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1 Proof of COPA’s update procedure

A bit of notation. Input space is X .
= Rd, W .

= [w1 · · ·wQ]; 1 .
= [1 · · · 1]> of the appropriate

dimension (always clear from context). Therefore, W1 =
∑
q=1,...,Q wq .

1.1 Primal and Dual Problems

Ultimate goal: we want to solve the following problem, for p (and thus (x, y)) fixed,

min
W,W1=0

F (W )
.
=

1

2

Q∑
q=1

∥∥wq − wtq∥∥2 +
C

2

∑
q 6=p

|〈wq, x〉+ ∆|2+ , (1)

where ∆ > 0 (it is ∆ = 1/(Q− 1)) in the main text). Thich can be equivalently written as

min
W,ξ

G(W, ξ)
.
=

1

2

Q∑
q=1

∥∥wq − wtq∥∥2 +
C

2

∑
q 6=p

ξ2q (2)

s.t.
Q∑
q=1

wq = 0 ∧ ξq ≥ 〈wq, x〉+ ∆, q 6= y. (3)

Here, ‘equivalently’ means that a solution W ∗ of the former optimization problem is also a solution
of the latter (and vice versa). The optimal slack variables ξ∗ are then such that

ξ∗q =
∣∣〈w∗q , x〉+ ∆

∣∣
+
, q 6= y.

To solve this optimization problem, we may introduce the Lagrangian of the previous problem:

L(W, ξ,α) = G(W, ξ)−
∑
q 6=y

αq [ξq − 〈wq, x〉 −∆]− λ>W1, (4)

where λ ∈ Rd and αq ≥ 0, for q 6= y.

Taking derivatives of L with respect to the primal variables W and ξ and making the gradient be
zero (a necessary condition on L for the primal variables to be optimal) gives:

∇wq
L = wq − wtq + αqx− λ = 0, q 6= y (5)

∇wy
L = wy − wty − λ = 0 (6)

∇ξqL = αq − Cξq (7)

Or, stated otherwise,

wq = wtq − αqx+ λ, q = 1, . . . , Q (8)

αq = Cξq, (9)
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where we have introduced a Lagrangian multiplier αy that is clamped to 0 —this allows us to lighten
the notation by not having to write q 6= y when referring to index q.

Note, otherwise, that the Karush-Kuhn-Tucker optimality conditions give that, for all q 6= y

αq [ξq − 〈wq, x〉 −∆] = 0. (10)

Summing the Q equations in (8), using the fact that
∑
q w

t
q = 0 and that we require

∑
q wq = 0 for

the new vectors that we are computing leads to:∑
q

wq =
∑
q

wtq −
∑
q

αqx−Qλ⇔ 0 = 0−
∑
q

αqx+Qλ (11)

⇔ λ =
sα
Q
x, (12)

where, we have introduced the notation sα for the sum of the αq’s:

sα
.
=

Q∑
q=1

αq = α>1. (13)

Henceforth the necessary condition (8) for W to be optimal rewrites as

wq = wtq −
(
αq −

sα
Q

)
x, q = 1, . . . , Q (14)

After some algebra, replacing W and ξ in the Lagrangian (4) thanks to Equations (9) and (14) allow
us to get the dual objective H(α) of (1):

H(α)
.
=− 1

2

(
‖x‖2 +

1

C

) Q∑
q=1

α2
q +

1

2

‖x‖2

Q

(
Q∑
q=1

αq

)2

+

Q∑
q=1

αq`
t
q (15)

where, for the sake of readability, the following notation is introduced:

`tq
.
= 〈wtq, x〉+ ∆ (16)

κ
.
=

1

C
+ ‖x‖2. (17)

Given the convexity of optimization problems (1) and (2), the solution α∗ of the convex optimization
problem

max
α

H(α) s.t. αy = 0 ∧ αq ≥ 0, q 6= y (18)

provides a solution W ∗ of (1) thanks to (14) through

w∗q = wtq −

(
α∗q −

1

Q

Q∑
q=1

α∗q

)
x, q = 1, . . . , Q. (19)

The following lemma shows that the dual objective H given by (15) is strictly concave in α: the
dual optimization problem (18) therefore admits a unique maximum α∗, and it is thus valid to refer
to α∗ as the optimal solution of (18).
Lemma 1. The dual objective H (15) is strictly concave and optimization problem (18) admits a
unique maximizer α∗.

