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A Posterior drift
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The second line follows from the definition of the conditional density, the 3rd line from the fact that
pac(r’|z) = N(z + f(x)At; DAt) and u ~ N (0; 02At). The fourth line is based on the fact that
for zero mean Gaussian random vectors with covariance S, we have Eug(u)] = SE,[V,g(u)].
Finally, the last line is obtained by noting that as At — 0, the covariance of u vanishes.

B Kullback-Leibler optimal sparsity

B.1 The general case

We assume a collection of random variables f = { f(x)}yer where the index variable © € T takes
values in some index set T. We will assume a prior measure denoted by Py(f) and a posterior
measure of the form

1
P(f) = - Ro(f) e U® (7)
where U (f) is a functional of f. The goal is to approximate P by another measure @ of the form
Q(f) = Po(f) R(f,) (8

where the effective likelihood R depends only on a smaller, the sparse set fs = {f(x)}zes of
dimension m. S is not necessarily a subset of 7. R will be chosen to minimize the Kullback—

Leibler divergence
KL(Q[|P) = Eq[log(Q/P)]. 9



We write the joint measure of f and £ as

Q(fa fs) = Q(f|fs)Q(fs) = PO(f|fs)Q(fs)’ (10)

where the last equality follows from the fact that fixing the sparse set fs, R(f;) becomes nonrandom
and the dependency on the random variables f is only via Py. Hence, the KL divergence is obtained

eln R(fs)

by integrating out all variables except f5. Eo[U(f|f;)] is the conditional expectation w.r.t. the prior
Py. Hence, the optimal choice for R is

R(f,) x e~ EolU(fI£s)] (12)

B.2 Gaussian random variables

If Py is Gaussian measure and
1
U(f) = 5fTAf —a'f (13)
is a quadratic form, the posterior is also Gaussian. We can then further simplify the conditional
expectation (12) to

BolU(F)If.] =  (BoffI£.)) T AR {FI£.} —a  Eoff]f"} +C (14)

where C' = £tr (Covo{f|f,}A) is a constant independent of f,. This follows from the fact that for
a Gaussian measures, all joint and conditional distributions are Gaussian, Eo{f|f,} is the optimal
mean square predictors of the Gaussian vector f given f; [1]: and the difference f — Eq{f|f;} is a
random vector which is independent of the vector f. Hence the conditional covariance Covg of f
does not depend on f;. The explicit result for this predictor is given by

Eo[f|f] = ~f,, (15)

where 7w = KNSKS_I, K is the kernel matrix for the sparse set, and K is the N x m kernel
matrix between the non-sparse and the sparse set.

For the infinite dimensional case of the form
1
Ue) = 5 [ Pt [ fad (16)

we use the fact that
Eo[f (2)[£,] = k{ () (K,) ™' £, (17)

so that

Eo[U(f)|f] = %ij;l {/ks(x) A(x) kj(x)da:} K] 'f —fTK;! /ks(x) a(z) dx. (18)
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