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A Posterior drift

gt(x) = lim
∆t→0

1

∆t
E [Xt+∆t −Xt|Xt = x,Xτ = y] (1)

= lim
∆t→0

1

∆t

∫

(x′ − x) pτ−t−∆t(y|x′)p∆t(x
′|x) dx′

∫

pτ−t−∆t(y|x′)p∆t(x′|x) dx′
(2)

= lim
∆t→0

1

∆t

f(x)∆t+ Eu [pτ−t−∆t(y|x+ f(x)∆t+ u)u]

Eu [pτ−t−∆t(y|x+ f(x)∆t+ u)]
(3)

= f(x) +D lim
∆t→0

∇xEu [pτ−t−∆t(y|x+ f(x)∆t+ u)]

Eu [pτ−t−∆t(y|x+ f(x)∆t+ u)]
(4)

= f(x) +D lim
∆t→0

∇x ln {Eu [pτ−t−∆t(y|x+ f(x)∆t+ u)]} (5)

= f(x) +D∇x ln {pτ−t(y|x)} . (6)

The second line follows from the definition of the conditional density, the 3rd line from the fact that
p∆t(x

′|x) = N (x+ f(x)∆t;D∆t) and u ∼ N (0;σ2∆t). The fourth line is based on the fact that
for zero mean Gaussian random vectors with covariance S, we have E[ug(u)] = SEu[∇ug(u)].
Finally, the last line is obtained by noting that as ∆t → 0, the covariance of u vanishes.

B Kullback–Leibler optimal sparsity

B.1 The general case

We assume a collection of random variables f = {f(x)}x∈T where the index variable x ∈ T takes
values in some index set T . We will assume a prior measure denoted by P0(f) and a posterior
measure of the form

P (f) =
1

Z
P0(f) e

−U(f) (7)

where U(f) is a functional of f . The goal is to approximate P by another measure Q of the form

Q(f) = P0(f) R(fs) (8)

where the effective likelihood R depends only on a smaller, the sparse set fs = {f(x)}x∈S of
dimension m. S is not necessarily a subset of T . R will be chosen to minimize the Kullback–
Leibler divergence

KL(Q||P ) = EQ[log(Q/P )]. (9)
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We write the joint measure of f and f
S as

Q(f , fs) = Q(f |fs)Q(fs) = P0(f |fs)Q(fs), (10)

where the last equality follows from the fact that fixing the sparse set fs, R(fs) becomes nonrandom
and the dependency on the random variables f is only via P0. Hence, the KL divergence is obtained

KL(Q||P ) = lnZ +

∫

dfsQ(fs) log

(

elnR(fs)

e−E0[U(f |fs)]

)

(11)

by integrating out all variables except fs. E0[U(f |fs)] is the conditional expectation w.r.t. the prior
P0. Hence, the optimal choice for R is

R(fs) ∝ e−E0[U(f |fs)] . (12)

B.2 Gaussian random variables

If P0 is Gaussian measure and

U(f) =
1

2
f
⊤
Λf − a

⊤
f (13)

is a quadratic form, the posterior is also Gaussian. We can then further simplify the conditional
expectation (12) to

E0[U(f)|fs] =
1

2
(E0{f |fs})

⊤
ΛE0{f |fs} − a

⊤E0{f |f
s}+ C (14)

where C = 1
2 tr (Cov0{f |fs}Λ) is a constant independent of fs. This follows from the fact that for

a Gaussian measures, all joint and conditional distributions are Gaussian, E0{f |fs} is the optimal
mean square predictors of the Gaussian vector f given fs [1]: and the difference f − E0{f |fs} is a
random vector which is independent of the vector fs. Hence the conditional covariance Cov0 of f
does not depend on fs. The explicit result for this predictor is given by

E0[f |f
s] = πfs, (15)

where π = KNsK
−1
s , Ks is the kernel matrix for the sparse set, and KNs is the N × m kernel

matrix between the non-sparse and the sparse set.

For the infinite dimensional case of the form

U(f) =
1

2

∫

f2(x)Λ(x)dx−

∫

f(x)y(x)dx (16)

we use the fact that
E0[f(x)|fs] = k

⊤
s (x)(Ks)

−1
fs, (17)

so that

E0[U(f)|fs] =
1

2
f
⊤
s K

−1
s

{
∫

ks(x) Λ(x) k
⊤
s (x)dx

}

K
−1
s f − f

⊤
K

−1
s

∫

ks(x) a(x) dx. (18)
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