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Abstract

This supplement provides proofs of Theorem 2 and Lemmas 1-4 in the main text.

1 Proof of Lemma 1

Using the Lagrange multipliers, the function ¢* is derived by maximizing the Lagrangian defined by

L(Qv >‘) = // q(xZ:na ul:n|x1) {ln pe(wlm U1:n|x1)Rn } de:ndulzn

q(xQ:na ul:n'-rl)

+A {//Q(IZ:na ul:n‘xl)de:ndul:n - 1}

where ) is a Lagrange multiplier. We first derive the function ¢* by using the calculus of variations.
Let § := §(22.n, U1.n|21) be an arbitrary function of ., and uy.,, given ;. We consider how much
the functional £(g, \) changes when we add a small changes h¢ to the function ¢(z2.,,, u1., |21 ). For
notational convenience, we define G(h; 6, ¢, \) := L(q+3, \)!. If the function is twice differentiable
with respect to h, then we have

+ O(h?).
h=0

0
G(h;8,q,\) = G(0;0,q,\) + h - %Q(O; d,q,\)

Since the function ¢*(22.y,, u1.n|21) must satisfy that the functional is stationary with respect to
small variations in the function ¢, i.e.,

=0,

0
%g(ha 57 q, >\) he0

for any choice §. The derivative of G(h; J, ¢, A) with respect to h can be obtained by
0

—G(h;6,q,\

oY (10,4, )
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*https://sites.google.com/site/tsuyoshiueno/
"We used this notation to emphasize that G (h; 9, q, A\) is a function of h, while 4, ¢ and X are regarded as
auxiliary variables.



Substituting / into 0, we obtain the following equation:

/ 5a:gn,u1n|x1){ Po(@2:n, Uin|71){ Fon} 1+>\}:0. (S.1)

(1'21717 Ul;n|(E1)

Since the function ¢*(za.,,, u1.n|21) satisfies Eq. (S.1) for any variation (2., u1.,|21), We can
derive

q*(x2:n7u1:n|x1) = eXP[_l + A]p0($2:n,ul:n|$1){Rn}- (SZ)

The Lagrange multipliers can be solved from the constraint:
1= /q* (932:7“ Ul:n‘zl)dxlndulzn = exp [_1 + /\} //p@(xlvu ul:n|x1){Rn}dx2:ndU1:n

A=1-1n / / po(@3ms trom|71){ R} A3l (83)

By plugging Eq. (S.3) into Eq. (S.2), we can conclude

p@(xQ:na ul:n‘xl){Rn}
ff Do (xZ:'ru ul:n|x1){Rn}dx2:ndu1:n .

q*(xZ:nv ul:n|x1) =

2 Proof of Lemma 2

According to Theorem 5.9 in [6], if the following conditions

sup
0co

LSS by o )y ) — B {wm,ulz ”“’ 54

1=1 j=1

n

inf
0:10—0|>e€

>

E;f;us, |:1/J9($1,IL1) Zﬁj_lr(xj,uj')] ’ =0

i=1

oo
7T 7
]E»Tl"‘Hg/ ¢0 131,U1 E IL‘],U]

(S.5)

hold for any {0, ¢’ } € © x © and € > 0, then any sequence of 6,, such that G" (Gn) = 0 converges
to the parameter 6 in probability. It is obvious that condition (S.5) is sat1sﬁed from Assumption 7,
thus we discuss whether condition (S.4) is satisfied or not.

Let us consider a stochastic process {y; : i = {1,2, - - }} defined by

o0

= qu(gci, ui) Z 6j_i7"(l‘j, Uj).
j=i
Since the MDP given by Eq. (1) is ergodic, the stochastic process {y; } is also ergodic by the follow-

ing lemma.

Lemma S.1 [2, Proposition 6.6]
Let {x; € X : i := {1,2,---}} be a strictly stationary and ergodic stochastic process, and let
{yi : 1 ={1,2,---,}} be a stochastic process defined by

Yi = f(xiaxi-‘rla o ) )
where [ : X X X x - -+ Ris an arbitrary function. Then, the process {y;} is also ergodic.

