1 Supplementary materials for RSC

Proof of Lemma 3.2:

Proof. Recall that Z;; = 0,[Dp]., and [©

A i _ 00, B, i D B.,:, \/7
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Proof of Lemma 3.3:

Proof. LetC = (Z70,2)'2B(Z70,2Z)'/2. 1f6; > 0,i = 1,..., N, then C = 0 since B = 0
by assumption. Let \; > ... > Ax > 0 be the eigenvalues of C. Let A € RE*X be a diagonal
matrix with its ss’th element to be \;. Let U € RE*K be an orthogonal matrix where its s’th
column is the eigenvector of C' corresponding As, s = 1,..., K. By eigen-decomposition, we have

C = UAUT. Define 2, = 02 Z(Z70,2)~/?U, then
2T, =0T (z70,2)7V*(z70,2)(z7e,2) "V PU =UTU =1
On the other hand,
2 A2T = 022(270,2)120(270,2) V22702 = 022B,270% = ..
Hence, s, s = 1,..., K are %, ’s positive eigenvalues and 27 contains .%,’s eigenvectors corre-

sponding to its nonzero eigenvalues. For part 2, notice that || 2|| = (%)1/ 2, then

gb}/'i ([ZT[S) ]ZL]LZ z’)l/QZiU
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Therefore, 2" = ZU. O

(7] =

= Z,U.

Proof of Theorem 4.1:

Proof. We extend the proof of Theorem 2 in Chung and Radcliffe [1] to the case of regularized
graph laplacian. Let H = 27 '/?A97/?. Then ||L, — %,|| < ||H — %|| + ||L. — H||. We
bound the two terms separately.

For the first term, we apply the concentration inequality for matrix:

Lemma 1.1. Ler X1, Xo, ..., X,,, be independent random N x N Hermitian matrices. Moreover,
assunme that || X; — E(X;)|| < M for all i, and put v* = || > var(X;)||. Let X = > X;. Then
forany a > 0,

a?

pr([|X —E(X)|| > a) <2Nexp (— m)

Notice that ||[H — %;|| = 27 "/*(A — )27 "/*. Let B € RN*N be the matrix with 1 in the 7j
and ji’th positions and 0 everywhere else. Let
Xij = 272 ((Aij — pij) EV) 971
_ Aij — Dij Fii
V(i +7)(Z5 + 1)




H — 2, =% X;;. Then we can apply the matrix concentration theorem on {X;;}. By similar
argument as in [[1]], we have
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1Xi51| < [(Zii +7)(2; + 1)V <

2 _ 2
S5 v *HZE(XU)HS

Take a = 1/%. By assumption 6 + 7 > 3In N + 31n(4/e), it implies a < 1. Applying
Lemma[T.T} we have
3In(4N/e)

pr(|[H = Z| = a) < 2N exp (‘ 26+ )+ 20/ +T)])
. (_31n(z;N/e))
<e/2.

For the second term, first we apply the two sided concentration inequality for each ¢, (see for example
Chung and Lu [2| chap. 2])
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2% - exp{—m
Let A = a(%;; + 7), where a is the same as in the first part.
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pr(|Dis — Zii| > N) < exp{— }
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pr(|Di; — Zis| > a(Zii + 7)) < exp{— }
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< €/2N.
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< e/2.
Note that ||L,|| < 1, therefore, with probability at least 1 — €/2, we have
L, — H|| = [|D;2ADSY? — 9712 49712
—\[L, — 9-V/2DY2L, DY2 g1 2|
= ||(1 = 27V/2DY2)L, DY2 97V 4 L (1 - D297
< 12,202 — 11|22 D2 + |12, 1 2Dy? — 1|
< a? + 2a.

Combining the two part, we have that with probability at least 1 — ¢,
||IL, — Z|| < a® + 3a < 4a,

_ /3In(4N/e)
where ¢ = T O



Proof of Theorem 4.2:

Proof. First we apply a lemma from McSherry [3]]:

Lemma 1.2. For any matrix A, let P4 denotes the projection onto the span of A’s first K left sigular
vectors. Then Pa A is the optimal rank K approximation to A in the following sense. For any rank
K matrix X, ||A — PaAl|| < ||L — X||. Further, for any rank K matrix B,

||[P4A — B||% < 8K||A — B||*. (1)

Let W € REXK pe a diagonal matrix that contains the K largest eigenvalues of L., wy > wy >

. > wg. Let A € RE*X be the diagonal matrix that contains all positive eigenvalues of .%,. Take
A L,and B =%, in Lemma then Py L, = X, W X and the previous inequality can be
rewritten as

1Pr, Ly — 23 = |X,WXT — 2,027 | < 8K || L, — 2|1
Then we apply a modlﬁed version of the Davis-Kahan theorem (Rohe et al. [4]) to .Z..

Proposition 1.3. Let S C R be an interval. Denote 2 as an orthonormal matrix whose column
space is equal to the eigenspace of £, corresponding to the eigenvalues in s (%, ) (more formally,
the column space of X is the image of the spectral projection of £ induced by As(%;)). Denote
by X the analogous quantity for Pr,_L,. Define the distance between S and the spectrum of £
outside of S as

A = min{|\ — s|; \ eigenvalue of £, N ¢ S, s € S}.

if - and X, are of the same dimension, then there is an orthogonal matrix O, that depends on 2.
and X ;, such that

2| P, Lr = 2|

HXTf %Tﬁni" AQ

Take S = (Ak/2,2), then A = Ak /2. By assumption (a) q/% < sf)‘K’ we have that
when N is sufficiently large, with probability at least 1 — e,
3In(4N/e)

A — <||L; =% <4
A —wr| <] I e

<Ak /2.

Hence wr € S. X and 2 are of the same dimension.
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holds for C' = 32+/3 with probability at least 1 — e.
For part 2, note that for any ¢,

1X7 — 270l
min{|| X2, [| 2|2}
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‘We have that
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where m = min; {min{|| X%||2, || Z7|]2}}. O

I1X; - 27015 <

Proof of Main Theorem



Proof. Recall that the set of misclustered nodes is defined as:

M= {3 #4,5.t]|C;0T —Cilla > ||C;07 —Cjlla}-

Note that Lemma 3.3 implies that the population centroid corresponding to i’th row of 2 *

Since all population centroids are of unit length and are orthogonal to each other, a simple calculation
gives a sufficient condition for one observed centroid to be closest to the population centroid:

|C;0T —Cill2 < 1/V2 = ||Ci0T — Cil|a < ||Ci0T —Cjlla VZ; # Zi.
Define the following set of nodes that do not satisfy the sufficient condition,
U = {i:||C;i0" - Cil|y > 1/V2}.
The mis-clustered nodes .# € % .

Define (Q € RNXK where the i’th row of Q is C;, the observed centroid of node 4 from k-means.
By definition of k-means, we have

X7~ Qll2 < ||X7 — 27762,
By triangle inequality,
Q= 2U0l2 = 1Q — 270l < (|1 X7 = Qll2 + [|X7 = 27 0|2 < 2||X7 = 270]|2.

We have with probability at least 1 — ¢,
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