
A Convergence of means and standard deviations

Uniform convergence of means, |η̂k − ηk|: We use a proof strategy related to that in [15], with two
important differences: (1) the statistic is an average, and not a U-statistic, (2) the kernel family is K
in (3). Given the boundedness assumptions on the kernels and coefficients defining K, the largest
change to the sum in (4) which could arise by replacing vi by v�i is 16DKm−1. By McDiarmid’s
Theorem [12], we have that with probability 1− δ,

sup
k∈K

|η̂k − ηk| ≤ EV sup
k∈K

|η̂k − ηk|+ 8DK

�
2m−1 log δ−1,

where EV is the expectation over all of {vi}
m/2
i=1 . We next seek to bound the expectation on the right

hand side. Using symmetrization,

EV sup
k∈K

|η̂k − ηk| ≤ 2EV,ρ sup
k∈K

������
2

m

m/2�

i=1

ρihk(vi)

������
=: Rm/2(K, hk),

where ρi ∈ {−1, 1}, each with probability 1/2. The term Rm/2(K, hk) is a Rademacher chaos
complexity of order one. We now bound this quantity for the family K defined in (3). Note that
a constraint on �β�1 for this family is needed, since the normalization provided by σk has been
omitted due to our bounding strategy. As a first step, rather than computing Rm/2(K, hk), we use
the larger class K� of kernels for which we omit the constraint β � 0 and require �β�1 ≤ D, since
by [3, Theorem 12(1)], Rm/2(K, hk) ≤ Rm/2(K

�, hk). This allows us to remove the absolute value
sign in the Rademacher complexity. Next, define gi ∈ N (0, 1) to be independent standard Gaussian
variables. By [3, Lemma 4], there exists an absolute constant C such that

EV,ρ sup
k∈K�



 2

m

m/2�

i=1

ρihk(vi)



 ≤ CEV,g sup
k∈K�



 2

m

m/2�

i=1

gihk(vi)



 =: CGm/2(K, hk),

where Gm/2(K) is the Gaussian complexity. We bound the latter using [3, Lemma 20]. Defining

zu :=
�m/2

i=1 gihu(vi), then supk∈K�

��m/2
i=1 gihk(vi)

�
= maxu∈{1,...,d} zu, and hence2

Gm/2(K) = Eg max
u∈{1,...,d}



 2

m

m/2�

i=1

gihu(vi)



 ≤
2C

m

√
ln dmax

u,u�

�
Eg(zu − zu�)2

=
2C

m

√
ln dmax

u,u�

�����Eg




m/2�

i=1

gi (hu(vi)− hu�(vi))




2

=
2C

m

√
ln dmax

u,u�

����
m/2�

i=1

(hu(vi)− hu�(vi))
2
≤

C
√
m

√
ln d,

where we use the boundedness of the ku in the final line, and incorporate this upper bound into C.
Combining the above inequalities yields that supk∈K |η̂k − ηk| = OP

�
m−1/2

�
.

Uniform convergence of standard deviations, |σ̂k − σk|: We begin with

sup
k∈K

|σ̂k,λ − σk,λ| = sup
k∈K

��σ̂2
k − σ2

k

��
|σ̂k,λ + σk,λ|

≤ sup
k∈K

σ
−1
k

��σ̂2
k − σ

2
k

�� ≤ C sup
k∈K

��σ̂2
k − σ

2
k

�� ,

where we used the fact that σk is bounded away from zero for all k ∈ K. Our goal now is to bound
supk∈K

��σ̂2
k − σ2

k

�� in probability. We again make use of McDiarmid’s inequality. The largest change

2The constant C below is not the same as that used earlier: we do not distinguish between such constants to
simplify notation. In the same vein, C may change from line to line in the reasoning below.
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to the sum in (7) which could arise by replacing wi by w�
i is (8)(8DK)2m−1 = 512D2K2m−1.

Thus with probability 1− δ,

sup
k∈K

��σ̂2
k − σ

2
k

�� ≤ EV sup
k∈K

��σ̂2
k − σ

2
k

��+ 16DK

�
m−1 log δ−1.

Using symmetrization,

EV sup
k∈K

��σ̂2
k − σ

2
k

�� ≤ 2EW,ρ sup
k∈K

������
4

m

m/4�

i=1

ρih
2
∆,k(wi)

������
,

where EW is the expectation over all of {wi}
m/2
i=1 . Next we note that over the range

[−8DK, 8DK] of h∆,k, the function φ(h∆,k) = h2
∆,k has Lipschitz constant 16DK (since���h2

∆,k(w1)− h2
∆,k(w2)

��� ≤ 16DK |h∆,k(w1)− h∆,k(w2)|), and h2
∆,k(0) = 0. Thus, from [3,

Lemma 12(4)],

EW,ρ sup
k∈K

������
4

m

m/4�

i=1

ρih
2
∆,k(wi)

������
≤ (2)(16DK)EW,ρ

������
4

m

m/4�

i=1

ρih∆,k(wi)

������
.

With K defined in (3), and proceeding via [3, Lemma 4, Lemma 20] as before, we get
EW,ρ

��� 4
m

�m/4
i=1 ρih∆,k(wi)

��� ≤
C√
m

√
ln d for an absolute constant C, which yields that

supk∈K |σ̂k − σk| = OP

�
m−1/2

�
.