Ty

From Assumptions 2 and 5, ’Emlwﬂg, |:w9(x17’u,1)2?11 ﬁj—lr(q;j,uj)” is bounded for any

{6,0'} € © x ©. Then, by the pointwise ergodic theorem shown in Theorem 24.1 in [1], we
obtain

1 9 L She j—1 a.s.
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where -2 denotes the convergence almost surely. The left hand side of the above equation can be
expressed as

nzz,@j o (s, ui)r (2, uy)
=

=1 7

n

*EZZﬂJ g (5, i) ( r(z;,u;) Z Z Yo(xi,u)f ir(xj,uj).
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About the second term in the right hand side of the above equation, we observe

%Z Z B g (s, wi)r (25, uy)
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where B and C denote such constants that B := sup |[¢g(z,u,0)| and C' := sup|r(x,u)| for
any x € X, u € U and 0 € O, respectively, which are guaranteed to be bounded according to
Assumptions 2 and 5. Therefore, the uniform law of large numbers of Gf; (0) is proved, i.e.,

| /\

1 n n - .
EZZB] Yo(@i, wi)r(ey,us) == ER0,, | ve(x1,u Zﬁj (@, uj) |

i=1 j=1 Jj=1

forany {0,0'} € © x O.

3 Proof of Lemma 3

Applying the Taylor series expansion to estimating equation (7) around the parameter f, we obtain

0= iiﬂjiiwé(:ﬂi,ui)'r(l'j,uj') + iiﬂjﬂl{g(xi,ui)r(zj,uj) (én - 9) +0, ( ) — 0 2) ,

i=1 j=1 i1=1 j=1
(S.6)

Here, high order terms are in total represented as O, (||é —0]|?) because of the thrice differentiable
condition for the function 7y (u|x) described in Assumptlon 3. From the assumption in Lemma 3,

the estimator 6, converges to 0: 0, =0+ op(1), thus Eq. (S.6) can be rewritten as

0= Z Z BI" g (s, ui)r (g, us) + Z Z BIT K g (s, wi)r(zj, uy) (én - 5) +o,(1).

i=1 j=i i=1 j=i
After easy calculation, we derive
-1
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S.7)

Note that (1/n) 327", >0, 77" Kg(wi, ui)r (25, u;) satisfies the law of large numbers shown in
the following lemma.

Lemma S.2

1 n n ) ) as
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The proof of Lemma S.2 just follows the proof of Lemma 2 given in Section 2, hence we omit
the proof of Lemma S.2. Lemma S.2 implies that (1/n) 37", 77, 87" Kg(ws, wi)r(wi, ui) =
A + 0,,(1). From the continues mapping theorem shown in Theorem 2.3 in [6] and Assumption 8,
the inverse of (1/n) °1 ) >0, 77" Kg(wi, ui)r(2i, u;) also converges to A~" almost surely:

-1

% Z Z BT Ky (i, ug)r(zy,uy) =A"1+0,(1). (S.8)

i=1 j=i
Substituting Eq. (S.8) into Eq. (S.7), we have

\/ﬁ(é” —0) = (A_l +OP( fzzﬁj 11/}9 (@i, wi)r(zj,u5) | +o0p (\}ﬁ)
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We now introduce the following support lemma.

Lemma S.3

IZZW* Vg, ui)r(2s,u5) > N(O, %),

1=1 j=1

d e
where — denotes the weak convergence (convergence in distribution).

Since the random variable with weak convergence is bounded in probability, Eq. (S.9) can be ex-
pressed as

Vitlh, =) = | —Z=A 303 B e wr(a )
i=1

=1 j=i

+ o0, (1 ZZﬁJ g (i, ug yr(xj,ug) | +op (;ﬁ)

=1 j=1

%\H
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1 - n n -
=~ L il wdr(as ) + (D),
hence we have proved Eq. (9) in Lemma 3. Furthermore, we can derive

Jn (én - é) ~ N (0,A"'5(AH)T).



