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1 Proof of COPA’s update procedure

A bit of notation. Input space is X = R% W = [w; ---wg]; 1 = [1---1]T of the appropriate
dimension (always clear from context). Therefore, W1 =73 _,  ,w,.

1.1 Primal and Dual Problems

Ultimate goal: we want to solve the following problem, for p (and thus (z, y)) fixed,
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where A > 0 (itis A = 1/(Q — 1)) in the main text). Thich can be equivalently written as
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Here, ‘equivalently’ means that a solution W* of the former optimization problem is also a solution
of the latter (and vice versa). The optimal slack variables £* are then such that

&=y, 2) + Al a#y.
To solve this optimization problem we may introduce the Lagrangian of the previous problem:
L(W, ¢ o) = )= ag & — (wg,x) — Al = XTW, (4)
a7y
where A € R? and o, > 0, for g # y.

Taking derivatives of L with respect to the primal variables W and £ and making the gradient be
zero (a necessary condition on L for the primal variables to be optimal) gives:
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Or, stated otherwise,
wq:w;foquJr)\,q:l,...,Q ®)
ag = C&,, )



where we have introduced a Lagrangian multiplier o, that is clamped to 0 —this allows us to lighten
the notation by not having to write ¢ # y when referring to index q.

Note, otherwise, that the Karush-Kuhn-Tucker optimality conditions give that, for all ¢ # y
aq & = (wg,x) = A] = 0. (10)

Summing the @ equations in (8), using the fact that > q wg = 0 and that we require ) q Wq = 0 for
the new vectors that we are computing leads to:
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where, we have introduced the notation s,, for the sum of the «;’s:
Q
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Henceforth the necessary condition (8) for W to be optimal rewrites as
t Sa
Wy = w, — aq—a z,q=1,...,Q (14)

After some algebra, replacing W and £ in the Lagrangian (4) thanks to Equations (9) and (14) allow
us to get the dual objective H (ax) of (1):
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where, for the sake of readability, the following notation is introduced:

Oy = (wl,z) + A (16)
ni%+ [|l2]|2. (17)

Given the convexity of optimization problems (1) and (2), the solution a* of the convex optimization
problem

max H(a) st.ay, =0 A ag>0,g#y (18)

x

provides a solution W* of (1) thanks to (14) through
wq—w —(a —Za) =1,...,0. (19)

The following lemma shows that the dual objective H given by (15) is strictly concave in c: the
dual optimization problem (18) therefore admits a unique maximum «*, and it is thus valid to refer
to o™ as the optimal solution of (18).

Lemma 1. The dual objective H (15) is strictly concave and optimization problem (18) admits a
unique maximizer o*.

Proof. 1t is sufficient to show that the Hessian of — H is strictly positive, i.e. that is only has positive
eigenvalues. Rewriting things in matrix form, and leaving the linear part of —H aside, this means it
is sufficient to show that the application

R:a— Rla)=a' (éﬂ + ||lz||? (H — Clgll—r)> «@



is strictly convex. Observing that

([-117/Q)* = (1-117/Q)
tells you that (I — 117 /Q) is a projection operator, and that its only eigenvalues are therefore 0 and

1 (see, e.g. [2]). Hence, since the only eigenvalue of I/C' is obviously 1/C, the eigenvalues of the
Hessian of Rare 1/C and 1 4+ 1/C, and R is stricly convex.

This leads to the fact that —H (adding the linear —convex— term to R) is strictly convex as well.
The domain over which —H has to be minimized is made of nonnegative constraints only and
is therefore convex: minimizing —H over the domain is therefore a (strict) convex optimization
problem and it admits a unique solution, a*. O

1.2 Families («(Z))z and (W (Z))z

We now show that finding o (and therefore W*) might be done in constant time, without recours-
ing to any optimization procedure. The idea of the proof is similar to what is encountered when
performing projection on mixed-norm balls [], and more closely related to the work of [1].

In order to state the main theorem of this section, it is handy to introduce the family (ct(Z))zcy\ {4}
of vectors defined as follows.

Definition 1 (Family (a(Z))zcy\(y})- The family (a(Z))zcyn gy is such that the components
aq(Z) of a(Z) verify:

(e s ||IH2S(X(I) ifgeT
aq(I) = K\ 4 Q (20)
0 otherwise
where, I = |Z| being the size of Z,

P A e
sa(T) = 0 I q;zq. (21)

Remark 1. A few observations may be issued regarding «(Z). First, the denominator appearing
in (21) cannot be zero: it suffices to recall the definition of « in (17) and the fact that [ is striclty
lower than (). Then, with no additional constraint on Z, there is no reason for the «;(Z), ¢ € T not
to be negative —as we shall see, we will later on build a set Z* such that oy (Z*) > 0 whenever
q € T*. Finally, for p,q € Z, if ﬂﬁ, > €f1 then o, (Z) > ay(Z) (this directly comes from (20)).