Proof. It is sufficient to show that the Hessian of−H is strictly positive, i.e. that is only has positive
eigenvalues. Rewriting things in matrix form, and leaving the linear part of −H aside, this means it
is sufficient to show that the application

R : α 7→ R(α)
.
= α>

(
1

C
I + ‖x‖2

(
I− 1

Q
11>

))
α
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is strictly convex. Observing that(
I− 11>/Q

)2
=
(
I− 11>/Q

)
tells you that (I− 11>/Q) is a projection operator, and that its only eigenvalues are therefore 0 and
1 (see, e.g. [2]). Hence, since the only eigenvalue of I/C is obviously 1/C, the eigenvalues of the
Hessian of R are 1/C and 1 + 1/C, and R is stricly convex.

This leads to the fact that −H (adding the linear —convex— term to R) is strictly convex as well.
The domain over which −H has to be minimized is made of nonnegative constraints only and
is therefore convex: minimizing −H over the domain is therefore a (strict) convex optimization
problem and it admits a unique solution, α∗.

1.2 Families (α(I))I and (W (I))I

We now show that finding α∗ (and therefore W ∗) might be done in constant time, without recours-
ing to any optimization procedure. The idea of the proof is similar to what is encountered when
performing projection on mixed-norm balls [], and more closely related to the work of [1].

In order to state the main theorem of this section, it is handy to introduce the family (α(I))I⊆Y\{y}
of vectors defined as follows.
Definition 1 (Family (α(I))I⊆Y\{y}). The family (α(I))I⊆Y\{y} is such that the components
αq(I) of α(I) verify:

αq(I)
.
=

 1

κ

(
`tq +

‖x‖2

Q
sα(I)

)
if q ∈ I

0 otherwise
(20)

where, I .
= |I| being the size of I,

sα(I)
.
=

Q

κQ− I‖x‖2
∑
q∈I

`tq. (21)

Remark 1. A few observations may be issued regarding α(I). First, the denominator appearing
in (21) cannot be zero: it suffices to recall the definition of κ in (17) and the fact that I is striclty
lower than Q. Then, with no additional constraint on I, there is no reason for the αq(I), q ∈ I not
to be negative —as we shall see, we will later on build a set I∗ such that αq(I∗) > 0 whenever
q ∈ I∗. Finally, for p, q ∈ I, if `tp ≥ `tq then αp(I) ≥ αq(I) (this directly comes from (20)).

The family (α(I))I directly induces a family (W (I))I as follows.
Definition 2 (Family (W (I))I⊆Y\{y}). The family (W (I) = [w1(I) · · ·wQ(I)])I⊆Y\{y} is de-
duced from (α(I))I⊆Y\{y} as follows:

wq(I)
.
= wtq −

(
αq(I)− 1

Q
sα(I)

)
x, q = 1, . . . , Q. (22)

1.3 Efficient Updates

From now on, we assume we have at hand a permutation σ : {1, . . . , Q− 1} → Y\{y} such that
`tσ(1) ≥ · · · ≥ `

t
σ(Q−1).

The main theorem of this section follows.
Theorem 1. Let I∗ be the largest index I ∈ {1, . . . , Q− 1} such that

`tσ(I) +
‖x‖2

κQ− (I − 1)‖x‖2
I−1∑
q=1

`tσ(q) > 0. (23)

If I∗ is set to I∗ .= {σ(1), . . . , σ(I∗)}, then α∗
.
= α(I∗) is the solution of problem (18), and

w∗q = wtq −

(
αq(I∗)−

1

Q

I∗∑
q=1

αq(I∗)

)
x, q = 1, . . . , Q (24)

is the solution of problem (2), i.e. it provides us with the update equation to perform learning.

3



The proof of this theorem develops upon two ideas, that are established in Lemma 2 and Lemma 3.
Lemma 2 establishes the analytic form of α∗, by proving that it is an element of the family (α(I))I
introduced before. The question raised by the latter lemma is therefore that of finding the correct
I∗. Lemma 3 explains why the set I∗ given in Theorem 1 is indeed an optimal set of indices.
Lemma 2. The solution α∗ of Problem (18) is such that α∗ ∈ (α(I))I⊆Y\{y}, i.e. the components
α∗q of α∗ obey (20) (see Definition 1).

Proof. We denote by W ∗, w∗q , ξ∗ the primal variable at the optimum of (2).

