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In this supplementary material, we provide the derivation of the global solution of the expectation-
maximization method in Sec. 2.2 and the required statistics in the variational Bayesian methods in
Secs. 3 and 4. Equation numbers are denoted with preceding “S-", and the ones without ““S-" refer
to the main text.

1 Global Solution of the EM method

The log-likelihood is given by
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with K = 021+ DAATDT. To maximize the log-likelihood w.r.t. A, we take its gradient w.r.t. A
using matrix differentiation identities [2] and set it equal to zero, which yields

1
DK 'DA = NDTK_lDDTK_lDA. (S-2)

This has three possible solutions: (i) DA = 0, (ii)) K = %DDT, and (iii) DA # 0 and K #
%DDT. We consider the latter two cases, as the first one is not interesting for subspace clustering.
In the last case, assuming o2 > 0 and thus K ! exists, we have

1
DA = NDDTK*DA. (S-3)

We first solve this system w.r.t. DA. Let the SVDs of D and DA be! D = UAVT and DA =
UAVT, respectively, such that we have

K 'DA = (¢21+ DAA"D”) ' DA, (S-4)
— DA (c21+ A"D'DA) " | (S-5)
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! At this point, we do not know if the singular vectors of DA and D are related.



Plugging this in (S-2), we have at the stationary points
PPN 1 PN ~o\ L.
UAV” = ZDD”UA (031 n A2) vT (S-7)
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U (031 + A2> A= DD"UA, (S-8)

from which it can be observed that U contains the eigenvectors of DD7 and hence the left singular

vectors of D, such that U="U. Moreover, 031+A2 contains the eigenvalues of %DDT. Therefore,
similarly to [3], we have the solution
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where R is an arbitrary orthogonal rotation matrix, and U, is a M x ¢ matrix consisting of ¢ left

singular vectors of D with corresponding singular values that are larger than v/No,. Therefore, the
1/2
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DA =1, ( AZ — 031) R, (S-9)

singular values of DA satisfy I; = (/\W? —02)

In the case (ii), we have the same solution (S-9) where the last M — ¢ smallest singular values of D
are equal to VN oq4. This is an unrealistic case and is analyzed also in PPCA [3].

Using the solution (S-9), we can solve for the optimal B using (9) as

(B) =Xp % ATD'D, (S-10)
d
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Now we have an expression for DA and (B). Combining,

DA(B) = Uy (A2 — NogD)A;'V] . (S-14)
Plugging D = UAVT in (S-14) yields the final solution
A(B) = V(A2 - NoiI)A >V = V,A, V], (S-15)
Nog

with Aq is a diagonal matrix with 1 — . on the diagonal. The optimal solution for A can easily

By
J
be extracted from this expression.

Finally, using this expression for A(B) in (10), we solve for D as
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Using the partitioning D = [U,, Uy_,]| diag(A,, Anv—q) [V4, VN—g|T, we have the final solu-
tion
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Therefore, the eigenvectors of D and Y are the same, but the eigenvalues are related via

/\j —I—N(Tg /\j_l7 if )\j > \/NO’d
j = oi—&-ag‘ (S-19)
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Figure 1: Estimates of singular values A of D given singular values £ of Y (N = 100). The dashed
lineisA\=¢. In(a),oq=1,0y =2,in(b), 04 =0, = 1.

The explicit solutions for \; are given by
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The solution for \; is unique except when o, > 04 and 2v/No, < &; < ‘g—f(ag + 07), where
we have the latter two cases as solutions. As shown in Fig. 1(a), the last solution is only valid in

a comparably small region. To achieve continuity in the solutions, we always choose the first two
solutions (S-20).

As can be observed from Fig. 1, the solution (S-20) is a combination of two operations: a down-
scaling when &; < 2v/N oy and a polynomial thresholding operation for larger singular values. The
polynomial thresholding preserves the larger singular values as the shrinkage amount gets smaller:
&; gets larger compared to 2N oy, and for very large values A\; ~ &;. On the other hand, small
singular values get shrunk via down-scaling. Obviously, when o4 = 0, no shrinkage is applied and
D=Y.

2 Derivation of the Variational Bayesian Methods

The explicit form of the variational free energy in (17) is given by
F = (logq(D,A,B, 03, 05) —logp(D, A, B, U§7U§)>q(D,A,B,U§,a§)
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The optimal forms of q(D) and ¢(B) can be found as matrix-variate normal distributions by inspec-
tion. The optimal q(A) does not have a matrix-variate normal form. The optimal distribution is



found in terms of a = vec(A), by rewriting the terms involving A in (S-23) as
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where we used vec(DAB) = (BT @ D)vec(A), and d = vec(D), b = vec(B). It can be
derived from here that q(a) has a multivariate normal distribution with mean % ((B)” @ (D))7(d)
and covariance Z, = [(0;%)((BTB) ® (D'D)) + C,' ®1] ~'. However, computing A in this

manner can be very inefficient, as 3 4 might get extremely big (M N x M N for A of size N x N
and D of size M x N).

Therefore, we force q(A) to have a matrix-variate form N ((A), XA, 24 ), which leads to an effi-
cient algorithm. Under this constraint, the variational free energy can be rewritten as (treating all
terms not involving A as constant)
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Evaluating the expectations using the matrix-variate normal form for q(A) (see the next section),
we minimize F with respect to X4, resulting in

= %tr(C;}QA) I+ Nlag tr(2a (BB')) (DT D) (S-24)
Similarly, minimization with respect to {2 yields
Q) = %tr(EA)C;} + Nig tr(Za(DTD)) (BBT). (S-25)
Finally, the update of (A) is given by
(A)CR! + 013<DTD><A><BBT> = 015<DTD><B>T (5-26)

The closed form solution for (A) cannot be found, but it can be solved using a fixed-point iteration
starting from an initial estimate.

2.1 Required Statistics for the Variational Bayesian Methods
For a general matrix-variate Gaussian distribution p(X|M, 2, ) = N (X|M, X, ©2), we have [1]

(XTKX) = tr(ZTKT)Q + MTKM, (S-27)
(XKXT) = tr(KTQ)E + MKM” . (S-28)



Thus,for (D) = (D). 1.2p). a(A) = AT(A). Za.2a). nd a(B)
ave

= N((B),1,Xg), we

(DTD) = tr(I)2p + (D) (D) (S-29)
= MQp + (D) (D) (S-30)
(AAT) = t2(24) B4 + (A)(A)T (S-31)
(ATA) = t2(22)Q2a + (A)T(A) (S-32)
(BB”) = tr(Qp) T + (B)(B)" (S-33)
= NZp + (B)(B)" (S-34)
(B"B) = tr(3p)Iy + (B)" (B) (S-35)

Combining, we obtain
(ATDTDA) = tr(ZA(D"D))Q24 + (A)"(DTD)(A) (S-36)
(BTATAB) = tr(Sp(ATA))Iy + (B) (AT A)(B) (S-37)
(ABBTAT) = tr((BBT)Q4)ZA + (A)(BBT)(A)" (S-38)
(BTATDTDAB) = tr(Zg(ATDTDA))Iy + BT(ATDTDA)B (S-39)
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