
A Supplementary material

A.1 Lipschitz Continuity of ∇f(X)

Lemma 2. For any X,Y ∈ Sp++,

1

b2
�X − Y �2 ≤

��X−1
− Y −1

��
2
≤

1

a2
�X − Y �2 ,

where a = min{λmin(X),λmin(Y )} and b = max{λmax(X),λmax(Y )}.

Proof. To prove the right-hand side inequality, notice that

X−1
− Y −1 = X−1(Y −X)Y −1.

Thus,
��X−1

− Y −1
��
2

=
��X−1(Y −X)Y −1

��
2

≤
��X−1

��
2
�X − Y �2

��Y −1
��
2

= λmax(X
−1)λmax(Y

−1) �X − Y �2

=
1

λmin(X)

1

λmin(Y )
�X − Y �2

≤
1

a2
�X − Y �2 .

To prove the left inequality, note first that

Y −X = X(X−1
− Y −1)Y.

Therefore,

�X − Y �2 =
��X(X−1

− Y −1)Y
��
2

≤ �X�2

��X−1
− Y −1

��
2
�Y �2

= λmax(X)λmax(Y )
��X−1

− Y −1
��
2

≤ b2
��X−1

− Y −1
��
2
.

This shows that ��X−1
− Y −1

��
2
≥

1

b2
�X − Y �2

and concludes the proof.

The function ∇f(X) = S−X−1 is Lipschitz continuous on any compact domain, since for X,Y ∈

Sp++ such that aI � X,Y � bI ,

�∇f(X)−∇f(Y )�F =
��X−1

− Y −1
��
F

≤
√
p
��X−1

− Y −1
��
2

≤

√
p

a2
�X − Y �2

≤

√
p

a2
�X − Y �F .

A.2 Proof of Theorem 1

We now provide the proof of Theorem 1.
Lemma 3. Let Θt be as in Algorithm 1 and let Θ∗

ρ be the optimal point of problem (1). Also, define

b := max
�
λmax(Θt),λmax(Θ∗

ρ)
�
, a:= min

�
λmin(Θt),λmin(Θ

∗
ρ)
�
.

Then
��Θt+1 −Θ∗

ρ

��
F
≤ max

�����1−
ζt
b2

���� ,
����1−

ζt
a2

����

� ��Θt −Θ∗
ρ

��
F
.
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Proof. By construction in Algorithm 1,

Θt+1 = ηζtρ
�
(Θt − ζt(S −Θ−1

t )
�

Moreover, as Θ∗
ρ is a fixed point of the ISTA iteration [8, Prop. 3.1], it satisfies

Θ∗
ρ = ηζtρ

�
Θ∗

ρ − ζt(S − (Θ∗
ρ)

−1)
�
.

The soft-thresholding operator ηρ(·) is a proximity operator corresponding to ρ �·�1. Since prox
operators are non-expansive [8, Lemma 2.2], it follows that:

��Θt+1 −Θ∗
ρ

��
F
=

��ηζtρ
�
Θt − ζt(S −Θ−1

t )
�
− ηζtρ

�
Θ∗

ρ − ζt(S − (Θ∗
ρ)

−1)
���

F

≤
��Θt − ζt(S −Θ−1

t )−
�
Θ∗

ρ − ζt(S − (Θ∗
ρ)

−1)
���

F

=
��(Θt + ζtΘ

−1
t )−

�
Θ∗

ρ + ζt(Θ
∗
ρ)

−1
���

F

To bound the latter expression, recall that if h : U ⊂ Rn → Rm is a differentiable mapping, with
x, y ∈ U , and cx+ (1− c)y ∈ U for all c ∈ [0, 1], then

�h(x)− h(y)� ≤ sup
c∈[0,1]

{�Jh (cx+ (1− c)y)� �x− y�}

where Jh(·) is the Jacobian of h. Define hγ : Sp++ → Rp2
by

hγ(X) = vec(X) + vec(γX−1),

where vec(·) : Rp×p → Rp2
is the vectorization operator defined by

vec(A) = (A1,, A2,, . . . , Ap,)
T

with Ai, the ith row of A. Note that for X ∈ Sp++,

∂X

∂X
= Ip2 and

∂X−1

∂X
= −X−1

⊗X−1,

where ⊗ is the Kronecker product and Ip2 is the p2 × p2 identity matrix. Then the Jacobian of hγ is
given by:

Jhγ (X) = Ip2 − γX−1
⊗X−1.