The family (c(Z))z directly induces a family (W (Z))z as follows.
Definition 2 (Family (W (Z))zcy\(y3)- The family (W(Z) = [w1(Z)--- wQ(I)chy\{y} is de-
duced from (a(Z))zcy\ {4} as follows:

. 1
we(T) = w) — (aq(I) - Qsa(I)> T, qg=1,...,Q. (22)
1.3 Efficient Updates
From now on, we assume we have at hand a permutation o:{1,...,Q — 1} = Y\{y} such that

Coy > >0y
The main theorem of this section follows.
Theorem 1. Let I* be the largest index I € {1,...,Q — 1} such that

Hﬂvll2

t t
tony + KQ — (I — ||;v||2 Zeo(q) > 0. (23)

IfT*issettoT* = {o(1),...,0(I*)}, then a* = a(I*) is the solution of problem (18), and

w;‘_wé—<aql* Zaqz*> g=1,....Q (24)

is the solution of problem (2), i.e. it provides us with the update equation to perform learning.

(Q@-1)




The proof of this theorem develops upon two ideas, that are established in Lemma 2 and Lemma 3.
Lemma 2 establishes the analytic form of a*, by proving that it is an element of the family («(Z))z
introduced before. The question raised by the latter lemma is therefore that of finding the correct
T*. Lemma 3 explains why the set Z* given in Theorem 1 is indeed an optimal set of indices.

Lemma 2. The solution o* of Problem (18) is such that o™ € ((Z))zcy\{y}» i-e. the components
ay of a* obey (20) (see Definition 1).

Proof. We denote by W*, wy , € the primal variable at the optimum of (2).

Suppose that we know the set Z* of indices such that for ¢ € Z*, a; > 0 and denote [* = |Z*|
the size of Z*. Given optimality condition (9), we have fj; = a; /C, for ¢ € Z*. Combining the
complementarity condition (10) and the expression of wy given by (14), we get that, for ¢ € Z*:
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where s« = quz* «,. Summing over g € Z* gives
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This completes the proof. O

Lemma 3. IfZ* is chosen as recommended by Theorem I then ou(Z*) is the solution of Problem (18).

Proof. Let I* be chosen as the largest I fulfilling (23) and Z* = {o(1),...,0([*)}.
On the one hand,
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where we used that the denominators are strictly positive in the first and next-to-last lines, and that
Z;Zl Uy = 2qez gy by the definition of Z*. Using a,(Z) > ay(Z) for any Z, whenever
€, > (! for p,q € T (see Remark 1), this first series of equations says that
ag(Z%) >0, g I™. (25)
On the other hand, we have
¢ llz* 7 .
ooy +—F— «(Z7) <0, VJ > I, (26)



Indeed, it suffices to observe that, using the definition of s, (Z*) (see (21))

PP i e = P IS Ll ol Zét >0,
o(I*+1) o(I*41) HQ I* |£C||2 (q)
which is impossible because it would mean that J* + 1 also fulfills equation (23) while being larger
than I*. Hence
t ||‘(I;H2 *
EU(I*+1) + ?SQ(I ) S 0

Asforall J > I* +1, Eiu)* < Eff([* Equation (26) indeed holds.
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We are now ready to prove that ae(Z*) is the optimal solution of (18). To do so, we are simply going
to show that the duality gap between the primal and dual objective is zero when considering W (Z*)
and «(Z%), i.e

FW(T")) - H(a(Z7)) = 0.
As the primal optimization problem is convex, having a zero duality gap is a necessary and sufficient
condition for at(Z*) (and thus, W (Z*)) to be the solution of (18).

A few calculations give the following:
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and the duality gap is therefore given by
Q 2
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and, as established in (26), éta(q) + Hg”z $a(Z*) < 0 for ¢ > I*. We thus have the desired result:
F(W(Z*)) — H(a(Z*)) = 0.

All in all, we have constructed a vector of coefficients a fulfilling the nonnegativity constraints and
realizing a zero-duality gap: «(Z) is indeed the solution of Problem (18). Consequently, W (Z*) is
the solution of Problem (2). ]
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