws| €. Then |w;|,|ws| and @ are all independent random vari-
ables. 6 is a uniform random variable over [—, 7] and |w1 | and |w,| are identically distributed with
probability distribution function:

22
p(z) = x exp -5 1{e>0}-

We have:

E[U] =E

a|wi|

'  p —if
gt (p (14 YLz o fwale —1
a|w|

Let g & Y=ol e will first calculate E [€Ph (1 + Be~")||w1], |ws|]. Note that the above

alw |
expectation is taken only over the randomness in 6. For simplicity of notation, we will drop the
conditioning variables, and calculate the above expectation in terms of 3.

) /1_ 2 —10
|’U}1| ‘w2‘eze <Ph (1+ « ‘w2|€ > _ 1)]

=E ||wi||wz]E

w1l |w2|]

1+ pFcosf —ifsinf
{(1 + Bcosh)? + 2 sin? 9}
cos + 3 +isinf
(1+p2 +2Bcos€)%.

e"Ph (1+ Be_w) = (cos 6 + isin6)

Nl

We will first calculate the imaginary part of the above expectation:

Im (E [¢”Ph (1+ Be~*)]) =E

sin _0 (13)
(1+ B2 + 2B cos ) ’

N|=

where the last step follows because we are taking the expectation of an odd function. Focusing on
the real part, we let:

F(ﬂ)d;fE cosf + 8
(1+p2 —&-26(3059)%
1 (™ cosf +

do.

- (1+52+25C089)%

Note that F'(5) : R — R and F(0) = 0. We will show that there is a small absolute numerical
constant -y (depending on §) such that:

0< 8 <y= |FE)| < (5 +0)5. (14)

We show this by calculating F”(0) and using the continuity of F(3) at 5 = 0. We first calculate
F'(B) as follows:

F’(B):i T 1 1 7(0050—1—5)(ﬁ—|—cos§)d0
21 ) (14 2 + 2B cosb)? (14 824 2Bcosh)2
1 (7 sin? 0

- _do
21 Jx (14 2 + 2B cos )2
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From the above, we see that F”(0) = 1 and (14) then follows from the continuity of F(3) at 8 = 0.
Getting back to the expected value of U, we have:

V1= a2 |wy|
[E[U]| = |E ||wi] |Jwe| F | ————— | 1 Vi—aZlwal _
a w] { el }
V1= a2 jw,|
+E |w1|w2F< o] {\/ﬁw }
alwq |
V1 —a? |ws|
w1 | |wa| F T aw| {\/ﬁ\wgl }
aTwil
V1 —a? Juy|
+ |E ||wy]| |ws| F
Jwy | Jwa] < o w] {%ﬁvzlzy}
<€) /1 m|w2|
S (=46)E ——F——— | +E 1
< <2+ ) |’LU1Hw2‘ a|w1| + |w1||w2‘ {\/Tcz}l\lwz|>’y} ’

<;+5> <1ao‘2> E [|usl’] +E
) (14 29) (”1;a2>+1@

where ((7) follows from (14) and the fact that | F'(8)| < 1 for every 5 and ({z) follows from the fact

that E [|zz |2] = 2. We will now bound the second term in the above inequality. We start with the

o0 2 52 o0 52
/ s e*Tds:—/ sd (677)
t t

2 o 2 2
=te 2 Jr/ e Tds<(t+e)e =, (16)
t

w1 [we] ]l{m"”m}] ,

alwy ]|

w1 |w2|]1{\/ﬁ|w2\> }1 ) (15)

alwr ]

following integral:

where c is some constant. The last step follows from standard bounds on the tail probabilities of
gaussian random variables. We now bound the second term of (15) as follows:

o0 t2 o0 52
E |wi]|wa| 1y 5 aZ|wy| :/ t2€_7/ s?e” T dsdt
{ aTerr 2 } 0 e
(¢1) 0 +2 ot _ _a?%4?
< t2@_7 - +tele c(1=a?) gt
et (gt
at3