Application of the mean value theorem to hζt over Zt,c = vec(cΘt + (1− c)Θ∗
ρ), c ∈ [0, 1] yields

��hζt(Θt)− hζt(Θ
∗
ρ)
��
F
≤ sup

c

���Ip2 − ζtZ
−1
t,c ⊗ Z−1

t,c

��
2

���vec(Θt)− vec(Θ∗
ρ)
��
2

= sup
c

���Ip2 − ζtZ
−1
t,c ⊗ Z−1

t,c

��
2

���Θt −Θ∗
ρ

��
F
.

Denoting the eigenvalues of Zt,c for given values of t and c as 0 < γ1 ≤ γ2 ≤ · · · ≤ γp, the
eigenvalues of Ip2 − ζtZ

−1
t,c ⊗ Z−1

t,c are
�
1− ζt(γiγj)−1

�p

i,j=1
. By Weyl’s inequality,

γp = λmax(Zt,c)≤ max
�
λmax(Θt),λmax(Θ

∗
ρ)
�

γ1 = λmin(Zt,c)≥ min
�
λmin(Θt),λmin(Θ

∗
ρ)
�
,

and therefore

λmin

�
Ip2 − ζtZ

−1
t,c ⊗ Z−1

t,c

�
= 1−

ζt
γ2
1

≥ 1−
ζt
a2

λmax

�
Ip2 − ζtZ

−1
t,c ⊗ Z−1

t,c

�
= 1−

ζt
γ2
p

≤ 1−
ζt
b2
.

Hence,

sup
c

���Ip2 − ζtZ
−1
t,c ⊗ Z−1

t,c

��
2

�
≤ max

�����1−
ζt
b2

���� ,
����1−

ζt
a2

����

�

which completes the proof.
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It follows from Lemma 3 that Algorithm 1 converges linearly if

st(ζt) := max

�����1−
ζt
b2

���� ,
����1−

ζt
a2

����

�
∈ (0, 1), ∀t. (23)

Since the minimum of
s(ζ) = max

�����1−
ζ

a2

���� ,
����1−

ζ

b2

����

�

is at ζ = 2
a−2+b−2 , Theorem 1 follows directly from Lemma 3. It now remains to show that the

eigenvalues of the G-ISTA iterates remain bounded in eigenvalue. A more general convergence
result for strongly convex functions exists in the literature; this result is stated below.

Theorem 4. Let f be strongly convex with convexity constant µ, and ∇f be Lipschitz continuous

with constant L. Then for constant step size 0 < ζ < 2
L , the iterates of the ISTA iteration (equation

(8)), {xt}t≥0 to minimize f + g as in (4), satisfy

�xt+1 − x∗
�F ≤ max {|1− ζL| , |1− ζµ|} �xt − x∗

�F ,

which is to say that they converge linearly with rate max {|1− ζL| , |1− ζµ|}. Furthermore,

1. The step size which yields an optimal worst-case contraction bound is ζ = 2
µ+L .

2. The optimal worst-case contraction bound corresponding to ζ = 2
µ+L is given by

s(ζ) : = max {|1− ζL| , |1− ζµ|}

= 1−
2

1 + µ
L

.

Proof. See [7, 21] and references therein.

A.3 Proof of Theorem 2

In this section, the eigenvalues of Θt, ∀t are bounded. To begin, the eigenvalues of Θt+ 1
2
:= Θt −

ζt(S −Θ−1
t ) are bounded.

Lemma 4. Let 0 < a < b be given positive constants and let ζt > 0. Assume aI � Θt � bI . Then
the eigenvalues of Θt+ 1

2
:= Θt − ζt(S −Θ−1

t ) satisfy:

λmin(Θt+ 1
2
) ≥

�
2
√
ζt − ζtλmax(S) if a ≤

√
ζt ≤ b

min
�
a+ ζt

a , b+
ζt
b

�
− ζtλmax(S) otherwise

(24)

and
λmax(Θt+ 1

2
) ≤ max

�
a+

ζt
a
, b+

ζt
b

�
− ζtλmin(S).