Suppose that we know the set I∗ of indices such that for q ∈ I∗, α∗q > 0 and denote I∗ = |I∗|
the size of I∗. Given optimality condition (9), we have ξ∗q = α∗q/C, for q ∈ I∗. Combining the
complementarity condition (10) and the expression of w∗q given by (14), we get that, for q ∈ I∗:

α∗q
C
−
〈
wtq −

(
α∗q −

1

Q
sα∗

)
x, x

〉
−∆ = 0⇔

α∗q
C
− `tq +

(
α∗q −

1

Q
sα∗

)
‖x‖2 = 0

⇔ κα∗q − `tq −
‖x‖2

Q
sα∗ = 0

⇔ α∗q =
1

κ

(
`tq +

‖x‖2

Q
sα∗

)
,

where sα∗ =
∑
q∈I∗ α

∗
q . Summing over q ∈ I∗ gives

sα∗ =
1

κ

∑
q∈I∗

`tq + I∗
‖x‖2

Q
sα∗

⇔ sα∗ =
Q

κQ− I∗‖x‖2
∑
q∈I∗

`tq.

This completes the proof.

Lemma 3. If I∗ is chosen as recommended by Theorem 1 then α(I∗) is the solution of Problem (18).

Proof. Let I∗ be chosen as the largest I fulfilling (23) and I∗ .= {σ(1), . . . , σ(I∗)}.
On the one hand,

`tσ(I∗) +
‖x‖2

κQ− (I∗ − 1)‖x‖2
I∗−1∑
q=1

`tσ(q) > 0⇔
(
κQ− (I∗ − 1)‖x‖2

)
`tσ(I∗) + ‖x‖2

I∗−1∑
q=1

`tσ(q) > 0

⇔
(
κQ− (I∗ − 1)‖x‖2

)
`tσ(I∗) + ‖x‖2

I∗∑
q=1

`tσ(q) − ‖x‖
2`tσ(I∗) > 0

⇔
(
κQ− I∗‖x‖2

)
`tσ(I∗) + ‖x‖2

I∗∑
q=1

`tσ(q) > 0

⇔ `tσ(I∗) +
‖x‖2

Q

Q

κQ− I∗‖x‖2
∑
q∈I∗

`tq > 0

⇔ `tσ(I∗) +
‖x‖2

Q
sα(I∗) > 0⇔ ασ(I∗) > 0

where we used that the denominators are strictly positive in the first and next-to-last lines, and that∑I∗

q=1 `
t
σ(q) =

∑
q∈I∗ `

t
q, by the definition of I∗. Using αp(I) ≥ αq(I) for any I, whenever

`tp ≥ `tq for p, q ∈ I (see Remark 1), this first series of equations says that

αq(I∗) > 0, q ∈ I∗. (25)

On the other hand, we have

`tσ(J) +
‖x‖2

Q
sα(I∗) ≤ 0, ∀J > I∗. (26)
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Indeed, it suffices to observe that, using the definition of sα(I∗) (see (21))

`tσ(I∗+1) +
‖x‖2

Q
sα(I∗) > 0⇔ `tσ(I∗+1) +

‖x‖2

κQ− I∗‖x‖2
I∗∑
q=1

`tσ(q) > 0,

which is impossible because it would mean that I∗ + 1 also fulfills equation (23) while being larger
than I∗. Hence

`tσ(I∗+1) +
‖x‖2

Q
sα(I∗) ≤ 0.

As for all J ≥ I∗ + 1, `tσ(J)∗ ≤ `
t
σ(I∗+1), Equation (26) indeed holds.

We are now ready to prove that α(I∗) is the optimal solution of (18). To do so, we are simply going
to show that the duality gap between the primal and dual objective is zero when considering W (I∗)
and α(I∗), i.e.

F (W (I∗))−H(α(I∗)) = 0.

As the primal optimization problem is convex, having a zero duality gap is a necessary and sufficient
condition for α(I∗) (and thus, W (I∗)) to be the solution of (18).

A few calculations give the following:

F (W (I∗)) =
1

2
κ

I∗∑
q=1

α2
q(I∗)−

1

2

‖x‖2

Q
sα(I∗) +

C

2

Q∑
q=I∗+1

∣∣∣∣`tσ(q) +
‖x‖2

Q
sα(I∗)

∣∣∣∣2
+

H(α(I∗)) =
1

2
κ

I∗∑
q=1

α2
q(I∗)−

1

2

‖x‖2

Q
sα(I∗),

and the duality gap is therefore given by

F (W (I∗))−H(α(I∗)) =
C

2

Q∑
q=I∗+1

∣∣∣∣`tσ(q) +
‖x‖2

Q
sα(I∗)

∣∣∣∣2
+

,

and, as established in (26), `tσ(q) + ‖x‖2
Q sα(I∗) ≤ 0 for q > I∗. We thus have the desired result:

F (W (I∗))−H(α(I∗)) = 0.

All in all, we have constructed a vector of coefficients αI fulfilling the nonnegativity constraints and
realizing a zero-duality gap: α(I) is indeed the solution of Problem (18). Consequently, W (I∗) is
the solution of Problem (2).
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