4 Proof of Lemma 4

The partial derivative of the lower bound of the expected reward with ¢, (z2., u1.m|21), ie.,
(0/00)Fn (g5, 0), can be rewritten by

8 1 n n
597 (060 //pe' T2ins ULin|T1) gZZ (@i, wi)r(zj, uz) p dromdury,

1™

= ! sy Ulin - iy Ug iy Uy d :nd n
[ [ po@anunafer) 7 2 2 ol (e )  dec
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=1 j=1
where we have used the well-known fact [ g (u|z) g (x, u)du = 0 [5].

Let us consider a series S, defined as

—nh_rgoEZZ//pe/ T2ty Ui |T1) Y0 (T4, wi)T (25, 15 ) A2 dur .y

=1 j=1

From Assumption 1, the MDP given by Eq. (1) is ergodic for any ¢’, then the series S,, converges to
22 Z EZel,, (o1, ur)r(z;, uy)].

Now, we show that the series S, is corresponding to the partial derivative (0/00)F (g;, 0) as n goes
to co. The series S,, can be decomposed as

ZZ//pQ’ L2:m, UT: n|$1)¢0(%,uz) (I]auj)dIQ nduip

=1 j=1

=(0/90) Fn (},.9)

+ lim 72 Z //p@’ Z2:n/y Ul:n! |$1 w@ xzauz) (xj;uj)dx2 n’duln (SIO)

n’—o0 N
=1 j=n+1

In order to calculate the bound of the second term of Eq. (S.10), we introduce the following support
lemma for the covariance bound in the stochastic process with uniform mixing.

Lemma S.4 [4, Theorem 17.2.3.] Suppose that {y; : i = {---,—1,0,1,---}} is a strictly sta-
tionary process on probabilistic space (), F, P) with uniform mixing. Let f and g be measurable
functions with respect to F* __ and F oq.s» Tespectively. If f and g satisfy

E[|f["] < oo, E[lg] < oo
where p,q > 1, p+ q =1, then

E[fg] —E[f]E[g]] < 2¢(s)/PE[|f|P]"/P E [|g]*]"/*.

Here, E[-] denote the expectation over the sample sequence.

Note that from Assumption 4, the MDP satisfies geometrically uniform mixing, i.e., the mixing
coefficient decays exponentially fast: ¢(s) < Dp®, where D > 0 and p € [0, 1) are some positive
constants. Also note that, from Assumption 2 and 5, there exist some constants B and C' such
that sup |r(z,u)| = B and sup |¢pg(z,u)| = C forany z € X, u € U and § € O. From these
observations, we have

p@’(x2:n7 ul:n|x1)1/}(~) (xi; ui)r(ijrSv uj+s)dx2:ndu1:n S 2BCDPS» (Sl l)




where we have also used the fact [[ 7g(u|z)1g(z,u)du = 0. Thus, using covariance bound (S.11),
the second term of Eq. (S.10) can be bounded by

7L11—I>noo RZ Z //p@’ L2:n/, Ul: n’|x1)w0(xzauz) (xjiuj)d‘rz ndt1q,

i=1 j=n+1
< 1 —_ / ’ ’
>~ nl—r>noo7’l,z Z //p9 x2n Ul:n |1’1)¢9((E2,U2) (x]7uj)dm2 nduln
i=1 j=n+1
2BCD o 2BCD - p"t1=%  2BCD p(1 — p") noeo
< lim Z Z Pl = _ p( P") no 0.
n'—o0 .50 no = 1—p n (1-0p)
This result implies that
li 6 ETe’
im % n(qp:,0 Z 2ty (Yo (1, ur)r(zj, uj)] Zaj (S.12)

We introduce Abel’s theorem for the power series shown in the following theorem.

