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1 Chronotron learning with RSTDP, subthreshold LTD and
Hyperpolarization

1.1 Introduction

Here, we present model and scenario used to generate the capacity curves for the Chronotron. The
model for the Tempotron learning (equations (16) to (18) in the main article) is slightly modified.
The main reason is that during presentation, synaptic depression which precedes every postsynap-
tic teacher spike will be induced at every iteration. This would prevent convergence and destroys
desired system states with perfect recall. This is not a concern in the Tempotron learning, because
the teacher spike always occurs before any presynaptic activity. Therefore, the major change to the
model for the Chronotron is to add synaptic scaling acting only on the negative weights.

1.2 Model description

Spike trains are sums ofδ-pulses:

x(t) =
∑

tpre

δ(t − tpre) , y(t) =
∑

tpost

δ(t − tpost) . (1)

The synaptic current is

Isyn(t) =
∑

i

wixi(t) . (2)

As in the Tempotron, we neglect axonal and dendritic delays.The membrane potential is governed
by equation (1) of the main article, which means that we discarded the variableν from the Tempotron
model. The external current is used to deliver the teacher spikes and consists of a suprathreshold
delta pulse at the desired times. The plasticity rule (equations (3) and (4)) remains in place. Pattern
presentation and association protocol is similar to the Tempotron case. There areN presynaptic and
one postsynaptic neurons. We generateP = αN different random patterns. In each patternµ ∈ P ,
each presynaptic neuron spikes exactly once at a fixed time uniformly drawn from the interval[0, T ].
Each presynaptic activity pattern is assigned one postsynaptic spike timetµteach, at which during the
pattern presentation (associative learning) a teacher spike is induced by a suprathreshold external
current. The teacher spike time is drawn from a slightly smaller interval (see below). Learning is
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Table 1: Parameters for Chronotron learning

τU , τpre τpost Uthr Ust Ureset η γ β
10 ms 10 ms 20 mV 19.5 mV -20 mV 10−6/N 1 0.05

organized in learning blocks. During each block, each pattern is presented once, with the order of
presentation randomized for every block. The weights are updated after each pattern presentation.
Due to the considerations presented above, we introduce an additional weight decay term, which
acts only on the (currently) inhibitory synapses. We denotethe set of negative weights byW I(t).
After each learning block, the negative weights are slightly reduced proportionally to their respective
magnitude:

∆wi =

{

−βwi for wi ∈ W I(t)

0 else.
(3)

This simple form of synaptic scaling has the disadvantage that the decay depends on the number of
patterns. However, we found that the results are very insensitive to the parameterβ, which justifies
this choice.

After each learning block and after the synaptic scaling, wepresent each presynaptic pattern with-
out the teacher input and with plasticity turned off. The pattern is counted as correctly completed
if a postsynaptic spike occurs in the time window[tµteacher , t

µ
teacher + τlw], whereτlw is a param-

eter which controls the length of the learning window. Because the postsynaptic spike can occur
over a finite time window, we reduced the time interval the teacher spike times are drawn from to
[0, T − τlw] to make sure correct association can be achieved by every pattern.

We choose the length of the presentation intervalT = 200ms andτU = 10ms to match the respec-
tive parameters in the original Chronotron study [1]. The length of the learning windowτlw = 30ms
is associated to the time constants of the STDP window. From the perspective of the learning task
the Tempotron is really just a special case of the Chronotronwith a very long learning window
(tµteach ≡ 0, τlw = T ). To allow plasticity over the whole window, we seperated the time scale
of hyperpolarization from the membrane time scale, and setτpost = τν ≈ T . For the Chronotron,
the postsynaptic spike has to occur as soon as possible afterthe time of the teacher spike, which
requires a short time constant of LTP,τpost. Compared to the Tempotron, this parameter choice
sacrifices capacity for precision. The learning window we use is relatively long compared to the
millisecond (or even submillisecond) precision which is achieved with the alternative learning rules
(E-Learning, [1], ReSuMe [2], PBSNLR [3]). However, in our case the mean time difference of the
actual output spike to the teacher spike is much shorter thanthe learning window, between 2 ms and
14 ms. Higher loadsα lead to larger time mismatches (See Fig. 1). It was shown by Florian [1] that
ReSuMe and his own unoptimized I-Learning rule both reach a capacity of around 0.02, to which
our own plasticity rule is very close. With this load, the average distance of desired to actual spike
is small (≈ 2ms). We have to mention that the highly optimized E-learning rule has a much higher
memory capacity (0.2), however at the expense of biologicalplausibility.
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Figure 1: Examples of average differences in time of spike produced during recall and the teacher
spike.A shows the time differences for a low load ofα = 0.01. Here, regardless ofN the difference
converges to 2 ms.B shows the same for a load ofα = 0.04. Shown are only the time differences
for successful recall. The average difference converges toa higher value around 10 ms. The gaps at
the beginning are due to the fact that the initial weights arezero, and therefore there are no spikes
during recall.
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