< —— 4 et? T gy
/0 (vl—a2 )
o] +2
3¢ A0 >dt+e/ t’e <C-")dt
0

0%
N \/1—052/0
(¢2)

3 (C3)
< c(l—oﬂ)g SS oV1—a?

where ((7) follows from (16), ((2) follows from the formulae for second and third absolute moments
of gaussian random variables and ((3) follows from the fact that 1 — a? < §. Plugging the above
inequality in (15), we obtain:

B (U] < (14 20) (%‘“2) +oVI— a2 < (14 45)V/1— a2,

where we used the fact that « > 1 — g. This proves the lemma. O
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Lemma A.6. Assume the hypothesis of Theorem 4.2 and the notation therein. Then,

les” A(D—-TI)ATei| < émV/1— a2,

with probability greater than 1 — 1—0 e "

Proof. The proof of this lemma is very similar to that of Lemma A.5. We have:

1031 (Ph ((04511 +ayV1-— azﬁsz) au) - 1)

=l

es’ A (D-1) ATe; = i
= > laulay (Ph (aloul + @5v/T—a?) 1),

where a, def a3 Ph (a@y;) is identically distributed to ag; and is independent of |ay;| and a’,. Define
the random variable Uj as:

ef al, 1-— 2
Uy % Jay|a, (Ph {1+ 20— ) 1.
alay|

Since a}; has mean zero and is independent of everything else, we have:
E[U;] = 0.

Similar to Lemma A.5, we will calculate P [U; > t] to show that U; is subexponential and use it to
derive concentration bounds.

Uyl > t] <P |laylla
P (Ui > 1 [I e

cvl |a21| ]
t cat
=P ||ayat >Ca}<ex (1—)7
|:| 21 3l| m = p m

where the last step follows from the fact that af, and af; are independent subgaussian random vari-
ables and hence |a};a%,| is a subexponential random variable. Using Proposition 5.16 from [27], we

obtain:
52m2 (1 — a2 )
>6m\/1—a2]§2exp<—min<c m* a)’cdm ! a))

P

;UJ—E[UJ] A= adm N

< 2exp (—cézm) < % exp (—n).

Hence, we have:

<dmy1— a2,

|e3TA (D el‘

with probability greater than 1 — {5 exp(—n). This proves the lemma. O

Lemma A.7. For every w € C, we have:

IPh(1+w) — 1] < 2w

Proof. The proof is straight forward:
[Ph(l+w) =1 < [Ph(1+w) — (1 +w)|+ |w| =1 =1+ w|[ + w] < 2uw].
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B Proofs for Section 5

Proof of Lemma 5.1. For every j € [n] and i € [m], consider the random variable Z;; & @iy
We have the following:

e if j € S, then

E[Z;;] = % (m—&ﬁ arcsinxj)
2 5 %\ 2 1 %\ 4 * * 1 £\ 3
Zﬂ<16(%‘) —5 (@) +2j (%’*6(%‘) ))
2 1., o
Z;+6(xmin) )

where the first step follows from Corollary 3.1 in [17] and the second step follows from the
Taylor series expansions of v/1 — 22 and arcsin(z),

e if j ¢ S, then E[Z;;] = E[|aj|] E[|y;|] = 2 and finally,

e forevery j € [n], Z;; is a sub-exponential random variable with parameter ¢ = O(1) (since
it is a product of two standard normal random variables).

Using the hypothesis of the theorem about m, we have:

e forany j € S, P [% S Zi — (% + 5 (:U;nn)2) < O] < exp (—c(m;in)4m) <
on~¢, and

e forany j ¢ S P[LEN, Zi— (24 3 (@p)’) > 0] < exp(—clap,)'m) <
on~¢.

Applying a union bound to the above, we see that with probability greater than 1 — J, there is a
separation in the values of % S, Z;jfor j € Sand j ¢ S. This proves the theorem. O
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