Theorem S.5 (Abel’s Theorem) [3, Theorem 18] Let {w; : i € {0,1,---}} be any sequence of
real or complex numbers and let

e .
) = Z w;y*
i=0

be the power series with coefficients w. Suppose that the series y .-, w; converges to S. Then

lim G(y) =S.
y—1-

From Theorem S.5, if EJOO 1 @; converges, the power series ZOO 1 converges to the result of
S j—1 aj when B approaches 1 from below. Using covariance bound (S.11) again, the convergence
of > j—1 @; can be easily shown. Thus, we derive

0
69.7:((1 0) hm Zﬁz 1ng/~u9, [W(x1,u1,0)r(z),uj)].

We now consider the series {by, := 1 (z1,u1) >7_) #77 r(zj,u5) : n = {1,2,---,}}. Since the
sequence b,, converges and |b,,| is dominated for all numbers n from Assumptions 2 and 5, we can
exchange the limit of the number n for the expectation by using Lebesgue’s dominated convergence
theorem. As a consequence it can be shown that

0 * Tyt = i—
%}'(qel,ﬁ) = hm B2, [w(arl,ul)iz_;ﬁ Yr(2i, ug)

5 Proof of Theorem 2

The marginal weighted likelihood pg (2.1, u1.,|71) can be expressed as

“ B - B
Por (T2, Urn |21) = /W@(ul\xl)Ql 11 7o (uilw) @ p(wilwi—1, wia)p(6]21)d6
=2

_ / exp [L(0)] p(0]3)d0. (5.13)



Applying the Taylor series expansion to the weighted log-likelihood L¢ (6) and the prior p(6|M),

we obtain
L0 = L6, - 50 - om0 -0+ 0, (jo -0 ) s
. R b .
p(OIM) = p(0) + (6 0,)T ==p(6IM)|  +0, (16— 6.P) (3.15)
0=0,,

where A,,(0,) = —(1/n)(9%/0000T )L (0) y_g, = —(1/n) 320, 325, 7Ky (@i, wi)r(xj, uy).
Substituting Eq. (S.14) and (S.15) into Eq. (S.13) and simplifying the results lead to the approxima-
tion of the marginal weighted likelihood as follows:

$(@3em, tren|71) = /exp {1800~ 50007 A (010 6) + -}
x {p(én) + (0 — 9n)%p(9|M) + do
~ exp[L? (6,)]p(6n]| M) / exp [~ (0~ 0) T An(0)(0  0,)] 6

— exp [Lg’(én)] (0| M) (27)™/ 2~/ ‘An(én) e

(S.16)

Here we used the fact that 6, converges to # in probability with order Op(n’l/ 2) and also that the
following equations hold:

/exp [—%(9 —0,)TALB)(0— én)] = (27)™/2p /2 ‘An(e)n)

Taking the logarithm of Eq. (S.16), we obtain

+ %mln (2m) + %lnp(éﬂM).
(S.17)

/oA 1 1 N
In p(zo.m, Urm|x1) = LZ (0n) — §mlnn ~3 In ’An(Gn)

Note that, from Assumption 1-3 and condition (d), the matrix A, () converges to A(f) :=
EZ% |:K9(l‘1, uy) Z]oil r(z;, uj)] by following the discussion in Section 3. Also, from con-
dition (c) in Theorem 2, using the continues mapping theorem shown in Theorem 2.3 in [6],
—(1/2)1In|A,,(6,)] is bounded by some constant in probability. From condition (b) in Theorem

2, Inp(6,|M) is bounded in probability. Then by ignoring terms with order less than O, (1) with
respect to the sample size n, we can be conclude the result in Theorem 2.