Proof. Denoting the eigenvalue decomposition of Θt by Θt = UΓUT ,

Θt+ 1
2
= Θt − ζt(S −Θ−1

t )

= UΓUT
− ζt(S − UΓ−1UT )

= U
�
Γ− ζt(U

TSU − Γ−1)
�
UT

Let Γ = diag(γ1, . . . , γp) with γ1 ≤ · · · ≤ γp. By Weyl’s inequality, the eigenvalues of Θt+ 1
2

are
bounded below by

λi

�
Θt+ 1

2

�
≥ γi +

ζt
γi

− ζtλmax(S),

and bounded above by

λi

�
Θt+ 1

2

�
≤ γi +

ζt
γi

− ζtλmin(S)
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The function f(x) = x+ ζt
x over a ≤ x ≤ b has only one extremum which is a global minimum at

x =
√
ζt. Therefore,

min
a≤x≤b

x+
ζt
x

=

�
2
√
ζt if a ≤

√
ζt ≤ b

min
�
a+ ζt

a , b+
ζt
b

�
otherwise

,

and

max
a≤x≤b

x+
ζt
x

= max

�
a+

ζt
b
, b+

ζt
b

�
.

Since a ≤ γ1 ≤ b,

λmin(Θt+ 1
2
) ≥ γ1 +

ζt
γ1

− ζtλmax(S)

≥ min
a≤x≤b

�
x+

ζt
x

�
− ζtλmax(S)

=

�
2
√
ζt − ζtλmax(S) if a ≤

√
ζt ≤ b

min
�
a+ ζt

a , b+
ζt
b

�
− ζtλmax(S) otherwise

Similarly,

λmax(Θt+ 1
2
) ≤ γp +

ζt
γp

− ζtλmin(S)

≤ max
a≤x≤b

�
x+

ζt
x

�
− ζtλmin(S)

= max

�
a+

ζt
a
, b+

ζt
b

�
− ζtλmin(S).

It remains to demonstrate that the soft-thresholded iterates Θt+1 remain bounded in eigenvalue.

Lemma 5. Let 0 < a < b and ζt > 0. Then:

min

�
a+

ζt
a
, b+

ζt
b

�
= a+

ζt
a

if and only if ζt ≤ ab.

Proof. Under the stated assumptions,

a+
ζt
a

≤ b+
ζt
b

⇔ ζt

�
1

a
−

1

b

�
≤ b− a

⇔ ζt ≤
b− a
1
a −

1
b

⇔ ζt ≤ ab.

Lemma 6. Let A be a symmetric p× p matrix. Then the soft-thresholded matrix η�(A) satisfies

λmin(A)− p� ≤ λmin(η�(A))

In particular, A� is positive definite if λmin(A) > p�.
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Proof. Let
A := {M ∈ Mp : Mi,j ∈ {0, 1,−1}}.

For every � > 0, the matrix A� can be written as

η�(A) = A+ �1A1 + �2A2 + · · ·+ �kAk,

for some k ≤
�p
2

�
+ p where Ai ∈ A, �i > 0 and

�k
i=1 �i = �. Now let

cp := max{|λmin(M)| : M ∈ A}.

The constant cp is finite since A is a finite set. Since −A ∈ A for every A ∈ A, and since
|λmin(−A)| = |λmax(A)|, it follows that

cp = max{|λmax(M)| : M ∈ A}.

Applying the Gershgorin circle theorem [see, e.g., 12] gives cp ≤ p. Since p is an eigenvalue of the
matrix B such that Bi,j = 1 for all i, j, it follows that cp = p.

Recursive application of Weyl’s inequality gives that

λmin (η�(A)) ≥ λmin(A)− �|λmax(A1)|− · · ·− �k|λmax(Ak)|

≥ λmin(A)− cp

k�

i=1

�i

= λmin(A)− cp�.

Recall from Lemma 1 that the eigenvalues of the optimal solution to problem (1) are bounded below
by 1

�S�2+pρ . The following theorem shows that α = 1
�S�2+pρ is a valid bound to ensure that αI �

Θt+1 if αI � Θt.