B Supplementary experiments

We provide three sets of supplementary experiments. In Section B.1, we compare our kernel selec-
tion strategy to alternative approaches on three simple synthetic benchmark problems. In Section
B.2, we obtain the Type I error for all three datasets in the main document (Section 5), and investi-
gate the distribution over kernels chosen by the various criteria under the null hypothesis, when p and
q are identical. In Section B.3, we present two additional experiments in distinguishing amplitude
modulated audio signals.

B.1 Detecting simple differences in three synthetic benchmarks

In our first supplementary synthetic benchmark, we compared samples from two multivariate Gaus-
sian distributions with unit covariance matrices, where the means differed in one dimension only.
In the second, we again compared two multivariate Gaussians, but this time with identical means
in all dimensions, and variance that differed in a single dimension. In both cases, we considered
dimensionality over the range 21, . . . , 25. In our third experiment, we used the benchmark data of
[15]: one distribution was a univariate Gaussian, and the second was a univariate Gaussian with a
sinusoidal perturbation of increasing frequency (where higher frequencies correspond to differences
in distribution that are more difficult to detect).

We chose the base kernels {ku}
d
u=1 in (3) to be Gaussian kernels with bandwidth varying between

2−10 and 28, with a multiplicative step-size of 20.2. Results are reported in Figure 3. In the case of
p and q with differing means, all four strategies yield very similar performance, while in the case of
differing variances, max-ratio and opt have a statistically significant advantage over both max-mmd

and l2. In the sinusoidal perturbation data, the l2 strategy has by far the highest Type II error, while
the remaining methods perform similarly. We remark that while l2 achieves a higher value of the
MMD statistic in comparison to max-mmd (as the statistic is maximized over a larger set of kernels),
this results in a significant deterioration of the Type II error performance, as no constraint on the
variance σ̂k,λ is imposed.

B.2 Investigation of Type I error, and kernel choice when the null hypothesis holds

In Figure 4, we plot the Type I error for the three benchmarks considered in Section 5. In all cases,
samples from the null distribution were obtained by independently drawing each of the training and
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Figure 3: Type II error of various kernel selection strategies. Left: difference in means. Right:
difference in variances. Below: sinusoidal difference. The test level was set to α = 0.05. The error
bars depict the 95% Wald confidence interval.

test points from p or q with equal probability. The Type I error was consistently close to or slightly
below the design parameter of α = 0.05 for all methods.

In Figure 5, we plot histograms of the kernels chosen for the three benchmarks in Section 5, under
the null hypothesis. For methods l2 and opt where β was non-zero over more than one kernel,
fractional weights were assigned to the corresponding histogram bins. In the first experiment, we
observe that the kernels are not biased towards particular features when the null hypothesis holds.
In the second and third experiments, we note that under the null hypothesis, the kernel values are
not clustered at the extremes of their allowed range.

B.3 Additional music experiments

We describe two additional music experiments. In the first, two Rammstein songs were compared
(Sehnsucht vs Engel, from the album Sehnsucht), with parameters identical to the audio experiments
in the main document, besides the setting A = 0.3. In the second experiment, two passages of
contemporary jazz were compared (Christian Scott, The Eraser vs KKPD, from the album Yesterday

You Said Tomorrow). Parameters were again identical to the earlier audio experiments, besides the
setting A = 0.7. Results for both experiments are given in Figure 6.
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Figure 4: Left: Type I error for feature selection, Right: Type I error for grid of Gaussians. Below:
Type I error for AM signals (Magnetic Fields sources). Average over 5000 trials, m = n = 104.
The asymptotic test level was α = 0.05. Error bars give the 95% Wald confidence interval.

13



Feature selection

2 4 6 8 10
0

500

1000

max mmd

fr
eq

u
en

cy

kernel index d

2 4 6 8 10
0

500

1000

max ratio

fr
eq

u
en

cy

kernel index d

2 4 6 8 10
0

2000

4000

6000

l2

fr
eq

u
en

cy

kernel index d

2 4 6 8 10
0

2000

4000

6000

opt

fr
eq

u
en

cy

kernel index d

Grid of Gaussians

0 50 100
0

0.05

0.1

0.15

0.2
max mmd

fr
eq

u
en

cy

kernel index d

0 50 100
0

0.02

0.04

0.06
max ratio

fr
eq

u
en

cy

kernel index d

0 50 100
0

0.02

0.04

0.06

0.08

l2

fr
eq

u
en

cy

kernel index d

0 50 100
0

0.05

0.1

opt

fr
eq

u
en

cy

kernel index d

0 50 100
0

0.5

1
median

fr
eq

u
en

cy

kernel index d

AM signals

0 20 40
0

0.1

0.2

0.3

0.4
max mmd

fr
eq

u
en

cy

kernel index d

0 20 40
0

0.1

0.2

0.3

0.4
max ratio

fr
eq

u
en

cy

kernel index d

0 20 40
0

0.1

0.2

0.3

0.4

l2

fr
eq

u
en

cy

kernel index d

0 20 40
0

0.1

0.2

0.3

0.4

opt

fr
eq

u
en

cy

kernel index d

0 20 40
0

0.5

1
median

fr
eq

u
en

cy

kernel index d

Figure 5: Kernels chosen when the null hypothesis holds, p = q. Left: feature selection in d = 11
dimensions, Right: grid of Gaussians, with ratio � = 4. Below: AM signals (Magnetic Fields
sources), with added noise σε = 0.4. Histograms were computed over 5000 trials, m = 104.
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Figure 6: Left: AM results for Rammstein songs, Right: AM results for Christian Scott songs.
Type II error vs added noise, average over 5000 trials, m = n = 104. The asymptotic test level was
α = 0.05. Error bars give the 95% Wald confidence interval.

14