A Proof of Support Lemma S.3

Lett := [t;,t2, - ,t,] T € R™ be a nonzero vector, ¢ # 0. From if
T D Vol w) 30 el w) | S N, ET00) (S.18)
i=1 j=i

holds for any ¢t € R™ \ {0} as n — oo, then
Z¢9 Ti, U Z,@J r(z;,u,) —>N(O,E)
as n — oo. Thus, we attempt to prove that

tT((1/v/n) X0y vglwiyui) Y5 B r (w4, u;))t converges to the Gaussian N (0, 32).

To prove this, we use the functional central limit theorem under the uniform mixing condition shown
as below.

Lemma S.6 [4, Theorem 18.6.1] Let {z; : i = {0,1,---}} be a strictly stationary and ergodic
stochastic process on the probabilistic space (), F, P), satisfying the uniform mixing condition,
with mixing coefficient ¢ (i), and consider the stochastic process {y; : i = {0,1,- - }} defined by

Yi ‘= f(zu Tip1y )a
where f : X X X X - -+ Ris an arbitrary function. If the following conditions

> Veli) < oo (S.19)
=1

1/2
< o0 (5.20)

{|y1 E [y o] ]

hold, then

o = E[yg] + 2 Z]E[yoyk}
k=1
converges, and
1
Vno 4

Here, E[-] and E[-|z¢] denote the expectatlon wzth respect to the whole sequence of the process {x;},
and the conditional expectation with respect to the whole sequence of the process {x;} conditioned
on x, respectively.

Zyl 5 N(0,1).

Now consider to assign the following random variable to ¥;;

o0

yii=t | Wi ui) Y B (g, ug) thk wiui, )Y e u), (821
Jj=i j=t

where vy (1, u, 0) is the k-th entry of the vector ¥ (, u, ). Then,

ng:“,ugl yl + 2Z]E’L‘1N/L9/ ylyl

o0 o0
=t By | (S0 () | S0 87 (g uge) | (e, u g, )|
i — j/_
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+2ZtTE§f'~ug/ 25J r(j, u;) > B (e ug) | gy, wa g (@) |t

=141
=t %,



If the conditions in Lemma S.6 hold, we can prove Eq.(S.18). Now we see whether the conditions
(S.19) and (S.20) in Lemma S.5 are satisfied.

From Assumption 4, the MDP given Eq. (1) satisfies geometrically uniform mixing; there exist some
positive constants D > 0 and p € [0, 1) such that

sup [P(B|A) - P(B)| := ¢(s) < Dp".
BEF® A€Ft _ P(A)#£0

t+s? —o0?
It means

i\/w(i)z\/ﬁipiﬂ: M < 0.

1— p1/2
This proves the condition (S.19).

In order to show the condition (S.20), we rewrite >, Ez¢,.,, [ly1 — E™ (y1]214) [*] as

o0
ZEQ%MG, [|y1 — E7o [y1|-731:l]‘2}
=1

m oo

=S BN DY B (@, 0) {r (g, ug) — BT [r (2, uy)| 214}
=1

k=1j=1
2

=R YD BTtk wn, 0) {r (g, u) — BT [r(ag,u)| )} |
=1

=141 k=1

where E™ [-|;] denotes the conditional expectation over the whole sample sequence conditioned
on z;. Defining a constant C' = Y} | |C},| where
C = sup [Yx(z1,u1,0) {r(z;,u;) —E™ [r(x;,u;)|x]}| < oo, forany {x1,ur, zj,u;} € X x
XxUxUke{l,---,m}and § € O, we have

2

oo o] 00 2
ETe’ — E™e s 2] < o2 j—1| _ 025— < o0,
; T~ [\y1 [y1|z1.0]| } < ; j;lﬁ A2 )

which assures the condition (b). Hence, we can conclude

% Zyi = % ZZZﬁj_itm/)k(%ui,é)r(xj,uj) LN N(0,t75t).
=1

k=1i=1 j=i

The same argument as in the proof of shows that the tails of can be ignored. This observation implies

% Z Z B (s, ug, 0)r (2, ug) 4 N(0,%).

i=1 j=i
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