Lemma 7. Let ρ > 0 and α = 1
�S�2+pρ < b�. Assume αI � Θt � b� and consider

Θt+1 = ηζtρ
�
Θt − ζt(S −Θ−1

t )
�

Then for every 0 < ζt ≤ α2, αI � Θt+1.

Proof. The result follows by combining Lemma 4 and Lemma 6. Notice first that the hypothesis
ζt ≤ α2 guarantees that

√
ζt /∈ [α, b�]. Also, from Lemma 5, we have

min

�
α+

ζt
α
, b� +

ζt
b�

�
= α+

ζt
α

since ζt ≤ α2 ≤ αb�. Hence, by Lemma 4,

λmin(Θt+ 1
2
) ≥ min

�
α+

ζt
α
, b� +

ζt
b�

�
− ζtλmax(S)

= α+
ζt
α

− ζtλmax(S).

Now, applying Lemma 6 to Θt+1 = ηζtρ(Θt+ 1
2
), we obtain

λmin(Θt+1) = λmin

�
ηζtρ(Θt+ 1

2
)
�

≥ λmin(Θt+ 1
2
)− pρζt

≥ α+
ζt
α

− ζtλmax(S)− pρζt.

We therefore have αI � Θt+1 whenever

α+
ζt
α

− ζtλmax(S)− pρζt ≥ α.
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This is equivalent to

ζt

�
1

α
− λmax(S)− pρ

�
≥ 0.

Since ζt > 0, this is equivalent to

1

α
− λmax(S)− pρ ≥ 0.

Reorganizing the terms of the previous equation, we obtain that αI � Θt+1 if

α ≤
1

λmax(S) + pρ
=

1

�S�2 + pρ
.

It remains to show that the eigenvalues of the iterates Θt remain bounded above, for all t.

Lemma 8. Let α = 1
�S�2+pρ and let ζt ≤ α2, ∀t. Then the G-ISTA iterates Θt satisfy Θt � b�I, ∀t,

with b� =
��Θ∗

ρ

��
2
+

��Θ0 −Θ∗
ρ

��
F

.

Proof. By Lemma 7, αI � Θt for every t. As αI � Θ∗ (Lemma 1),

Λ−
t := min{λmin(Θt),λmin(Θ

∗
ρ)}

2
≥ α2.

for all t. Also, since Λ+
t ≥ Λ−

t and ζt ≤ α2,

max

�����1−
ζt
b2

���� ,
����1−

ζt
a2

����

�
≤ 1.

Therefore, by Lemma 3,
�Θt −Θ∗

ρ�F ≤ �Θt−1 −Θ∗
ρ�F .

Applying this result recursively gives

�Θt −Θ∗
ρ|F ≤ �Θ0 −Θ∗

ρ�F .

Since � · �2 ≤ � · �F , we therefore have

�Θt�2 − �Θ∗
ρ�2 ≤ �Θt −Θ∗

ρ�2 ≤ �Θt −Θ∗
ρ�F ≤ �Θ0 −Θ∗

ρ�F ,

and so,
λmax(Θt) = �Θt�2 ≤ �Θ∗

ρ�2 + �Θ0 −Θ∗
ρ�F

which completes the proof.

A.4 Additional timing comparisons

This section provides additional synthetic timing comparisions for p = 500 and p = 5000. In addi-
tion, two real datasets were investigated. The “estrogen” dataset [22] contains p = 652 dimensional
gene expression data from n = 158 breast cancer patients. The “temp” dataset [6] consists of aver-
age annual temperature measurements from p = 1732 locations over n = 157 years (1850-2006).
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ρ 0.05 0.10 0.15 0.20
problem algorithm time/iter time/iter time/iter time/iter

nnz(Ω∗
ρ)/κ(Ω∗

ρ) 31.61%/42.76 19.61%/18.23 11.08%/8.13 5.02%/3.06
p = 500 glasso 28.34/11 10.91/8 7.08/7 5.57/6
n = 100 QUIC 8.33/23 1.98/13 0.96/11 0.38/10

nnz(Ω) = 3% G-ISTA 4.44/402 1.14/110 0.30/38 0.14/18
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 20.73%/6.62 3.93%/2.44 0.90%/1.49 0.13%/1.20

p = 500 glasso 7.44/6 4.53/5 3.45/4 2.62/3
n = 600 QUIC 1.08/9 0.17/7 0.06/5 0.04/5

nnz(Ω) = 3% G-ISTA 0.28/31 0.10/13 0.07/9 0.03/5
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 31.36%/46.83 19.74%/19.93 11.65%/8.95 5.45%/3.25

p = 500 glasso 28.61/11 11.27/8 7.22/7 5.34/6
n = 100 QUIC 8.47/23 2.01/13 0.73/9 0.22/7

nnz(Ω) = 15% G-ISTA 4.80/466 1.09/115 0.28/34 0.15/20
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 24.81%/9.78 6.36%/2.64 0.79%/1.28 0.03%/1.08

p = 500 glasso 8.52/6 4.59/5 3.55/4 2.54/3
n = 600 QUIC 1.56/10 0.25/7 0.05/5 0.03/5

nnz(Ω) = 15% G-ISTA 0.50/51 0.10/13 0.06/7 0.02/3

Table 2: Timing comparisons for p = 500 dimensional datasets, generated as in Section 5.1
.

ρ 0.02 0.04 0.06 0.08
problem algorithm time/iter time/iter time/iter time/iter

nnz(Ω∗
ρ)/κ(Ω∗

ρ) 26.22%/54.47 13.68%/23.74 6.36%/8.69 2.03%/2.31
p = 5000 glasso 30814.29/11 12612.85/8 9224.79/7 6184.84/5
n = 1000 QUIC 22547.70/21 3725.07/11 946.11/8 199.48/6

nnz(Ω) = 3% G-ISTA 2651.43/575 417.20/94 93.33/25 39.05/11
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 12.89%/15.18 3.23%/3.73 1.11%/1.60 0.16%/1.16

p = 5000 glasso 10307.26/7 8725.86/7 4846.58/4 3587.35/3
n = 6000 QUIC 3108.14/10 396.60/7 86.66/5 21.56/4

nnz(Ω) = 3% G-ISTA 268.28/70 50.17/14 35.67/10 28.82/8
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 26.08%/80.04 13.93%/37.12 6.91%/16.52 2.47%/3.08

p = 5000 glasso 36302.86/11 13413.57/8 9914.41/7 7408.33/6
n = 1000 QUIC 22667.29/21 4649.99/12 1329.20/9 240.25/6

nnz(Ω) = 15% G-ISTA 3952.85/849 701.57/170 176.11/45 42.46/12
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 18.65%/27.69 5.34%/7.26 0.66%/1.41 0.03%/1.09

p = 5000 glasso 13180.47/7 9052.77/7 4842.28/4 3578.05/3
n = 6000 QUIC 6600.91/12 795.46/8 59.03/5 16.10/4

nnz(Ω) = 15% G-ISTA 804.93/189 103.69/23 36.17/10 18.87/5

Table 3: Timing comparisons for p = 5000 dimensional datasets, generated as in Section 5.1.

ρ 0.15 0.30 0.45 0.60
problem algorithm time/iter time/iter time/iter time/iter

nnz(Ω∗
ρ)/κ(Ω∗

ρ) 5.29%/290.03 3.39%/88.55 2.31%/29.69 1.63%/8.96
p = 682 glasso 106.18/24 120.18/34 110.54/35 40.52/13
n = 158 QUIC 12.36/19 2.71/11 1.08/9 0.54/7

Dataset: estrogen G-ISTA 43.96/2079 11.99/595 3.23/172 1.00/53
ρ 0.2 0.4 0.6 0.8

problem algorithm time/iter time/iter time/iter time/iter
nnz(Ω∗

ρ)/κ(Ω∗
ρ) 2.02%/1075.8 1.77%/289.63 1.34%/23.02 0.22%/2.10

p = 1732 glasso 1919.64/31 2535.86/46 1144.07/22 254.14/5
n = 157 QUIC 497.47/18 103.76/13 10.16/8 2.31/7

Dataset: temp G-ISTA 1221.40/6194 183.20/819 30.01/159 1.78/10

Table 4: Timing comparisons for the real datasets described above.
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